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The Essential Turing is a selection of writings of the
British mathematician Alan M. Turing (1912-1954).
Extended introductions and annotations are added
by the editor, the New Zealand philosopher B. Jack
Copeland, and there are some supplementary pa-
pers and commentaries by other authors. Alan Tur-
ing was the founder of the theory of computabil-
ity, with his paper “On Computable numbers, with
an application to the Entscheidungsproblem” (Tur-
ing 1936). This, a classic breakthrough of twenti-
eth century mathematics, was written when he was
twenty-three. In the course of this work in mathe-
matical logic, he defined the concept of the uni-
versal machine. As he himself put it, digital com-
puters are practical versions of this concept; and
he himself created an original detailed design for
an electronic computer in 1945-46. His 1936 analy-
sis of mental rule-based operations was the start-
ing point for his later advocacy of what is now
called Artificial Intelligence. His paper “Computing
machinery and intelligence” (Turing 1950a) is one
of the most cited in modern philosophical litera-
ture. His paper in mathematical biology (Turing
1952) then inaugurated a new field in nonlinear ap-
plied mathematics. But he was also the leading sci-
entific figure in the British codebreaking effort of
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the Second World War, with particular responsibility
for the German Enigma-enciphered naval commu-
nications, though this work remained secret until
the 1970s and only in the 1990s were documents
from the time made public.

Many mathematicians would see Turing as a
hero for the 1936 work alone. But he also makes a
striking exemplar of mathematical achievement in
his breadth of attack. He made no distinction be-
tween “pure” and “applied” and tackled every kind
of problem from group theory to biology, from ar-
guing with Wittgenstein to analysing electronic
component characteristics—a strategy diametri-
cally opposite to today’s narrow research training.
The fact that few had ever heard of him when he
died mysteriously in 1954, and that his work in de-
feating Nazi Germany remained unknown for so
long, typifies the unsung creative power of math-
ematics which the public—indeed our own stu-
dents and our colleagues in the sciences—should
understand much better.

Many therefore will welcome this new edition and
the increased availability of Turing’s work. But the
foregoing remarks should make it clear that defin-
ing the Turing oeuvreis not straightforward. There
is no default option of reproducing published pa-
pers and compiling them under a new cover. There
is a spectrum ranging from formal publication to
reports, talks, unpublished papers, unfinished work,
letters, and several areas where other people de-
veloped work that he had inspired. Choices here are
not easy. Nor it is straightforward to define a genre
or field in which to place his work, and the usual
criteria of important papers in leading journals
are of no use. Turing ignored conventional classi-
fications, and created work which would now be
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described as at the foundations of computer sci-
ence or the cognitive sciences, areas which in his
time had no clear names of their own.

On top of this, there is the difficulty that his war
work was never written for publication and exists
only in operational reports which have been re-
leased in a chaotic fashion. Indeed, even since this
collection was published, Turing’s report on his ad-
vanced electronic speech scrambler, with the won-
derful date 6 June 1944, has emerged (Turing 1944).

In the last decade the World Wide Web has trans-
formed access to original Turing documents. In
particular, the collection of Turing’s papers at
King’s College, Cambridge University, is now ac-
cessible at|http://www.turingarchive.org|
Those interested in original material are now much
less dependent on the work of editors and pub-
lishers. Even so, a printed source-book will be val-
ued by many to whom Turing is a somewhat leg-
endary figure, often cited but not easy to look up
and quote. Such a book has enormous potential to
educate and to inspire.

Copeland’s Anthology

We now come to Copeland’s own editorial choices.
This review will consider points of interest in an
order roughly corresponding to the order of
Copeland’s anthology, which in turn reflects Tur-
ing’s chronology. But one point should be made
clear at the outset. Oxford University Press bills this
as “the first purchasable book by Turing”, but
Copeland’s volume is not the first edition of Tur-
ing’s papers and not the most complete. A four-
volume Collected Works of A. M. Turing was pub-
lished by Elsevier (Turing 1992, 2001). This work,
totalling some 938 pages, resulted from the pro-
tracted collaboration of distinguished mathemati-
cians and computer scientists. Particularly notable
is the volume where John L. Britton, as editor, an-
notated Turing’s pure-mathematical work in line-
by-line detail.

Unfortunately, little effort was made to pro-
mote the Collected Works, and the high price guar-
anteed it few sales, even to university libraries. For
this reason, Copeland’s new collection, offered at
a paperback price, makes a good part of Turing’s
work much more accessible in practice. It is still
odd, however, that Copeland virtually ignores the
Collected Works. Indeed, an inattentive reader, miss-
ing the small print on pages 409, 510, and 581,
would remain ignorant of it.

This omission is compounded by another:
Copeland does not list Turing’s works, so the reader
cannot even guess how complete his selection is.
There are quotations from some of Turing’s papers
which have not been included in the work, but
there is no overview of Turing’s output, nor any ex-
planation of what is considered “essential” and
why. Yet it would have been simple for Copeland
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to explain the relationship of his
collection to the existing edition,
and to refer readers to it for other
(presumably “inessential”) Turing |
works. Indeed, Copeland could
justly claim to have advanced upon
the Collected Works in some areas—
as he does when detailing tran-
scription errors in (Turing 1948a).
He has included more technical
Enigma material than the Collected
Works did, as well as Turing’s late
talks on machine intelligence, which
Copeland finds particularly impor-
tant. But the inclusions and exclu-
sions are nowhere systematically
listed.

Copeland’s edition has all the pa-
pers reset in a uniform typography: some readers
will always prefer to see the original format and this
decision means the loss of original page refer-
ences. But Copeland is certainly no slouch when it
comes to textual detail. For example, he devotes
nearly a page to discussion of the spelling of the
word “program”.

More problematic is the central question of what
is “essential”. To illustrate how differently the “es-
sential” Turing may appear in different eyes, it is
worth recalling the survey of the topologist
M. H. A. (Max) Newman, written for the Biographi-
cal Memoirs of the Royal Society after Turing’s
death (Newman 1955). In some ways Turing’s men-
tor and father figure, Newman interestingly de-
fined him as “at heart more of an applied than a
pure mathematician” and devoted serious attention
only to his mathematical papers. Of course, Tur-
ing’s war work was then totally secret, but even so
Newman’s characterization of it as a cruel loss to
science was somewhat severe. Computer design
and Artificial Intelligence received the briefest of
mentions. This was too narrow a mathematical
viewpoint, but it did reflect, perhaps, that sub
specie aeternitatis aspect of mathematics in which
Turing shared: he threw himself into the war effort
(as did Newman) but never, even in its darkest
days, forgot that he was a serious mathematician.
In contrast to Newman, Copeland highlights the
Enigma cipher machine as the subject of his sec-
ond main section, the third focal point being Arti-
ficial Intelligence and the Turing Test.

Computability and Logic

In one respect, however, Copeland is entirely in uni-
son with Newman, and that is on the topic of com-
putability, which forms the first main section of his
volume. The Essential Turing includes not only “On
Computable Numbers”, but also part of a paper by
Emil Post which gives some corrections, and another
technical commentary by Donald Davies. (For
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A page from the typescript of Alan
Turing’s classic 1936 paper, “On
computable numbers, with an ap-
plication to the Entscheidungs-
problem”.

This text appeared on page 256 (vL) Ifs bnd /1 are computable and & <7 and Jv)< 0L/
of Turingls pUbIIShEd paper, with where iF'#l'l ia » emputable inereasing :mtinun.nnr. functidn,; then
some very minor textual changes.
The typewriting is not his, but the in-
serted mathematical expressions are
in his own hand. The lines drawn
through the material may mean that

thare is & unigque computable numbar 'I- , Batinfying o < I

ana ()

]

Computable Convergence

it had been retyped, or merely that ¥e will say that a seguknce 4, of computebls nunbers Egver-.'mn

it was finished with and could be re- gomputsbly if there 1g, a compatable inkegral valusd Tunction V/E]

cycled as scrap paper (see below). of the computsble varishle; £ such thit we can show that\if £ > O
The results on this page show ana\ W >N(E) ana . m AN(c) , wam 3, -Au|< £ b

that “computable numbers” include
all the real numbers that normally

We con then shew

arise in mathematics through limit (¥ii} A power seriss whoss cosffielents form & computable
definitions. Although Turing’s paper sequence of computable numbare is ccmputably comwergent in the

is usually thought of as concerned of it intabwal of convergence.

with the discrete world of mathe-

matical logic, Turing wanted to con- (vit1) The limit of a ecaputibly convergent ssqugnce 1s com-
nect computability with the main- putable, | And whth the obrious definition of "uniformlysomputsbly

stream of continuous analysis. In convergent"
fact his opening remarks rather
rashly asserted that he would soon
give a theory of real functions based
on the concept of computable num- (z)
bers. Turing subsequently aban-
doned this ambition, leaving it to
modern theorists of “computable
analysis” to follow up. However, his Prom (viii) ahg s &(r-ls 2 1 wa dsteos thet = 18 conpat-

P&

later note (Turing 1937) made a first . | Eaany
step in this direction. From € iinls 3T g i
Only six pages of this typescript
survive in the Turing Archive at
King’s College, Cambridge. Their ex-
istence has been overlooked because
they were used as scrap paper: the
reverse sides contain Turing’s man- The image above is AMT/C/15/01c.2 at|http://www.turingarchive.org/browse.php/C/15| on
uscript for another paper, “A note the website of the Turing Archive of King's College, Cambridge University. Permission to publish
on normal humbers” (Turing 19367?). has been granted by P. N. Furbank, executor of Turing’s will.
This other paper was never pub-
lished, but there is a modern transcription and detailed annotation in the Collected Works. 1t was probably stimu-
lated by the work of his friend David Champernowne (1933). Champernowne noticed that the number
.123456789101112131415... is normal in base 10, meaning that its digits and groups of digits are all uniformly
distributed in the infinite limit. In attempting to generalize this result, Turing found himself giving constructive de-
finitions of infinite decimals. It seems quite possible that Turing considered this question around 1933-34 and that
it influenced the approach he took in 1935 when he formulated his definition of a computable number.
—Andrew Hodges

{ixz) The limit 9f & unifermly computably convergent computable

aepjusnce of somputable .[‘u._n-::‘.‘.ann is a gomputable funotion. Thance

The sun of & powgr aeries whose cosfficients form a
computable séguence ia & computable function in the interior of ita

interval of conwergence,
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comparison, Martin Davis’s collection of classic
papers The Undecidable (Davis 1965), recently re-
published, only offers Post’s paper, but offers all
of it.) Copeland also gives good didactic material
on Hilbert’s formalist program and the working of
the universal machine. Turing’s formidable 1939
paper on ordinal logics (his 1938 Princeton Ph.D.
thesis, as supervised by Church) is also included.
This issue of the Notices includes a review of this
paper by Solomon Feferman and a further article
by Martin Davis on “Turing Reducibility”. In this
case it is probably beyond the powers of any edi-
tor to make the technical apparatus accessible.
Copeland does not try to explain the idea of the
lambda-calculus, and does not offer the mathe-
matical content that the authors in the Notices sup-
ply, but succeeds in giving a clear survey. His treat-
ment is enhanced by the inclusion of some
previously unpublished correspondence with New-
man from the King’s College archive.

Mathematics and Cryptography
After this first section, Turing’s mathematical work
is marginalised, and the message seems to be that
mathematics is less than essential. An example
comes in Turing’s interest in probability theory. Tur-
ing’s first substantial research work was an inde-
pendent proof of the Central Limit Theorem—un-
mentioned by Copeland, but given an excellent
review by Zabell (1995). This won his Fellowship
of King’s College in 1935. But perhaps more im-
portantly, probability theory was the key to his
advanced cryptanalytic methods, which made cryp-
tography into a science. Turing developed new
Bayesian inference methods for the Enigma deci-
pherment problem, work in which he was assisted
by L J. (Jack) Good after 1941. Good became a dis-
tinguished mathematician and statistician, and his
book Probability and the Weighing of Evidence
(Good 1950) expounded and developed the mate-
rial that Turing originated but never wrote in his
own name. (“Weight of evidence” is essentially
equivalent to Shannon’s measure of information,
which Turing formulated and used independently.)
In the Collected Works, this work was well accounted
for, thanks to Good’s wealth of historical material
(Good 1992, 1993, 2001). It has inspired modern
developments (Orlitsky et al. 2003). Yet the entire
subject of probability and statistics is virtually un-
mentioned in The Essential Turing. This is rather
like telling the story of the atomic bomb without
mentioning nuclear physics. Because of this omis-
sion, Copeland does not justify his claim (p. 2) that
in The Essential Turing “the full story of Turing’s
involvement in the Enigma is told for the first
time.”

However, Copeland gives a full description of the
Enigma machine and of the early Polish and British
methods for deciphering it. The power of Turing’s
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applied logic comes through in his beautiful “si-
multaneous scanning” method to defeat the plug-
board complication of the Enigma. For this,
Copeland supplies the pertinent excerpt from Tur-
ing’s 1940 technical report, as eventually released
in 1996, supplemented by a part of A. P. Mahon’s
more readable internal history of the work. He
does not include Mahon'’s striking conclusion: this
gave a mathematician’s apology for war work which
probably also reflects Turing’s sentiments. “While
we broke German Naval Cyphers because it was our
job to do so and because we believed it to be worth-
while, we also broke them because the problem was
an interesting and amusing one. The work of Hut
8 combined to a remarkable extent a sense of ur-
gency and importance with the pleasure of play-
ing an intellectual game.”

This omission of Bayesian inference methods
also weakens Copeland’s claims about the genesis
of Artificial Intelligence in wartime Bletchley Park.
Copeland argues that the serial trial of a million or
so Enigma rotor positions lies behind the identifi-
cation of “search” in (Turing 1948a) as a concept
central to “intelligent machinery”. This is an un-
necessarily weak link on which to hang the claim.
Such brute force “search” was the bluntest of in-
struments in codebreaking. A more substantial
point lies in Turing’s successful mechanization of
judgment through his quantified “weight of evi-
dence”, prefiguring the sophisticated Bayesian in-
ference programs used today in Al applications.

Mathematics and Computer Science

More generally, the hinterland of mathematical
theory and practice, as the basis and motivation for
advances in computing, is weakly represented. Tur-
ing not only worked on computable numbers in the
abstract: he knew all about computing numbers in
practice. As the Notices article by Andrew Booker
describes, in 1937-39 Turing developed new meth-
ods for investigating the Riemann zeta-function,
which led to a need to compute its zeros: for New-
man, the abandonment of such work was the cruel
blow dealt by the war. But Copeland never mentions
complex analysis, nor the special machine Turing
designed for computing the zeta-function, nor his
1950 computer program superseding it. It is strik-
ing that the first thing Turing did in 1950, when
he was able to use one of the world’s first com-
puters, was to use it to investigate the zeta-
function. (In contrast, he did no experimental work
with computers on Artificial Intelligence).

The exclusion of mathematics gives a lopsided
view of Turing’s mind at work. Thus his pre-war
connection with von Neumann through research in
continuous groups (Turing 1938), and the devel-
opment of computability within mathematics (Tur-
ing 1950b) go unmentioned. So does Turing’s work
in the numerical analysis of matrix inversion
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(Turing 1948b), although it led the way in showing
the viability of numerical methods for large-scale
applied mathematical problems and thus made a
start on the serious analysis of algorithms. (The
work of Higham (1996) has drawn attention to the
importance of this work.) The “program proof” of
(Turing 1949), anticipating ideas of the 1960s,
plays no role: for Copeland the only “essential” topic
in computing is Artificial Intelligence.

In defence of this narrow focus it could be said
that Turing’s central motivation in 1945 did not lie
in standard mathematics, nor in practical computer
science, but in wanting to build a computer as “a
brain”. But Turing knew a great deal about the re-
lation between mathematics and the physical world,
discreteness and continuity. This knowledge was in-
separable from his prospectus for computing and
for Artificial Intelligence. Turing’s central idea of
modelling the brain brought him to consider the
approximation to continuous systems by the dis-
crete, including chaotic and thermodynamic ef-
fects (Turing 1948a, 1950a). Thus his background
as an all-purpose mathematician, rather than as a
verbal philosopher, is still important even if this
narrow remit is accepted.

Origin of the Digital Computer
Turing’s ambition to “build a brain” brings us to
the question of his 1945-46 technical proposal for
the Automatic Computing Engine (Turing 1946)—
the first really detailed electronic computer de-
sign and prospectus for what a computer could do.
This report was omitted in Newman’s 1955 mem-
oir and has had serious recognition only since the
1970s. In this neglect, it stands in complete con-
trast with the June 1945 “Draft report on the
EDVAC” by von Neumann which has always been
regarded as the fons et origo of the computer. In-
deed histories of computers too often tell a story
of engineered machines and American corporate
history, from Hollerith to microprocessors, with-
out any references to Turing at all. Copeland has
previously done much to advance Turing’s claim
(and British-based work generally), and The Essen-
tial Turing is billed on its cover as giving “The
ideas that gave birth to the computer age.” It is
therefore odd that the ACE report, the first de-
tailed prospectus for an electronic computer, is
omitted. Various bits are quoted, but they do not
allow the reader to judge Turing’s total vision.
Interdisciplinary culture clashes abound in the
question of the origin of the computer. Some com-
puter historians consider the use of electronic com-
ponents to be the crucial innovation. Binary num-
ber representation is often held to be a
breakthrough, and I have been surprised to hear
Martin Campbell-Kelly, a leading figure in this field,
suggest that Turing needed to learn this idea from
von Neumann. Copeland, in contrast, focuses very
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clearly on the principle of the universal machine
as the crucial factor. This is unlikely to change the
minds of those who consider other issues to be
paramount, but it is consistent with Turing’s ap-
proach.

To argue that Turing’s logical work was critical
to the modern digital computer, Copeland dis-
cusses the concept of stored-program computers
in his introduction to (Turing 1936). In fact he vir-
tually identifies the concept with the universal ma-
chine, by giving Turing’s own later account of the
connection (Turing 1947). The danger here is that
of being ahistorical: that is, forgetting that the
1945 now far in the past was in 1936 far in the fu-
ture. But Copeland certainly makes a strong argu-
ment that von Neumann knew of Turing’s ideas and
used them, without citation, in the EDVAC report.
This is a difficult topic; although von Neumann cer-
tainly spoke clearly after 1945 of the importance
of Turing’s universal machine, there is little to doc-
ument its influence in the formative period. His
strongest evidence remains the statement Brian
Randell got from Stanley Frankel long ago (Randell
1972): that “in or about 1943 or ’44 von Neumann
was well aware of the fundamental importance of
Turing’s paper of 1936...” More recently Martin
Davis has also tackled this problem in his book The
Universal Computer: The Road from Leibniz to Tur-
ing (Davis 2000), giving a vivid discussion of von
Neumann’s debt to Turing. This is the judgment of
aunique source who was immersed in the logic and
computer worlds of that early period. Copeland
weakens the case for Turing’s influence by making
no reference to Davis’s analysis.

The Essential Turing also makes another argu-
ment about the origin of the digital computer, con-
cerned with the question of assigning credit for the
Manchester machine which, though tiny, was the
world’s first working stored program computer in
June 1948. But a general problem in both discus-
sions of origins is that Turing never gave a full
analysis of his own contribution—in particular, the
insight that a program is itself a form of data and
can be treated by the computer as such. On the first
page of his 1945-46 plan, Turing said that control
of an entire calculation could be “looked after by
the machine itself”. Into this phrase we may read
the future of subroutines, languages, compilers, and
operating systems; but Turing himself did not spell
out those implications systematically. The word
“itself” is a Godelian self-reference; it comes from
thinking of programs as data for other programs,
but Turing never enlarged his observations on this
logical ancestry. Turing used program modification
immediately—he described how one could “pretend
that the instructions were really numbers”—but did
not take the opportunity to explain that such “pre-
tence” embodied an essential and novel principle.
Even when making much of the potential of
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program modification for “learning”, he never gave
a serious analysis of the program-as-data aspect.
Later, while at Manchester, Turing (1950a) wrote
that Babbage had “all the essential ideas”, thus un-
dermining the appreciation of program-as-data as
a crucial advance.

Unfortunately, Turing never gave more than a
brief indication of how his 1936 theory led to his
1945-46 design. Secrecy would have inhibited a full
account, though Good’s example in publishing so
much probability theory shows that there was no
total bar on the exposition of general principles.
However, such a contribution from Turing was hardly
encouraged by the embryonic computer industry. In
1953 a semi-popular book Faster than Thought (Bow-
den 1953) surveyed British computing, with Babbage
as the star. In contrast, the editor included a philis-
tine “glossary” entry on Turing thus:

Tiiring machine: In 1936 Dr Turing
wrote a paper on the design and limi-
tations of computing machines. For this
reason they are sometimes known by his
name. The umlaut is an unearned and
undesirable addition, due, presumably
to an impression that anything so in-
comprehensible must be Teutonic.

It is not difficult to decode the word “incom-
prehensible” as meaning “mathematical”. A more
common view is that Turing’s contribution is com-
prehensible, but purely theoretical. Students often
gain the impression that Turing was never con-
nected with anything as vulgar as an actual com-
puter. This is the reverse of the truth: Turing avidly
desired the practical business of design and con-
struction. In fact rather than let his claim depend
solely upon the abstract principle of 1936, it would
be better to emphasise that from 1943 onwards he
was in effective command of every aspect of mak-
ing that principle into a practical proposition—
scientific, technological, organizational, motiva-
tional. It was in that grasp of its potential that he
was the inventor of the computer: that was the es-
sential Turing. In particular his vision for the fu-
ture of software engineering, based on his deeper
understanding of the universal machine being able
to “look after itself”, was ahead of von Neumann’s.
Without seeing Turing’s ACE report, readers can-
not judge his place in the history of the “practical”
universal machine. A related point is that Turing’s
practical wartime experience with digital machin-
ery was crucial, and it would have been worth in-
cluding some documentation of this experience
from his wartime reports. Copeland marginalises
these questions, because his attention is concen-
trated on Artificial Intelligence.
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Artificial Intelligence

Copeland is right to emphasise that well before
1956, when the Dartmouth conference inaugurated
“Artificial Intelligence” as a research area, Turing
had developed strong lines of research, both top
down and bottom up, in modern parlance. (Nor was
Turing alone in the British scene—he was one of a
very lively group of “cybernetic” pioneers.) But as
in other ways, Turing suffered the consequences
of his own self-effacing reticence. Turing never
published the neuron-inspired networks he
sketched in (Turing 1948a), even though they played
a role in motivating the arguments in his famous
1950 paper about the possibility of learning ma-
chines. Nor, oddly, did he try them out when the
fully engineered Manchester computer became
available. Here another surprising omission comes
in Copeland’s discussion. Copeland and Proudfoot
(1996) drew fresh attention to Turing’s 1948 neural
architectures (which had been published in 1968
and 1969, and then in the Collected Worksin 1992).
A young computer scientist, Christof Teuscher,
then did Ph.D. work in implementing and explor-
ing them; this has won several awards, including
one from the European Research Consortium for
Informatics and Mathematics. His publications
(Teuscher 2002, 2004) are not referenced by
Copeland.

Mathematics and Biology

Of Turing’s theory of morphogenesis, only the pub-
lished work (Turing 1952) is included by Copeland.
Turing left much more work unfinished at his
death. The editor of the Morphogenesis volume of
the Collected Works, P. T. Saunders, edited and in-
cluded the most coherent parts of these manu-
scripts. Copeland does not include any of this. His
footnote does make a rare concession to the exis-
tence of the Collected Works, and he does cite the
much more extensive work by Jonathan Swinton
(2004), which appeared in another volume of Tur-
ing-inspired studies, Alan Turing: Life and Legacy
of a Great Thinker, edited by Christof Teuscher
(2004). But Copeland gives no hint of the content
of these other scholars’ work, preferring to con-
centrate on his own interpretation of the material
in (Turing 1952).

That interpretation is, unfortunately, skewed by
Copeland’s insistence on describing Turing’s the-
ory as “Artificial Life”, a term coined in the 1980s,
and his linking of it to genetic and evolutionary al-
gorithms. But these “a-life” developments are much
closer to von Neumann’s ideas; Turing’s work in
mathematical biology was essentially complemen-
tary. Genetic algorithms explore the logic of evolu-
tion without the constraints of physical embodi-
ment. Turing’s work attacked the question of what
paths could be physically available for evolution to
exploit. It was rooted in physical chemistry and
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used techniques in nonlinear differential equa-
tions, entirely different from discrete logic. Swin-
ton has called it “good old-fashioned applied math-
ematics”. There is a slender connection with
Turing’s machine-intelligence ideas, through the
question of brain growth, but his morphogenetic
theory really forms quite a different field of enquiry.

Philosophy of Computation

The absence of Turing’s unpublished work in math-
ematical biology may disappoint some readers, but
applied mathematics is not Copeland’s strength,
and it is not surprising that it is somewhat side-
lined. His emphasis is naturally on the philosophy
of computation, and this is the area where one
would expect the greatest expertise. This is, in-
deed, the topic emphasised by Copeland in his dis-
cussion of Turing’s late writing on Al, which forms
his main claim to new scholarship. In particular, a
topic central to Copeland’s approach is the dis-
cussion of Church’s thesis concerning the definition
of “effectively calculable”. Turing entered into this
subject in a somewhat awkward way: in 1935
Church proposed a definition of effective calcula-
bility in terms of the lambda-calculus. Turing’s
1936 definition of computability turned out to be
mathematically equivalent, and he had to write an
appendix to his paper showing this, so delaying his
publication. But Church in turn accepted that Tur-
ing’s analysis of computation gave a far more di-
rect and intuitive argument for why this definition
should be made. It is common now to refer to this
joint position as the Church-Turing thesis.

In many earlier articles, e.g., (Copeland 2000,
2002), Copeland has made very distinctive claims
about the Church-Turing thesis. Surprisingly, he has
not made these claims so prominently in The Es-
sential Turing: it is more that they lurk behind the
prefaces and annotations. But they deserve review
here nevertheless: it is important for mathemati-
cians to be aware of what philosophers are mak-
ing of their work, and students of this volume
should be aware that the “Further Reading” rec-
ommended by its editor may lead them to highly
questionable statements.

The main point is that nowadays two different
versions of the Church-Turing thesis can be stated,
concerning what could be done by (1) a human
being carrying out a process mechanically, or (2)
any physical process. It is certainly of interest to
study Turing’s texts in the light of this modern
framework. But it should be borne in mind that even
the word “Thesis” was not used until 1952, and that
the “physical” Church-Turing thesis was not clearly
distinguished and examined until about 1980.

Copeland’s distinctive contribution has been
his insistence that Turing and Church were always
crystal clear that their ideas were absolutely re-
stricted to the model of the human being working
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to rule. Moreover according to Copeland (2002), the
reason for this restriction was specifically that
there might be more general machines capable of
computing functions which the human worker
could not compute—that is to say, functions which
according to Turing’s definition, we call uncom-
putable.

In the same article, Copeland asserts Church’s
agreement with Turing on this question. But in the
relevant text of (Church 1937), one finds that
Church did not actually characterise computable
functions as those which can be produced by the
human worker; instead he defined computability
in terms of “a computing machine, occupying a fi-
nite space and with working parts of finite size”,
describing the human worker as a particular case.
In arecent article Copeland (2006) has argued that
this is because Church’s term “computing ma-
chine” means, by definition, a machine designed to
imitate human work—whereas the term “machine”,
tout court, would imply something not thus re-
stricted. But a glance shows that these writers were
unaware of this verbal distinction. Thus Church, in
his review of Post’s work, restated the definition
in terms of an “arbitrary machine”. Turing, in the
opening statement of his 1936 paper, said that “a
number is computable if its decimal can be writ-
ten down by a machine.” In the formal statement
in (Turing 1939), Turing characterized effective
calculability in terms of what “could be carried out
by a machine”—without mentioning the human
model at all.

Turing later spoke of human rule-followers, me-
chanical processes, and physical machines without
drawing any attention to the distinction Copeland
insists upon as essential. Turing did indeed often
explain the scope of a computer in terms of re-
placing the work of a human calculator, but he
also said that a universal machine could replace the
“engineering” of special-purpose machines. Turing’s
post-war lecture to mathematicians (Turing 1947)
opened by saying he had been led to the universal
machine by analysing “digital computing ma-
chines”. (He continued by comparing the digital
computer favourably with differential analysers,
showing that he did not see its digital character as
a real restriction on its scope.) Turing’s post-war
focus was in what he called “man as a machine”,
and he was naturally drawn to the picture of the
brain as a physical machine.

This is where this question starts to become in-
teresting, because it is bound up closely with
arguments for and against the possibility of Arti-
ficial Intelligence. Turing’s famous paper (Turing
1950a), appealed to the idea that the brain, as a
physical machine, could be simulated by a com-
puter. It was implicit in his estimate of the num-
ber of bits of storage in the brain, and it was ad-
dressed directly in what Turing called the Argument
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from Continuity of the Nervous System. In the later
radio talk (Turing 1951), he explained this idea
even more explicitly, stating the idea that a uni-
versal machine could do the work “of any machine
into which one can feed data and which will later
print out results.” So in The Essential Turing,
Copeland steps in (p. 479) to inform the reader that
this was not the Church-Turing thesis but a differ-
ent thesis. In modern terms, one would indeed
make a distinction, as explained above. Butin 1951
there was no well-defined “thesis” at all, and this
distinction did not exist.

This would be little more than a quibble over
words and definitions, if it were not for the fact that
Copeland claims to have made a discovery in Tur-
ing’s texts, overlooked by everyone else, which
presages arevolution in science and technology. As
already mentioned, Copeland holds that Turing
always had clearly in mind that there could be phys-
ical machines (“hypermachines”) with the ability to
compute uncomputable functions. In fact, Copeland
specifically identifies the “oracle-machines” of (Tur-
ing 1939) as being just such entities.

What are these “oracle-machines”? The follow-
ing comments should be read in conjunction with
the articles by Solomon Feferman and Martin Davis.
Turing machines typically solve infinitely many
cases of a problem. For instance, there is a Turing
machine which given any integer n, correctly de-
cides whether n is prime. But Turing (1936) showed
the existence of well-defined problems where no
Turing machine can solve all the cases. Nowadays
perhaps the best known such problem is Hilbert’s
Tenth Problem, that of deciding whether a Dio-
phantine equation has a solution. A Diophantine
oracle would have the property that given any Dio-
phantine equation (e.g., the Fermat-Wiles equation)
it would supply the truth about its solubility. Math-
ematicians would naturally see oracles as a purely
mathematical definition, useful for defining rela-
tive computability: if you could solve Hilbert’s
Tenth Problem, what else could you do? This be-
came a standard idea in the text of (Davis 1958).
In fact Turing (1939) did indeed use the oracle in
this way, but he also had an extra-mathematical in-
terpretation for it: he saw the oracle as related to
what he called “intuition”, the nonmechanical step
involved in seeing the truth of a formally unprov-
able Godel sentence. However he made no sug-
gestion of engineering any such object, and em-
phasised that an oracle, by its nature, could not be
a machine.

In contrast, Copeland claimed in a Scientific
American article (Copeland and Proudfoot 1999)
that “Turing did imagine” an oracle which would
physically “work”, e.g., by measuring “a quantity of
electricity” to infinite precision, and that now “the
search is under way” for such oracles. These, if
found, would bring about a new revolution in
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computing. In another paper (Copeland 1998) he
asserted that the oracles were only theoretical for
Turing in the same sense as the atomic Turing ma-
chine component operations were theoretical. This
is also a far-fetched claim: the primitive opera-
tions of a Turing machine could be implemented
by simple switches such as 1936 automatic tele-
phone exchanges already used. Oracles need to
store an infinite database.

Indeed Copeland is determined to detect refer-
ences to physical oracles in Turing’s later work. He
has two main arguments, both fallacious. In the first
(Copeland 2000, 2006), he identifies the “infinite
store” appearing in the semi-popular account of
computability in (Turing 1950) as a reference to the
infinite database of an oracle. It is not: Turing’s
analysis makes it obvious that this is simply a de-
scription of the unlimited tape available to a
Turing machine. This passage explains com-
putability as a theoretical bound on what actual fi-
nite computers can do; in fact it emphasises the
finiteness of the means Turing believed necessary
for the simulation of human intelligence—not much
more than a trillion bits of storage. It is surprising
that Copeland should insist on this quite elemen-
tary misreading, given that he has—for well over
a decade—devoted so much scholarship to Turing’s
work.

The second argument, more subtle and com-
plex, involves computability, randomness, and
learning. It is most clearly stated in (Copeland
2006), which holds that the pre-war oracles reap-
pear as a necessary feature in Turing’s post-war the-
ory of machine-based learning. Turing’s 1948 work
had a picture of neural nets which could be trained
into functionality by “reward” and “punishment”
operations—the same fundamental scenario as in
modern bottom-up Artificial Intelligence tech-
niques. Copeland holds that this model of learn-
ing is a development of the idea of intuition. To this
it may be objected that Turing’s post-war behav-
iorist model is pretty well the antithesis of his pre-
war picture of “intuitive” knowledge. But leaving
this general question aside, Copeland’s proposal
has the more concrete problem that a program
modified in accordance with some finite learning
or training process, is only modified into a differ-
ent program. It does not go beyond the scope of
computable functions. Nor is there any reason to
suppose, from Turing’s writing, that the process of
finding better and better algorithms requires ac-
cess to an uncomputable source. Yet Copeland
(2006) concludes by describing a specific procedure
in which an oracle, as defined in (Turing 1939),
would supply the training sequence. This is quite
foreign to Turing’s exposition: not only is such an
oracle essentially infinite, but it holds exact data
and is nothing like the random trial-and-error
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process Turing suggested, using human infancy as
a model.

One might add that this terminology of “hy-
percomputing”, with its spurious connotation of
technological feasibility, has been too readily al-
lowed to pass into the currency of computer sci-
ence. The generally valuable Turing-inspired vol-
ume edited by Teuscher (2004), contains not only
Copeland’s views on this subject but another arti-
cle (by M. Stannett) advocating absurd proposi-
tions such as that the Fourier decomposition of a
function implies the possibility of infinite data
storage in a finite piece of wire.

Turing did not use the word “machine” with per-
fect clarity, and it is impossible to read past minds.
What we can see, however, is the mathematical and
scientific use to which he put his words. And
Copeland’s insistence on detecting implemented
oracles between the lines of Turing’s post-war texts
renders Turing’s advocacy of Artificial Intelligence
incoherent. Why should Turing have devoted so
much time and trouble to promulgating his “hereti-
cal” theory that intelligence could be simulated by
a computer program if, all the time, he envisaged
the engineering of physical processes beyond the
scope of digital computers, or considered it vital
to have access to an uncomputable oracle? And, if
these issues were as crucial as Copeland believes,
why did Turing not make them plain rather than
leave them in an obscure form requiring decryp-
tion by philosophers?

Nevertheless, The Essential Turing has the great
virtue of making Turing’s own texts accessible, so
that readers can assess such arguments for them-
selves. A particular case is that 1951 radio talk,
which was unfortunately omitted from the Col-
lected Works. Indeed Copeland has usefully drawn
attention to an important feature of that talk. When
Turing then discussed the computer simulation of
the brain, and the idea that a universal machine
could simulate any machine, he touched on the pos-
sibility that this might actually be impossible, even
in principle, because of the uncertainty in quantum
mechanics. This clearly departed from what he
had said in (Turing 1950a), which made no men-
tion of quantum mechanics when discussing the
mechanical simulation of the brain. Turing attrib-
uted this view to Eddington, rather than assert it
as his own view, but we can see that he did take it
seriously as an objection to his Artificial Intelligence
thesis.

So Turing did indeed contribute to the long
process of distinguishing and discussing a
“physical” Church-Turing thesis. With further ex-
perience and thought, Turing naturally developed a
clearer idea of what he considered involved in “mind”
and “machine”. He did not, as Copeland implicitly
assumes, adopt a philosophical position and hold
it unchangingly from start to end. Evolution is in the
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nature of mathematics and science, and it contin-
ues vigorously now. This 1951 development, stat-
ing a new objection from quantum mechanics, is
especially interesting because it is just the objec-
tion to Al which in the 1980s Roger Penrose de-
veloped into a full-scale critique by combining it
with what Turing called the Mathematical Argu-
ment. Copeland does not make this connection, and
seems not to notice the significance of Eddington
who had played an energising part in Turing’s early
thought. Elsewhere (p. 477) he quotes from Turing’s
juvenile but striking essay from about 1932, based
on Eddington’s ideas about the mind, yet does not
point out its reference to quantum mechanical in-
determinacy.

Logic and Physics

The trouble here seems to be Copeland’s lack of in-
terest in physics, as profound as his lack of concern
with statistics and number theory. The Essential
Turing does not mention Turing’s notes and letters
describing his last year of interest in fundamental
physics. It does not include Robin Gandy’s letter
to Newman describing Turing’s ideas at the time
of his death and the only hint we have about what
Turing might have done if he had lived (Gandy
1954). This refers to Turing’s intent to find a “new
quantum mechanics”, definitely suggesting he was
trying to defeat the Eddington (and later Penrose)
objection along with the others. He noted with in-
terest the surprising feature of standard quantum
mechanics that in the limit of continuous obser-
vation a system cannot evolve. This, nowadays
known as the “Quantum Zeno effect”, was not deep
or new but gave a vivid pointer to an area where
Turing might have been led had he lived.

John Britton, editing the Pure Mathematics vol-
ume of the Collected Works, contributed a story
from personal recollection. Turing gave a talk at
Manchester about the number N, which he defined
in terms of the probability that a piece of chalk
would jump from his hand and write a line of
Shakespeare. Probabilities and physical prediction
were natural starting points for his mathematical
thought. From an early age, Turing was aware of
the importance of physical materialism, the mag-
ical power of mathematics to encode the laws of
physical matter, and the puzzle of the apparent con-
flict of physical determinism with human will and
consciousness. Turing’s mathematical life started
with Einstein and Eddington, and it ended in the
same physical world. Eddington asked how could
“this collection of ordinary atoms be a thinking
machine?” and Turing found a new answer. The “im-
itation game” is at heart the drama of materialist
scientific explanation for the phenomenon of Mind,
with the mathematical discovery of computability
as its new leading actor.
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The Essential Turing does not present this back-
ground, and it shifts the emphasis from mathe-
matics to philosophy, but it makes a good part of
Turing accessible to readers of all kinds: his vivid
and direct writing will now reach a new audience
and encourage new thoughts. We may regret that
the self-effacing Turing did not write more on the
genesis and development of his theory of minds and
machines. We may likewise regret that he did not
write more about his extraordinary life and expe-
riences. Commentators will, necessarily, have to in-
terpret those silences, and these interpretations will
arouse controversy. But the controversies are al-
ways modern, challenging, and as wide-ranging as
Alan Turing himself.
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