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Sensors and Sense-ability

A sensor is a device that measures some feature
of a domain or environment and returns a signal
from which information may be extracted. Sensors
vary in scope, resolution, and ability. The infor-
mation they return can be as simple as a binary flag,
as with a metal detector that beeps to indicate a
detection threshold being crossed. A more complex
sensor, such as a video camera, can return a sig-
nal requiring sophisticated analysis to extract rel-
evant data.

An increasingly common application for sen-
sors is to scan a region for a particular object or
substance. For example, one might wish to deter-
mine the existence and location of an outbreak of
fire in a national forest. Questions of more inter-
est to national security involve detection of radio-
logical or biological hazards, hidden mines and
munitions, or specific individuals in a crowd. All
of these scenarios pose difficult and challenging
data management problems.

Numerous strategies exist, aided by the fact that
sensor technology provides an expansive array of
available hardware. A fundamental dichotomy ex-
ists in the approach to sensing an environment
based on the number and complexity of sensors. For
a fixed cost (monetary, or perhaps “total complex-
ity”), one can deploy a small number of sophisticated
“global” sensors with high signal complexity and
precise readings. In contrast, one can deploy a large
number of small, coarse, “local” devices that may
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have large uncertainties in their readings. Differ-
ent strategies are appropriate for different tasks.
The human body contains examples of sensor sys-
tems with a small multiplicity of highly complex
devices (for sight) as well as vast networks of local
sensors (for touch).

Technology promises to push the envelope on
both sides of this spectrum, yielding new types of
powerful, global sensors, as well as local sensors
of surprisingly small size. The relevant question for
the mathematician is which types of mathematics
will be useful in analyzing sophisticated sensor
networks.

It may be that the most exciting possibilities lie
in the domain of the small. Swarms of local sen-
sors at micro- or nanoscale have the potential to
revolutionize the way that we think about security
and surveillance problems [4]. However, this brings
with it the difficulty of integration. How does one
collect local information and collate it into global
environmental data?

From Local to Global

Fortunately, mathematicians have spent centuries
carefully contemplating local-to-global transitions.
The very term we use to indicate the collection
and collation of local data—integration—harks
back to the well established means of relating local
information about a function (pointwise deriva-
tives) with a global quantity (the integral).

A more relevant example for our purposes is to
be found in simple ideas about the topology of sur-
faces. What are the global features of a surface given
“local data” in the form of a triangulation? The Clas-
sification Theorem for Surfaces implies that the
Euler characteristic x(X) suffices to determine the
homeomorphism type of a closed orientable sur-
face 3. The computation is as simple as one could
hope for:

X&) = #V —#E + #F,
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Figure 1. A network of small, local sensors samples an environment at a set of nodes. How can one answer global

questions from this network of local data?

where the triangulated surface ¥ has #V vertices,
#E edges, and #F faces.

The information contained in x(X) is not re-
stricted to topological classification. The Euler
characteristic x(2) can be used to infer geometric
properties of 3 (specifically, the Gauss curvature,
via the Gauss-Bonnet Theorem) and dynamical
properties of 3. (specifically, the number and types
of fixed points of a vector field, via the Hopf Index
Theorem).

The efficacy of the Euler characteristic in this ex-
ample is a consequence of the restricted nature of
surfaces. For a more arbitrary space, the challenge
of characterizing global features of the space be-
comes a more fundamental problem in topology.
With surfaces, simple arithmetic suffices to deter-
mine global properties. For arbitrary complexes,
more sophisticated algebraic topology is required.
Roughly speaking, algebraic topology provides two
ways in which to associate to a given space X a col-
lection of algebraic objects that gauge the global
features of X.

The first such set of invariants are the homotopy
groups, i (X), for k =0,1,..., the fundamental
group 111(X) being very well known. These groups
measure in how many and which ways one can
map a k-dimensional sphere S¥ into X, two spheres
in X being deemed equivalent if they are homotopic
relative to some fixed basepoint. Homotopy groups
comprise very powerful data; however, they are in
practice quite difficult to compute. The general
computation of homotopy groups of spheres is
unknown and indeed is the premier unsolved prob-
lem in algebraic topology at this time.

The second set of invariants provide a weaker but
more computable option. These are the homology
groups, Hy(X), for k = 0,1,.... (Properly speaking,
homology defers to its algebraic dual—the coho-
mology groups H¥(X)—as a finer invariant.) Instead
of measuring k-spheres in a space up to homotopy,
homology measures certain types of chains, or ob-
jects built from simple oriented pieces: simplices.
These simplices are defined differently depending
on the type of homology used. The simplest in-
stantiation is that of a simplicial complex X, where
the combinatorial simplices from which X is built
form a basis for simplicial chains. The elements of
Hi(X) are cycles, or chains with vanishing
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boundary, and two k-cycles are deemed homologous
if there is an oriented (k + 1)-chain that has as its
boundary the pair of cycles (with opposite orien-
tation).

Like homotopy groups, the homology groups are
an invariant of the homotopy type of the underly-
ing space. This explains why the Euler character-
istic x of a surface is independent of both the tri-
angulation and the homeomorphism type of the
surface: x is the alternating sum of the dimen-
sions of the homology groups.

Unlike homotopy groups, homology groups can
be computed via linear algebra. Recent advances
in algorithms for the rapid computation of ho-
mology (see [7] and references therein) make this
a feasible tool for realistic problems in science and
engineering.

Blanket Coverage

Motivated by the potential of pervasive computing
in sensor-rich environments [4], we consider a class
of simple sensors that can solve global problems
based on local communication.

For concreteness, we consider the case where
nodes lie in a planar Euclidean domain with polyg-
onal boundary. Each node can perform some sens-
ing task within a certain radially symmetric neigh-
borhood. Within this coverage disk, the sensor
performs its unspecified task, whether it involves
video surveillance, detection of radiological or bio-
hazard material, motion detection, etc. We do not
model this sensing task at all: it is completely im-
plicit except for the assumption that it is radially
symmetric. For such a network, we consider the
problem of blanket coverage.

Does the union of the coverage discs
about the nodes cover the domain D?

We wish to solve this problem using small-scale
(and therefore cheap) devices without GPS or other
sophisticated positioning systems. The intended
lesson is that topological methods permit sensors
that are remarkably minimal, having no means of
measuring distance, orientation, or location in their
environment.

The coverage problem is of clear significance to
security and surveillance. A similar coverage prob-
lem vexes anyone with a cell phone in an area of
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A Simple Local
Network

What minimal capa-
bilities must the sen-
sor nodes possess, for
there to be a solution
(or reasonable partial
solution) to the blan-
ket coverage prob-
lem? We focus on
node-to-node com-

munication. Assume

Figure 2. The Cech complex of a cover by convex sets captures the homotopy that each node broad-

type of the cover. casts its unique ID

& &

and listens to deter-
mine its neighbors.
These unique IDs may
take the form of RFID
tags.

The one strong as-
sumption we make
concerns the bound-
ary of the domain D
in which the nodes lie.
We suppose (for now)
that the vertices of
the polygonal bound-
ary 0D are defined by
special fence nodesin
a known cyclic con-

figuration (although

Figure 3. Changing the positions of nodes can change the topology of the their coordinates re-
radius 7. cover without changing the topology of the radius r, network graph. main unknown). Our

low cell phone tower density. This latter coverage
problem is simpler because the network of cell
phone towers is fixed and intentional. The company
that built the towers knows exactly where they
were built and is certain that the towers have not
moved. One can thus compute the union of the cov-
erage discs “by hand” with ease (assuming no hard-
ware failure). Standard algorithms from computa-
tional geometry can check for holes quickly, even
in cases with many nodes, so long as the node po-
sitions are known.

The scenario that we envision differs in that
there is no means of determining relative position.
This is not an insurmountable difficulty. Indeed,
there is an extensive literature on probabilistic
methods for coverage problems in networks of
randomly distributed points. See, e.g., [8]. Unfor-
tunately, these methods have very strong as-
sumptions on the uniformity or density of the ran-
dom distribution of points. We would like to solve
coverage problems in more realistic settings where
one “dumps a bucketful” of sensors in a field, for-
est, or ocean and then queries the network, perhaps
after environmental influences have moved the
sensors to unknown positions.
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precise assumptions
are as follows:

Al: Nodes X broadcast their unique ID numbers.
Each node can detect the identity of any node
within broadcast radius v,.

A2: Nodes have radially symmetric covering do-
mains of cover radius r. > r,/+/3.

A3: Nodes X lie in a compact connected domain
D c R? whose boundary 0D is connected and
piecewise-linear with vertices marked fence
nodes X.

A4: Each fence node v € X knows the identities
of its neighbors on 0D and these neighbors
both lie within distance r, of v.

To summarize, each node is aware of the iden-
tities of those nodes that are within broadcast
range 1. The orientations and distances of these
neighboring nodes are unknown. The fence nodes
have two additional pieces of data: (1) they know
that they are on the boundary of the domain; and
(2) each knows the identities of the two neighbor-
ing fence nodes.

Apart from the fence nodes (which are used to
simplify the statements of theorems), the type of
information that this network encodes is very sim-
ilar to that encoded by a simplicial complex. Local
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combinatorial data about how elementary pieces
are assembled give rise to a global object whose
large-scale topological features are revealing.

Simplices for Sensors

The obvious way to begin is to build the network
graph of the system. This is a combinatorial graph,
I, in which vertices correspond to the labeled nodes
and (undirected) edges correspond to pairs of
nodes that are in mutual broadcast range (within
distance r},). In this graph, the boundary 0D is nat-
urally identified with a particular cycle F c I tra-
versing the fence nodes, thanks to A4. The prob-
lem at hand is to determine whether the set ‘U
given by the union of radius r, balls at X contains
the domain D. The input for this problem is the
pair of graphs (T, /F).

Determining the topology of a union of balls is
a classical problem and is easily solved using the
notion of a Cech complex (also known as tt}e nerve).
Given a collection of sets ‘U = {Uy}, the Cech com-
plex of ‘U, C(U), is the abstract simplicial complex
whose k-simplices correspond to nonempty inter-
sections of k + 1 distinct elements of ‘U. Thus, the
vertices are in bijective correspondence with the
cover sets Uy, and edges of C(‘U) are in bijective
correspondence with nonempty intersections be-
tween two cover sets. Higher order intersections
generate higher dimensional simplices: see Fig-
ure 2.

Theorem 1. [The Cech Theorem] If the sets {Uy}
and all nonempty finite intersections are con-
tractible, thep the union |, Uy has the homotopy
type of the Cech complex C.

The equivalence in the Cech theorem is functo-
rial, and in particular there is a relative version that
gives us the following result.

Corollary 2. Under assumptions A1-A4 above, the
coverage area|J, Uy contains the domain D if and
only if the fence 1-cycle ‘F is null-homologous in
c(u.

This would appear to be exactly what one wants
for sensor networks. Unfortunately, it is not pos-
sible to compute the Cech complex from the net-
work graph I alone. Precise distances between
nodes are needed to determine the higher-
dimensional simplices of C(U). All we have are
two radii: the broadcast radius r, and the coverage
radius r.. For no (physically realistic) choice of
these radii can the radius r, Cech complex be de-
rived from the radius r, network graph. It is not
even possible to recover the homotopy type of
C(U). See Figure 3 for one example of the difficulty.

On the other hand, with the bound on coverage
and broadcast radii in A2, it follows that for any
triple of nodes that are in pairwise communication
distance, the convex hull of these nodes in R? is
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contained in the cover U. The extremal case, in
which all three nodes are at pairwise distance #y,
yields an equilateral triangle in R? that is covered
by balls at the nodes of radius r, only if r. > r,/+/3.

This motivates the following construction. We
consider the network graph as the 1-dimensional
skeleton of a larger simplicial complex. Denote by
R the largest simplicial complex whose 1-skeleton
is the network graph. That is, for every collection
of k nodes that are pairwise within distance r,, we
assign an abstract k — 1 simplex. This is also known
as the flag complex associated to the network
graph.

A nearly identical construction was used by
Vietoris in the 1930s in the beginnings of homol-
ogy theory [9]. It was largely forgotten and later re-
formulated by Rips in his work on geometric
groups. Given a set of points X = {x,} C R" in Eu-
clidean n-space and a fixed radius €, the Vi-
etoris-Rips complex of X is the abstract simpli-
cial complex whose k-simplices correspond to
unordered (k + 1)-tuples of points in X that are
pairwise within Euclidean distance € of each other.

For brevity, we refer to the complex R con-
structed above as the Rips complex of the network,
with the radius r, understood implicitly. Unfortu-
nately, the Rips complex does not necessarily cap-
ture the topology of the union of cover discs: we
have traded accuracy for computability. In the re-
mainder of this article, we will outline two meth-
ods for extracting coverage information from a
Rips complex, the latter of which infers Cech data.

The Homological Criterion

The Rips complex does contain enough topologi-
cal information about the cover to certify coverage,
if the cover is sufficiently robust. One might guess
that the right criterion measures H;(R), since
H;(‘U) collates holes in the cover. For reasons to
be seen, it is more natural to consider the second
homology of R relative to the fence F C R that de-
fines 0D.

Theorem 3. [1] For a set of nodes X in a domain
D c R? satisfying Assumptions Al-A4, the sensor
cover ‘U contains D if there exists [x] € H>(R, F)
such that ox + 0.

The proof of this result is straightforward with
an elementary knowledge of homology as in, say,
Chapter 2 of [6]. We present an abbreviated proof.

Proof sketch. Define a simplicial realization map
o : R — R? which sends vertices of R to the nodes
X ¢ D and sends a k-simplex of R to the (poten-
tially degenerate) k-simplex given by the convex hull
of the vertices implicated. This o takes the pair
(R, F) to (R?,0D). The long exact sequences on
these two pairs yields the following commutative
square:
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the homological criterion holds for one
[top] and fails for the other [bottoml].
The culprit in the case of failure is a
cycle of length four in H;(R). This cre-
ates a hole in the Rips complex that is
not present in the cover. Note, how-
ever, that a small change in the posi-
tions of the nodes implicated in this 4-
cycle can create a hole in the cover
without changing the topology of the
network. No technique that relies solely
upon the network topology can deter-
mine coverage in such a case. The ho-
mological criterion is effective for cov-
ers that are sufficiently robust with
respect to perturbing the points while
maintaining the network topology.

Generators for Power
Conservation

The addition of some homological al-
gebra to the sensor network can do
more than confirm coverage. Indeed, it
is a straightforward consequence of the
proof that the domain D lies within
the subcover of ‘U given by those nodes
implicated in the generator [«].

For a sensor network that has a highly
redundant cover, one can save power
and bandwidth by placing nonessential
nodes in a sleep mode. The crucial ques-
tion: which nodes can be deactivated
without sacrificing coverage? Or, in a

Figure 4. The homological criterion
holds for some covers [top] but not
for others [middle]. Failure is
caused by a 1-cycle in the Rips

complex [bottom].

H®R,7) % H.
(1) | Oy | Oy
H,(R2,0D) % H,@D)

The homology class 0.04[«] is the winding
number of Jdx about 0D. Observe that
0404[x] = 04[0x] = 0, since, by assumption,
Jdx + 0. By commutativity of Equation (1),
04 0%|x] # 0, and thus o.[«] # 0.

Assume that ‘U does not contain D and choose
p € D —‘U. Since, by the choice of r., every point
in o(R) lies within U, we have that
o: (R, F)— (R?,0D) factors through the pair
(R? — p,0D). However, H»(R?> — p,0D) = 0: con-
tradiction via commutativity.

This homological criterion is sufficient but not nec-
essary to verify coverage. The two networks illustrated
in Figure 4 both cover the domain completely. Yet

NOTICES OF THE AMS

Figure 5. A redundant cover [top]
can be simplified [bottom] by the
appropriate choice of generator for choosing the appropriate “minimal” gen-
H,>(R, F) [middle]. erators for H,(R, F) that implicate as

dynamic setting, how does one cycle
nodes from sleep to wake modes with-
out losing coverage? The answer lies in

few O-simplices as possible. Figure 5
gives an example of a “small” generator
yielding a more efficient cover.

Pursuit and Evasion

There are a number of related contexts in which a
homological criterion can solve a global problem.
Consider the situation in which the nodes change
position as a function of time. For simplicity, as-
sume that the fence nodes are fixed. Such a situa-
tion might arise with sensors used to detect a for-
est fire, since one could establish a ring of fixed
nodes outside the forest and allow the nodes in-
side the forest to be passively locomoted by envi-
ronmental forces (e.g., animals).

It may well be the case that there are not enough
sensors to cover the domain bounded by the outer
ring. However, as the sensors change locations,
holes in the cover can open and close in a complex
fashion. The evasion problem for this scenario is
whether an unknown evader can navigate through
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Figure 6. A time-sequence of network graphs
for a mobile network. Does this network admit
awandering hole?

holes in the sensor cover without being detected.

Even if coverage is never attained, one can still

hope that any hole in which the evader begins is

“squeezed” out eventually.

To address this problem, one proceeds as fol-
lows. Assume that the network communication
graph is updated at certain time intervals
0=t <...<ti<...<ty=1, producing an or-
dered sequence of communication graphs Ij, for
i =1...N.These induce a corresponding sequence
of Rips complexes R;. We impose the following ad-
ditional assumptions:

AS5: If two nodes are within broadcast radius at time
steps t; and t;,1, then they remain so for all
L<t=<ti.

A6: Nodes may go off-line or come on-line, repre-
sented by deleting or inserting the nodes in the
appropriate graph I;.

A7: Fence nodes remain fixed and on-line.

Given this sequence of network graphs (see Fig-
ure 6), it is by no means obvious whether there is
awandering hole in the coverage network. We amal-
gamate the sequence of Rips complexes into a sin-
gle simplicial cell complex AR as follows. For each
i=1,...,N—1,letR; n R;,; denote the largest la-
beled subcomplex common to R; and R,;,;. This
is well defined since all vertices (and thus all sim-
plices) have unique labels. We define the

JANUARY 2007

amalgamated Rips complex to be the quotient of
the disjoint union []R; obtained by identifying
RiNnRiz;1 CR; with RiNRis1 CRiv1 for each i.
This yields a cell complex built from simplices
(though not necessarily a combinatorial simplicial
complex, since multiple simplices may share the
same vertex set). Note that, given A7, the fence ‘F
is a subcomplex of each R; and thus is identified
to a well defined cycle F c AR.

Theorem 4. [1] Consider a set of mobile nodes X (t)
in a domain D C R? satisfying A1-A7. Any contin-
uous curvep : [0,1] — D must have p(t) € U(t) for
some 0 <t <1 if there exists [x] € H,(AR, F)
such that ox # 0.

The proof of this result is in the same spirit as
that of Theorem 3. Note that there are no bounds
on the speed or cunning of the evader.

Persistence of Homology

The ease with which Theorem 3 is proved is due
chiefly to the restrictions placed on the fence nodes
in A4. With this condition, it is relatively easy to
extend these results. Besides the time-dependent
case reviewed above, homological methods work
for domains that are not simply connected, for
barrier coverage problems in 3-dimensions, for
systems with communication errors or variable
radii, and for hole detection and repair [1]. The con-
trol over the fence nodes is manifested in the proof
of Theorem 3 in Equation (1), where o : H,(‘F) —
H,(0D) is known to be an isomorphism.

Such control over the fence may be physically
realistic in some settings where, say, one can ex-
plicitly build a ring of sensors around a potentially
hazardous environment and then inject sensors in
the interior of the domain. Equivalently, given an
unbounded network and a cycle in the communi-
cation graph, one can query whether the region of
the plane bounded by this cycle lies in the cover.
A more realistic setting for boundary phenomena
is one in which nodes can sense if they are near the
boundary 0D and can register themselves as fence
nodes. For example, a very coarse range-finder can
detect the presence of a wall within a set distance,
without necessarily knowing the distance to the
wall.

We therefore consider a system of stationary
nodes which can detect the presence of the bound-
ary of the domain 0D within some fixed fence ra-
dius ry. This choice of system leads to a collection
of fence nodes Xy C X which spans a fence sub-
complex F C R, the maximal simplicial complex
generated by the fence nodes and edges between
them. The analogous coverage criterion in this case
should be the existence of a generator
[x] € Ho(R, F) such that dx # 0. Unfortunately,
this is no longer sufficient for coverage. Consider
the network in Figure 7, in which the fence
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subcomplex F has a loop that is coned off to a disc

in R. This complex has H>(R, F) # 0, yet the map

0y - Hi(F) = H(0D) is the zero-map, and Equa-
tion (1) is no longer useful in guaranteeing a cover.

It is the existence of these fake cycles that com-

plicates matters. To a “global” observer, the ex-

ample of Figure 7 is easily seen to have degree
zero. The challenge is to have the network deter-
mine this by “local” observations.

There is a simple homological criterion for cov-
erage in this setting where the fence nodes are not
controlled [2]: it uses persistent homology and re-
quires some additional capabilities on the part of
the sensor network. The heuristic behind this use
of persistence is that the fake cycle of Figure 7 does
not survive if the network increases its broadcast
radius a small amount. Were this to happen, the “di-
agonals” of the 1-cycle in the fence subcomplex
would be filled in, killing the relative 2-cycle.

We can generalize this one example to deal with
arbitrary fake cycles by allowing for two broadcast
radii: a “weak” and a “strong” signal. This also has
the advantage of generalizing easily to compact do-
mains D C R" for any n > 2. The precise assump-
tions are as follows:

P1: Nodes broadcast their unique ID numbers. Each
node can detect the identity of any node within
radius r via a strong signal, or via a weak sig-
nal within a larger radius r,, where r,, > r,+/10.

P2: Nodes have radially symmetric covering do-
mains of cover radius r. = r,//2.

P3: Nodes lie in a compact domain D ¢ R4 and can
detect the presence of the boundary 0D within
a fence detection radius r.

P4: The restricted domain D — C is connected,
where

C={xeiD:llx—aiDllsrf+n/\/§}.

P5: The fence detection hypersurface
{x € D:|Ix — 0Dl = r¢} has internal injectivity
radius at least ry/+/2 and external injectivity ra-
dius at least .

The crucial feature is that sensors that are within
signal detection range can distinguish weak versus
strong signals, yielding a binary measure of in-
range distance. The fence nodes are not controlled,
but there is a need for (somewhat severe) restric-
tions on the shape of the domain so as to exclude
pinching (P4) and wrinkling (P5).

Such a system gives rise to a pair of Rips com-
plexes, R, and R,, computed at the strong and
weak radii respectively. Each is outfitted with a
fence subcomplex, Fy € Rgand F,, C R,,. Thereis
a natural inclusion of pairs

(2) (R, Fs) = (Ry, Fu),

since increasing the signal detection radius from
¥s to 1, only increases network connectivity.
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Theorem 5. [2] For a set of nodes X in a domain
D c R4 satisfying P1-P5, the sensor cover ‘U con-
tains the restricted domain D — C if the induced
homomorphism

Ly - Hd(Rs,j:s) - Hd(Rwafw)
is nonzero.

The key that makes this theorem work is a
squeezing theorem for the Cech complex. For a set
of points X c R4, let Cc(X) denote the Cech com-
plex of the cover of X by balls of radius €/2. Let
R(X) denote the Rips complex of the network
graph having vertices X and edges between vertices
within distance € in R4,

Theorem 6. [2] Fix X a set of points in R?. Given
€’ < €, There is chain of inclusions
€ 2d

>

Re(X) C CeX) CRelX) i — = [ ==

Moreover, this ratio is the smallest for which the
inclusions hold in general.

This is the type of result that is ideal for engi-
neering applications. The Rips complex is com-
putable, but does not give an accurate represen-
tation of the topology of the cover. The Cech
complex gives the exact homotopy type of the
cover, but it is not computable with the coarse in-
formation available from the network. Theorem 6
tells how to infer Cech data from Rips data.

This technique of comparison between Rips
complexes at two different scales €, €’ is a simple
instance of the more general theory of persistent
homology [3], [10]. This concerns the homological
properties of nested families of topological spaces.
Although the algebra and ideas involved are clas-
sical, the subject has been heavily driven by ap-
plications in computational geometry and nonlin-
ear data analysis. Persistent homology is an
algebraic topology for the twenty-first century.

Theorem 5 is not the final word in homological
coverage criteria for systems with a fence radius
and is best thought of as a proof-of-concept for ho-
mological methods. The hypotheses for this theo-
rem flow from the mathematical details as op-
posed to the engineering details. For topological
methods to make a serious contribution to secu-
rity and sensor networks, it is important for the
mathematics (and mathematicians) to work in con-
junction with the engineers implementing the sen-
sor networks.

The homological coverage criteria surveyed here
are the beginning of a larger foray of topological
ideas in the theories of networks and sensing. We
note in particular the need for these coverage cri-
teria to be distributed (so that networks can com-
pute local homology and agree on global coverage),
asynchronous (so that updates to the network are
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not dependent on a simultaneous
sampling of the network), and fault
tolerant (to accommodate the sto-
chastic nature of sensor networks).

On Computational Topology

“Topology! The stratos-
phere of human thought!
In the twenty-fourth cen-
tury it might possibly be
of use to someone...”

—The First Circle, A. Solzhenitsyn
The results we review here are but

one branch of the rapidly evolving
area of applied computational topol-

ogy. The need to move from local to
global is one that a large spectrum
of engineers and scientists are find-
ing to be prevalent. Very few of the
calculus-based tools with which they are most fa-
miliar prove sufficient. Recently, it has been demon-
strated that homology theory is useful for problems
in data analysis and shape reconstruction, com-
puter vision, robotics, rigorous dynamics from ex-
perimental data, and control theory. See [7] for an
overview of some current applications.

Topology is especially keen at giving criteria for
when one can or cannot find a particular global ob-
ject (a homeomorphism, a nonzero section, an iso-
topy, etc.): this falls under the rubric of obstruction
theory. This perspective is one that has not yet
permeated the applied sciences, in which the ques-
tion, “What is possible?” is usually approached from
the top-down, “Here’s something we can build,” as
opposed to the bottom-up approach that topolog-
ical methods yield. A brilliant example of this ob-
struction-theoretic viewpoint in an applied con-
text is Farber’s topological complexity for robot
motion planning [5].

In this article, we use homology theory to give
coverage criteria for networked sensors which are
“nearly senseless”. It seems counterintuitive that
one can provide rigorous answers for a network
with neither localization capabilities nor distance
measurements. A topologist is not surprised that
such coarse data can be integrated into a global pic-
ture. Some engineers are. Homological methods
have the pleasant consequence that they may allow
engineers to focus on designing simpler sensors
that are nevertheless useful in a security network.
Why bother miniaturizing GPS for “smart dust” if
you can solve the problem without it? If topologi-
cal methods can determine the minimal sensing
needed to solve a global problem, then such meth-
ods may have significant impact on the way sys-
tems and sensors are developed and deployed.
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Figure 7. A fake relative 2-cycle in a system with a 1-cycle in the fence complex
which is nullhomologous in the boundary collar.
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