Turing and the
Riemann Hypothesis

Andrew R. Booker

scribed a numerical method for verifying

the Riemann hypothesis and its implemen-
tation on the Manchester Mark I, one of the earli-
est general purpose digital computers. Turing
writes in his introduction

! lan Turing’s final research paper! [11] de-

The calculations had been planned some
time in advance, but had in fact to be
carried out in great haste. If it had not
been for the fact that the computer re-
mained in serviceable condition for an
unusually long period from 3 p.m. one
afternoon to 8 a.m. the following morn-
ing it is probable that the calculations
would never have been done at all.
As it was, the interval 2m.63% <
t < 277.64° was investigated during that
period, and very little more was ac-
complished.

The modesty of this last sentence notwithstanding,
Turing’s paper is an important contribution to
number theory that continues to have relevance
today; indeed, we are fortunate that the Manches-
ter computer remained serviceable for so long on
that day, for otherwise Turing may never have pub-
lished his results! The goal of this article is to

Andrew R. Booker is a lecturer at the University of Bris-
tol. His email address is andrew.booker@bristol.ac.uk.

1 A popular account of some of his ideas on computability
appeared the following year in [12].

NOTICES OF THE AMS

describe the method and some recent develop-
ments in a historical context.

Background
We begin with a very brief introduction to the Rie-
mann hypothesis and some associated computa-
tional aspects; for a full account, including its im-
portance in number theory and recent attempts at
proof, see the excellent survey article by Conrey [4].
The C-function is defined for complex numbers
s with real part R(s) > 1 by the series

(1) OEDY -

which converges absolutely. As discovered by Rie-
mann, it has analytic continuation to C, except for
a simple pole at s = 1. Moreover, a functional equa-
tion relates the values at s and 1-s: If
y(s) := m5/?I'(s/2) and A(s) := y(s)C(s) then

(2) A(s) = A(1 — s).

The Riemann hypothesis is the conjecture that all
zeros of the modified function A(s) have real part
exactly % All that is known at present, however, is
that the real parts lie in the open interval (0, 1).

Since A(s) is real for s on the real axis, the zeros
come in complex-conjugate pairs s,3, so it suf-
fices to consider here only the ones in the upper
half plane. The number of zeros with imaginary part
J(s) € (0, t], denoted by N(t),is roughly O(t)/m + 1,
where O(t) is the phase of y(% + it), i.e., the con-
tinuous function such that 0(0) = 0 and

19(r

3) Y +i0) = [y +it)le
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Figure 1. 5(t).

This may be computed quickly for large t > 0 by
the asymptotic formula
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In particular, A(s) has many zeros.
The difference

(5) s0:=NO - (22 +1)

between N(t) and the expected count is a function
that seems to vary unpredictably, as can be seen
in Figure 1. This strange? behavior, and our in-
complete understanding of it, lies at the heart of
what makes the Riemann hypothesis a difficult
problem and numerical computation a useful tool.

An important ingredient when doing numerics
is an algorithm for computing the A -function at ar-
guments § = % + it. However, since Iy(% + it)| de-
creases exponentially for large t, one usually works
instead with the function Z(t):= e"g“)C(% + it),
which is real-valued for t € R and has the same
Zeros as A(% + it). A formula for Z(t), known to Rie-
mann and rediscovered by Siegel, is the following.

NaES
© zo~2 >

n=1

n~'2 cos(0(t) — tlog n).

The error of the approximation is no worse than
O(t~Y%), so that (6) becomes more accurate for
larger t; moreover, there is an asymptotic expan-
sion for the error term, giving better accuracy yet.
For small values of t, the error in the Riemann-Siegel
formula is too large, and one usually prefers a dif-
ferent technique, known as Euler-Maclaurin sum-
mation, which allows for high accuracy at the ex-
pense of a longer running time.

Turing’s Interest in the Riemann
Hypothesis

According to Hodges’ definitive biography [6], Tur-
ing became interested in the Riemann hypothesis
while still a student. Curiously, he seems to have

20One might substitute the word random here: Selberg
showed that the values of S(t)/~/loglogt, as t — oo, are
normally distributed.
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believed it to be false; indeed, it is clear from [11]
that he had hoped to find a counterexample. In
1939, back in Cambridge, he conceived of an ana-
log machine to aid with the calculations necessary
for numerically checking the hypothesis. The de-
sign of the machine, whose blueprint is reproduced
on the cover and pages 1186-1187, called for an
assembly of eighty gears of precise ratios and a
counterweight, which would physically perform
the sum in (6). Turing won a grant for £40 from the
Royal Society to cover the cost of its construction
and got as far as manually cutting some of the
gears, which would often end up on the floor of his
room. However, World War II intervened before
the work was completed, and Turing would have
other important contributions to make.

By the time that he returned to the problem, in
June 1950, digital computers had advanced to the
point that it was practical, if only barely so, to con-
sider much more than was possible with any ana-
log machine—testing the Riemann hypothesis al-
gorithmically, with no human intervention. Indeed,
this is an important aspect of Turing’s method
which should not be overlooked.? Although Turing’s
numerical results were modest—Titchmarsh had by
1936 achieved nearly the same range by more con-
ventional means—it wasn’t long before Lehmer ex-
tended his calculations to ranges well out of reach
of hand computation. However, that this would be
the case may have been far from obvious in 1950;
few at the time could have anticipated the
economies of scale in speed, reliability, and avail-
ability of computing technology that would be
achieved, forever rendering human computers ob-
solete.? As it was, the practical issues that Turing
faced, described in detail in [11], were formidable
compared to today’s technology.

31t was also part of the larger consideration of the extent
to which machines could think and act autonomously, a
question that captured Turing’s keen interest.

4Up to the 1940s, the word computer referred to a human
who performed computations with the aid of a calculat-
ing device. With the advent of electronic machines and
stored programs, the job of the human shifted to that of
programmer. Turing employs both the original and mod-
ern usages in [11].
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Hodges speculates that Turing rushed [11] to
publication, worried that he would be sent to prison.
What is clear is that he was dissatisfied with the
results. Unfortunately, we will never know the true
extent of his intentions.

The Method

Turing’s approach follows earlier computations by
Gram, Backlund, Hutchinson, and Titchmarsh. First,
one locates many zeros on the line R(s) = % up to
a given height T by computing Z(t) and noting its
changes of sign. Second, one shows that the com-
puted list of zeros is complete (meaning that the
Riemann hypothesis is true up to height 7T), by de-
termining N(T) via an auxiliary computation.

Turing made contributions to both aspects. In
[10] he introduced an algorithm for computing the
Z-function that was intended to be used in the in-
termediate range, between those of the Riemann-
Siegel formula and Euler-Maclaurin summation.
However, with better error terms known today and
improvements in computing technology, that gap
has been closed otherwise. On the other hand, his
technique for determining N(T) was of more last-
ing value and is what is usually meant when re-
ferring simply to “Turing’s method”.

The authors prior to Turing used an ad hoc ap-
proach, described in detail by Edwards [5, §6.7]; it
was both computationally expensive and not guar-
anteed to work for any given T. Turing’s method
relies instead on the fact, first due to Littlewood,
that the average value of S(t), for t ranging over the
interval [0, T], tends to 0 as T grows. Thus, the
graph of S(t) tends to oscillate around 0, as is vis-
ible in Figure 1. Now, if one imagines plotting Fig-
ure 1 using equation (5) and the measured data for
N(t), any zeros that had been missed would skew
the graph, i.e., it would begin to oscillate around
an integer less than 0, corresponding to the num-
ber of missing zeros. (Note that when locating
zeros by sign changes, one always misses an even
number of them.)

To make this precise, one needs an explicit form
of Littlewood’s theorem. This is one of the main re-
sults of [11], where Turing proved the estimate

Jﬂh S dt

T

T+h

(7) <2.3+0.1281og

valid for all h > 0 and T > 1687r. With (7) in hand,
one entertains the hypothesis that at least one
zero up to height T has been overlooked and com-
putes the integral using the numerically measured
values of N(t), with the extra zero thrown in. If it
turns out that there really is no missing zero, then
(7) will be contradicted with a value of h on the
order of clog T for a small number c. Thus, roughly
speaking, in order to certify complete the list of
zeros up to T, one needs knowledge of the
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C-function up to height about T + clog T. When T
is large, that is a negligible price to pay compared
to the total computation.

Turing’s proof of (7) is elegant and remains es-
sentially unchanged in all subsequent generaliza-
tions. The bound is not sharp,®> however, and the
constants were later improved by Lehman, who
also corrected a few errors in the details. Never-
theless, (7) is more than sufficient for numerics; in
fact, in modern verifications of the Riemann hy-
pothesis, Turing’s method is considered an auto-
matic check, and one can concentrate on the busi-
ness of locating the zeros as quickly as possible.

Recent Developments

The more than half century following Turing’s
death has seen many developments in computa-
tional aspects of the Riemann hypothesis and re-
lated problems. In fact, Turing’s method is ar-
guably the first in a long line of papers in the area
of computational analytic number theory; see [8]
for a recent survey.

Concerning the Riemann hypothesis, an essen-
tially optimal algorithm (in terms of speed) for
computing the C-function was developed by
Odlyzko and Schonhage [7]. It uses the Fast Fourier
Transform and computes many values of Z(t) in av-
erage time O(t¢) per value, compared to the roughly
/T steps needed for a single evaluation using the
Riemann-Siegel formula. The algorithm has led to
computations of the C-function on a much larger
scale than Turing could have envisioned; in par-
ticular, the Riemann hypothesis has now been ver-
ified up to the ten trillionth zero! Turing’s method
remains a small but essential ingredient in those
investigations.

Perhaps more importantly, the same computa-
tions have aided in the discovery of links between
the C-function and random matrix theory, which
has in turn led to a flurry of recent work. A strong
argument can be made that the eventual proof of
the Riemann hypothesis will require a deeper un-
derstanding of this connection. See [4] for a de-
scription of these exciting developments.

In the same vein, number theorists today rec-
ognize that the C-function is just one of a large class
of important generating functions, known as L-
functions. Many of the conjectures for ¢, includ-
ing the Riemann hypothesis and connections with

5The coefficient of log L in Turing’s estimate is closely
related to knowledge about the growth rate of Z(t) as
t — co. The Lindelof hypothesis, which is the conjecture
Z(t) = O(t%), is equivalent to the integral being
o(log(T + h)) as T +h — c. The Riemann hypothesis,
which in turn implies the Lindelof hypothesis, yields the
stronger bound O ({12 57 (; 7 ) - Heuristic arguments based
on random matrix tﬁeory suggest that the true maximum
size of the integral is closer to \/log(T + h).
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random matrix theory, are expected to hold true
for these functions as well. Very recently, Turing’s
method has been extended to all L-functions in [2].
It is interesting to note that few of the known tech-
niques in analytic number theory apply in such
wide generality; the fact that Turing’s method does
demonstrates how fundamental it is.

Finally, the novelty of Turing’s method is further
underscored by the fact that it was rediscovered
some forty years later in the seemingly unrelated
context of computing the spectrum of the Laplace
operator on hyperbolic manifolds. This has had sev-
eral applications in number theory and high energy
physics; see [9] for a nice survey and [1] for an in-
teresting application to cosmology. Unfortunately,
the papers in the subject generally use the method
without proper attribution to Turing. It would be
good to have the record set straight. To that end,
arigorous treatment of the simplest example, much
in the style of Turing, will appear in [3].
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