
The Search forSimple
SymmetricVenn Diagrams
Frank Ruskey, Carla D. Savage, and Stan Wagon

M
any people are surprised to learn
that Venn diagrams can be drawn to

represent all of the intersections of
more than three sets. This surprise is
perfectly understandable since small

Venn diagrams are often drawn with circles, and it
is impossible to draw a Venn diagram with circles
that will represent all the possible intersections of

four (or more) sets. This is a simple consequence of
the fact that circles can finitely intersect in at most

two points and Euler’s relation F − E + V = 2 for
the number of faces, edges, and vertices in a plane
graph. However, there is no reason to restrict the

curves of a Venn diagram to be circles; in modern
definitions a Venn diagram is a collection of simple
closed Jordan curves.This collection must have the

property that the curves intersect in only finitely
many points and the property that the intersection

of the interiors of any of the 2n sub-collections of
the curves is a nonempty connected region.

If a Venn diagram consists of n curves then we

call itann-Venn diagram.Therank ofaregionis the
number of curves that contain it. In anyn-Venn dia-

gramthereareexactly
(

n

r

)

regionsofrank r . Figure1

shows a 2-Venn and two distinct 3-Venn diagrams.
Note that the diagraminFigure 1(c) has three points
where all three curves intersect. The regions in the

diagramsof Figure 2 are colored according to rank.
The traditional three-circle Venn diagramhas an

appealing 3-fold rotational symmetry, and it is nat-
ural to ask whether there aren-Venn diagramswith
ann-foldrotationalsymmetryforn > 3.Grünbaum

[6] found a symmetric 5-Venn diagram made from
ellipses. Henderson [10] noted the following neces-
sary condition: if an n-Venn diagram has an n-fold

rotational symmetry, thenn is prime. The reason is
as follows:
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Inanysymmetricn-Venndiagramthefixedpoint

of the rotations, the center of the diagram, must lie

in the unique region of rankn. The unbounded out-

er region has rank 0. Regions of rank 0 < r < n

must be distributed symmetrically and thus their

number,
(

n

r

)

, must be divisible by n. This property

holds exactly whenn is prime.

Why?Recall that
(

n

r

)

= n(n−1) · · · (n−r+1)/r !.

If n is prime and 0 < r < n, then note that n occurs

once in the right-hand side and all other numbers

are less thann. On the other hand, ifp is a nontrivial

divisorofn, thenthebinomialcoefficientwithr = p
is the product of two integers

(

n

p

)

= n

p
· m where

m = (n − 1) · · · (n − p + 1)/(p − 1)!, but clearly p

cannot dividem, and thusndoes not divide
(

n

p

)

.

The elegant necessary condition of Henderson

was long suspected to be sufficient, but it took

some 40 years before it was proven to be sufficient

by Griggs, Killian, and Savage [5]. In the interven-

ing years, symmetric diagrams were discovered

for n equal to 5, 7, and 11. Some of these dia-

grams are shown in Figure 2. The first symmetric

7-Venn diagrams were discovered independently

by Grünbaum [7] and Edwards [3] (Fig. 2(b)); the

first symmetric 11-Venn diagram was discovered

by Hamburger [8].

A Venn diagram is said to be simple if exactly two

curves pass through any point of intersection. The

diagrams of Figures 1(a), (b) and 2(a), (b) are sim-

ple and the diagrams in Figures 1(c) and 2(c) are not

simple. Simple Venn diagramsexist for alln, but no

simplesymmetricVenndiagramsareknownforn >

7.Ontheotherhand,noknownconditionprecludes

their existence for any primen.

Venn diagrams were originally proposed as

visual tools for representing “propositions and

reasonings” [15] and how they are actually drawn

in the plane will often influence how useful they

are as tools. The definition of Venn diagram that

we gave earlier is topological, but questions of

geometry have also played a significant role in

investigations of Venn diagrams. For example, one

can ask: Which Venn diagrams can be drawn with

all curves convex? For more than four sets, the
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(a) (b) (c)

Symmetric n-Venn diagrams for n = 2,3: (a) n = 2, (b) n = 3 simple, (c) n = 3 non-simple.

Symmetric Venn diagrams: (a) n = 5, (b) n = 7, (c) n = 11.

practical usefulness of Venn diagrams diminishes

but interesting mathematical questions arise. See

[14] for a list of open problems related to Venn

diagrams.

In this article we outline the technique of Grig-

gs, Killian, and Savage [5] for producing symmetric

Venn diagrams on a prime number of curves and

the more recent efforts of Killian, Ruskey, Savage,

and Weston [13] to create simple symmetric Venn

diagrams.One of the diagramsfrom[13] wasselect-

ed by Stan Wagon as the basis for the illustration

shown on the cover; the method used to produce

the image is described in the “About the Cover” de-

scription on page 1312.

Graph Theoretic Model

We first appeal to graph theory to get a “combinato-

rial” condition for Venn diagrams.

A Venn diagram D can be viewed as a (multi)-

graph V embedded in the plane: the vertices of V

are the points where curves of D intersect and the

edges ofV are the sections of the curves connecting

the vertices. We can take the (geometric) dual of an

embedding of a planar graph V by placing a vertex

vr in every region r ofV . If edge e separates regions

r and s in V , then join vr and vs by an edge in the

dual. The dualV∗ of a Venn diagram is a planar em-

bedding of a graph whose vertices are the subsets

of [n] = {1,2, . . . , n}.
To construct a Venn diagram, then, one could

start with a graph whose vertices are the subsets

of [n]. The n-cube Qn is the graph whose vertices

are the n-bit strings with edges joining strings that

differ only in one bit. Since a subset S ⊆ [n] can be

viewed as an n-bit string whose ith bit is ‘1’ if and

only if i ∈ S, the verticesofQn are inone-to-one cor-

respondence with the regions in a Venn diagram.

ButQn isnotplanar forn ≥ 4, sowe cannotproduce

a Venn diagramsimply by taking the dual ofQn.

There is a theorem in graph theory that says: In a

planar graph G, if S is a bond, that is, a minimal

set of edges whose removal disconnects G, then the

edges in the dual G∗, corresponding to those in S,

form a cycle in G∗. For a proof, see West [16, The-

orem 6.1.14]. This is exactly what is needed. If G∗

is to be a Venn diagram, then for each 1 ≤ i ≤ n,

the graph G∗ must have a corresponding cycle Ci
to separate the sets containing i from those that do

not. The dual ofCi back inGwill be the set of edges
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(a) A symmetric chain decomposition in B4; (b) embedding with cover edges, with each edge
colored by its type.
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(a) An overlay with the dual of the graph in Figure 3(b); (b) the resulting Venn diagram for 4 sets
(the two vertices with arrows are identified).

joining vertices representing sets that do contain i

to those that do not, and this must be a bond ofG.

A spanning subgraph ofQn is called monotone if

everyn-bit string with k ones is adjacent to a string

with k − 1 ones (if k > 0) and to a string with k + 1

ones (if k < n). In a monotone subgraph ofQn, for

each 1 ≤ i ≤ n, the edges joining vertices with ith

bit ‘1’ to those with ith bit ‘0’ form a bond. Thus the

following condition on a spanning subgraph G of

Qn will guarantee that the dual of G is a Venn dia-

gram:G is planar and monotone. It is worth noting

that this condition is not necessary; there are Venn

diagramsfor whichG is not monotone.

In the next section, we show how to build a

planar, monotone, spanning subgraph ofQn using

a symmetric chain decomposition in the Boolean

lattice.

The Combinatorics

Returnto the Boolean latticeBnwhose elementsare

the subsets of [n], ordered by inclusion. The Hasse

diagramofBn, regardedasagraph, is isomorphic to

Qn.Achain inBn isasequenceS1 ⊆ S2 ⊆ · · · ⊆ St of

elements ofBn such that |Si| = |Si−1| + 1. The chain

is symmetric if |S1| + |St | = n. A symmetric chain

decompositionofBn is a partitionof the elementsof

Bn into symmetric chains.

A significant result in order theory is thatBn has

a symmetric chain decomposition for every n ≥ 0.

One construction, due to Greene and Kleitman [4],

worksas follows.Regard the elementsofBnasn-bit

strings. View ‘1’ bits as right parentheses and ‘0’

bits as left parentheses and in each string, match

parentheses in the usual way. This process may

leave some ‘1’ or ‘0’ bits unmatched. From every

string x with no unmatched ‘1’ grow a chain as

follows. Change the first unmatched ‘0’ in x to ‘1’

to get its successor, y . Change the first unmatched

‘0’ in y (if any) to ‘1’ to get its successor. Continue

until a string with no unmatched ‘0’ is reached. The

chains shown in Figure 3(a), built using this rule,

give a symmetric chain decomposition ofB4.

These chains form a planar spanning subgraph

ofQn. But tomakethesubgraphmonotone,weneed

to add edges (without destroying planarity) to “cov-

er” the first and last elements of each chain. The

chain starting atx can be covered by the chain start-

ing at y where y is obtained from x by changing the

last ‘1’ inx to ‘0’.Notonlydoxandy differ inone bit,

but so do the last elements of these chains. Viewing

y ’s chain as the parent of x’s chain, it can be shown
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that a preorder layout of the tree of chains gives a

planar embedding of the chains together with their

cover edges. A planar embedding of the subgraph

ofQ4 consistingof the chainsandthe coveredges is

shown in Figure 3(b).
The dual graph is shown in Figure 4(a). Say that

an edge in the graph of Figure 3(b) has type i if it

joins vertices that differ in position i. In Figure 4(a),

a dual edge is colored according to the type of the
edgeitcrosses.Figure4(b)showstheresultingVenn

diagram.

This method gives yet another constructive

proof that for every n ≥ 0, Venn diagrams exist

for n sets. (A similar construction is implicit in
[2], although they make no mention of symmetric

chains.) So what about rotational symmetry? As de-

scribed earlier, this is not possible ifn is composite.

But when n is prime, we can extract ideas from the
construction described here to achieve symmetry,

as shown in the next section.

Rotational Symmetry When n is Prime
When n is prime, the idea for constructing a rota-

tionally symmetric Venn diagram is to somehow
work within “1/n-th” ofBn (orQn) to get “1/n-th” of

the Venn diagram embedded in a “1/n-th” pie-slice

of the plane and then rotate the result by 2πi/n for

1 ≤ i < n to complete the diagram. Fortunately,
when n is prime,Bn comes with a natural partition

into symmetric classes.

Forx = x1x2 · · ·xn, letσ denote the left rotation

of x defined by σ(x) = x2x3 · · ·xnx1. Let σ 1 = σ ,

and σ i(x) = σ(σ i−1(x)), where i > 1. Define the
relation△on the elements ofBn byx△y if and only

if y = σ i(x) for some i ≥ 0. Then △ is an equiv-

alence relation that partitions the elements of Bn
into equivalence classescalled necklaces. Whenn is
prime, every n-bit string, other than 0n and 1n, has

n distinct rotations, so its necklace has exactly n

elements.

In the hope of adapting the method of the pre-

vious section, we ask: When n is prime, is there a
way to choose a set Rn of necklace representatives,

one from each necklace, so that the subposet of

Bn induced by Rn, Bn[Rn] has a symmetric chain

decomposition? Fortunately, the answer is yes (see
next section), so construction of a rotationally sym-

metric Venn diagramcan proceed as follows.

Startwith the strategically chosensetRn ofneck-

lace representatives. Let Qn[Rn] be the subgraph

of Qn induced by Rn. The symmetric chain de-
composition in Bn[Rn], together with appropriate

cover edges, gives a planar, spanning, monotone

subgraph P of Qn[Rn]. Embed P in a 1/n-th pie

slice of the plane with 1n at the center and 0n at the

point at infinity. Note that, as graphs, Qn[Rn] and
Qn[σ

i(Rn)]are isomorphic for any bitwise rotation

σ i of the vertices. SoQn[σ
i(Rn)] has a subgraph Pi

isomorphic to P . Then rotating the embedding of P

by2πi/nabout the origingivesa planarembedding
of Pi. Taken together, the embeddings of the Pi give
a rotationally symmetric planar embedding of a
spanning monotone subgraph ofQn and therefore
thedual isaVenndiagram.Finally, thedual isdrawn
inasymmetricway.Theentireprocess is illustrated
for n = 5 in the sequence of Figures 5(a), (b), (c),
(d). The chains inQ5[R5] are 10000-11000-11100-
11110 and 10100-10110 (see the lowest “hexagon”
in Fig. 5(a)).

Choosing Necklace Representatives
Here is a way to choose a set Rn of necklace rep-
resentatives, one from each necklace, so that the
subposetofBn inducedbyRnhasasymmetricchain
decomposition.

Define the block code β(x) of a binary string x
as follows. If x starts with ‘0’ or ends with ‘1’, then
β(x) = (∞).Otherwise,xcanbe written in the form:

x = 1a10b11a20b2 · · ·1at0bt

for some t > 0, where ai > 0, bi > 0, 1 ≤ i ≤ t , in
which case,

β(x) = (a1 + b1, a2 + b2, . . . , at + bt).
Asanexample,theblockcodesofthestring1110101100010
and all of its rotations are shown below.

bit string block code bit string block code

1110101100010 (4,2,5,2) 1100010111010 (5,2,4,2)

0111010110001 (∞) 0110001011101 (∞)
1011101011000 (2,4,2,5) 1011000101110 (2,5,2,4)

0101110101100 (∞) 0101100010111 (∞)
0010111010110 (∞) 1010110001011 (∞)
0001011101011 (∞) 1101011000101 (∞)
1000101110101 (∞)

Whenn is prime, no two different rotations of an
n-bit string can have the same finite block code. As-
suming that block codes are ordered lexicographi-
cally, ineachnecklace ofn-bit strings (except0n, 1n)
the unique string with minimum block code can be
chosen as the representative.

For n prime, let Rn be the set of n-bit strings
that are the minimum-block-code representatives
of their necklaces. Build chains using the Greene–
Kleitman rule, except chains start with a string with
exactly one unmatched ‘1’ and end at a string with
exactly one unmatched ‘0’. Note that a node x and
its successory have the same block code, so ifxhas
the minimum block code among all of its rotations,
then so does y . Thus every element of x’s chain
is the (minimum-block-code) representative of its
necklace.

Simpler Venn Diagrams and Euler’s
Formula
Recall that a Venn diagram is simple if at most two
curves intersect at any given point. This means
that, viewed as a graph, every vertex of a simple
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Constructing a symmetric 5-Venn diagram: (a) dual with symmetric chains highlighted, (b) the
curves corresponding to the first chain cover, (c) repeating in each sector,

(d) the final Venn diagram.

Venn diagram has degree 4. The number of faces

is 2n, since every subset of [n] corresponds to a

region, and the number of edges is half the sum of

the vertex degrees, so by V − E + F = 2, a simple

Venn diagram has 2n − 2 vertices. In contrast, the

number of vertices in the Venn diagrams we have

constructed via symmetric chain decompositions

is thenumberofelements inthemiddle levelsofBn:
(

n

⌊n/2⌋

)

, which is roughly 2n/
√
n. This means that the

average number of curves intersecting at any given

point isaboutc
√
n forsomeconstantc.Butahidden

feature of the Greene–Kleitman symmetric chain

decompositionwill allow a dramatic improvement.

Since the number of faces of a Venn diagram is

fixed and since V − E + F = 2, once E > V , more

vertices in the diagram mean the average degree is

smallerandthus,onaverage, fewercurves intersect

at any point. If the Venn diagram is the dual of a pla-

nar spanning monotone subgraphG ofQn that has

been embedded in the plane, we can increase the

number of vertices of the Venn diagram by increas-

ing the number of faces of G. One way to do this

is to add edges ofQn to G, without destroying the
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(a) The dual with two simplifying edges added in pie slice. (b) The effect of the cyan simplifying
edge (compare with Fig. 5 (d)) is to increase the number of vertices from 10 to 15.

planarity ofG. The added edges join vertices which

differ inone bit. Forexample, Figure 6shows the ad-

dition of ten simplifying edges to the 5-Venn dual
of Figure 5 and the effect that adding the five cyan

oneshasontheresulting5-Venndiagram.Note that

the number of vertices increases from 10 to 15.

The Greene–Kleitman symmetric chain decom-

position provides a systematic way to do this: Any

face bounded by two chains and two (suitably cho-

sen) cover edges can always be “quadrangulated”
by edges joining vertices that differ in one bit. This

is illustrated in Figures 7 and 8. Furthermore, it can

be shown that as n → ∞, the number of vertices in

the resulting Venn diagram is at least (2n − 2)/2,

so the averagenumber of curves intersecting at any

given point is at most 3. Since (2n − 2)/2 is half the
number of vertices in a simple Venn diagram, the

diagramsof[13]weredubbed“half-simple”. (Exper-

iments suggest that as n → ∞, the construction is

doing better than 50%, perhaps closer to 60%.)

The construction is certainly not optimal. Fig-

ure 9 shows that further simplifying edges of Qn,

beyond those specified by the construction, can be
added. To date the simplest symmetric 11-Venn

diagramisdue toHamburger, Petruska, andSali [9];

their diagram has 1837 vertices and is about 90%

simple.

Figure 9 was the starting point for the half-

simple Venn diagram shown on the cover. Figure
10(a) shows the result of embedding the graph of

Figure 9 in a “1/11th” pie slice of the plane and then

rotating it by 2πi/11 for 1 ≤ i < 11 to get a mono-

tone,planar, symmetric, spanningsubgraphofQ11.

Its dual, drawn by Wagon’s Mathematica program

andshowninFigure 10(b), is a half-simple, symmet-
ric 11-Venn diagram. The program regards (a) as a
planar map, so the regions have been 4-colored to
highlight this interpretation.

Figure 11(a) shows one curve of the 11-Venn dia-
gram. Each of the 11 curves is a rotation of this one.
Figure 11(b) shows the Venn diagram with regions
colored by rank and with one curve highlighted.
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(a) The plane graph, derived from Figure 9, whose dual is a half-simple 11-Venn diagram (with
regions 4-colored). (b) All 11 curves of the half-simple 11-Venn diagram created by taking the

dual of the graph in (a).

(a) One curve of the half-simple 11-Venn diagram. (b) The half-simple 11-Venn diagram, with
regions colored according to rank, and one curve highlighted.
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