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T
his article is the second in a two-part
series in memory of Serge Lang, who
passed away on September 12, 2005. In
the first article, which appeared in the
May 2006 issue of the Notices , we invited

contributions from a number of individuals who
knew Serge on a somewhat personal level. For this
part, we sought expositions which would describe,
with certain technical details as necessary, aspects
of Serge’s contribution to mathematical research.

To begin understanding the breadth and depth
of Serge’s research endeavors, we refer to Volume I
of his Collected Papers,1 where he outlined his
mathematical career in a number of periods. We list
here Lang’s own description of his research, using
only a slight paraphrasing of what he wrote (see
table at topofnextpage). For this article, the editors
choosetousethis listasaguide, thoughitshouldbe
obvious that we cannot address all facets of Lang’s
mathematical research.

In addition to research, Lang’s contribution
to mathematics includes, as we all know, a large
number of books. How many books did Lang write?
We (the editors) are not sure how to answer that
question. Should we count political monographs
such as Challenges? How do we count multiple
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editions and revisions? For example, he wrote two
books, entitled Cyclotomic Fields I and Cyclotomic
Fields II, which were later revised and published
in a single volume, yet his text Algebra: Revised
Third Edition has grown to more than 900 pages
and is vastly different from the original version.
In an attempt to determine how many books he
wrote, we consulted the bibliography from Lang’s
Collected Papers, where he highlighted the entries
which he considered to be a book or lecture note.
According to that list, Lang wrote an astonish-
ing number of books and lecture notes—namely
sixty—as of 1999. Furthermore, he published
several items after 1999, there are more books
in production at this time, and a few unfinished
manuscripts exist. In 1999, when Lang received
the Leroy P. Steele Prize for Mathematical Ex-
position, the citation stated that “perhaps no
other author has done as much for mathematical
exposition at the graduate and research levels,
both through timely expositions of developing
research topics . . . and through texts with an
excellent selection of topics.” We will leave it
to others to assess the impact of Serge Lang’s
books on the education of mathematics students
and mathematicians throughout the world; this
topic seems to be a point of discussion properly
addressed by historians as well as by history
itself.

On February 17, 2006, a memorial event was
held at Yale University in honor of Serge Lang. At
that time, Anthony and Cynthia Petrello, friends
of Serge since the early 1970s, announced their in-
tention to create a fund for the purpose of financ-
ing mathematical activities in memory of Lang. As
mathematicians, we the editors express our sin-
cere thanks to Anthony and Cynthia Petrello for
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1. 1951–1954 Thesis on quasi-algebraic closure and related matters
2. 1954–1962 Algebraic geometry and abelian (or group) varieties; geometric class field theory
3. 1963–1975 Transcendental numbers and Diophantine approximation

on algebraic groups
4. 1970 First paper on analytic number theory
5. 1975 SL2(R)
6. 1972–1977 Frobenius distributions
7. 1973–1981 Modular curves, modular units
8. 1974, 1982–1991 Diophantine geometry, complex hyperbolic spaces, and Nevanlinna theory
9. 1985, 1988 Riemann-Roch and Arakelov theory

10. 1992–2000+ Analytic number theory and connections with spectral analysis, heat kernel,
differential geometry, Lie groups, and symmetric spaces

Chronological description of Serge Lang’s mathematics career.

their generous support of mathematical research.
As teachers, we see the story of Serge, Anthony,
and Cynthia as a wonderful example of the type
of lifelong friendship that can develop between
instructors and students. As editors of the two
articles on Lang, we are in awe at being shown
yet another way in which Serge has influenced the
people he encountered. We look forward to see-
ing the results from the development of the “Lang
Fund” and its impact on the mathematical com-
munity.

Serge Lang’s Early Years

John Tate

These remarks are taken from my talk at the Lang
Memorial at Yale on Lang and his work in the ear-
ly years, roughly 1950–1960. Lang’s papers from
this period fill less than one half of the first of
the five volumes of his collected works. His pro-
ductivity was remarkably constant for more than
fifty years, but my interaction with him was most-
ly early on. We were together at Princeton as grad-
uate students and postdocs from 1947 to 1953
and in Paris during 1957–58.

In the forward of his Collected Papers, Lang
takes the opportunity to “express once more” his
appreciation for having been Emil Artin’s student,
saying “I could not have had a better start in
my mathematical life.” His Ph.D. thesis was on
quasi-algebraic closure and its generalizations.
He called a field k a Ci field if for every integer
d > 0, every homogeneous polynomial of degree
d in more than di variables with coefficients in k
has a nontrivial zero in k. A field is C0 if and only
if it is algebraically closed. Artin’s realization that
Tsen’s proof (1933) that the Brauer group of a
function field in one variable over an algebraically
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closed constant field is trivial was achieved by
showing that such a field is C1, and he called that
property quasi-algebraic closure. In analogy with
Tsen’s theorem, he conjectured that the field of
all roots of unity is C1. This is still an open ques-
tion. In his thesis Lang proved various properties
of Ci fields and showed that a function field in
j variables over a Ci field is Ci+j . He also proved
that the maximal unramified extension of a local
field with perfect residue field is C1. Artin had al-
so conjectured that a local field with finite residue
field is C2. Lang could prove this for power series
fields, but not for p-adic fields. In 1966 it became
clear why he failed. G. Terjanian produced an
example of a quartic form in 18 variables over the
field Q2 of 2-adic numbers with no zero. Terjani-
an found his example a few months after giving
a talk in the Bourbaki Seminar (November 1965)
on a remarkable theorem of Ax and Kochen. Call
a field Ci(d) if the defining property of Ci above
holds for forms of degree d. Using ultrafilters to
relate

∏
p Qp to

∏
p Fp((t)), they showed that for

each prime p, Qp has property C2(d) for all but
a finite set of d. In that sense, Artin was almost
right.

Lang got his Ph.D. in 1951. After that he was
a postdoc at Princeton for a year and then spent
a year at the Institute for Advanced Study be-
fore going to Chicago, where he was mentored
by Weil—if anyone could mentor Serge after his
Ph.D. He and Weil wrote a joint paper generaliz-
ing Weil’s theorem on the number of points on a
curve over a finite field. They show that the num-
ber N of rational points on a projective variety in
Pn of dimension r and degree d defined over a
finite field satisfies

|N − qr | ≤ (d − 1)(d − 2)qr−
1
2 +Aqr−1,

where q is the number of elements in the finite
field and A is a constant depending only on n, d,
and r . (Here and in the following, “variety defined
over k” means essentially the same thing as a ge-
ometrically irreducible k-variety.) From this result
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they derive corollaries for arbitrary abstract vari-
eties. They show, for example, that a variety over
a finite field has a rational zero-cycle of degree 1.
The paper is a very small step towards Weil’s con-
jectures on the number of points of varieties over
finite fields which were proved by Deligne.

Lang proved for abelian varieties in 1955 and
soon after for arbitrary group varieties that over
a finite field k a homogeneous space for such a va-
riety has a k-rational point. A consequence is that
for a variety V over k, a “canonical map” α : V →
Alb(V) of V into its Albanese variety can be de-
fined over k and is then unique up to translation
by a k-rational point on Alb(V).

In 1955 Lang dedicated to Artin a paper in
which he generalized Artin’s reciprocity law to
most unramified abelian extensions (those “of
Albanese type”) of a function field K of arbitrary
dimension over a finite constant field k. Let V/k
be a projective normal model for K/k. For each
finite separable extension L/K, let VL be the nor-
malization of V in L; and let ZL denote the group
of 0-cycles on VL rational over the constant field
kL of L, Z0

L those of degree 0, and ZaL the kernel
of the canonical map of Z0

L into AL(kL), the group
of kL-rational points on the Albanese variety AL
of VL. Let CL := ZL/ZaL denote the group of class-
es of 0-cycles on VL defined over kL. Lang calls
L/K “of Albanese type” if its “geometric part”
Lk̄/Kk̄ is obtained by pullback, via a canonical
map α : V = VK → AK , from a separable isogeny
B → AK defined over the algebraic closure k̄ of
k. Such an extension is abelian if the isogeny
and α are defined over k and the kernel of the
isogeny consists of k-rational points. If the Neron-
Severi group of V is torsion free, then every finite
abelian extension of degree prime to the char-
acteristic is of Albanese type. Lang shows that
the map which associates to an extension L/K its
trace group SLKCL gives a one-one correspondence
between the set of abelian extensions L/K of
Albanese type and the set of subgroups of finite
index in CK . He also shows, in exact analogy with
Artin’s reciprocity law, that the homomorphism
ZK → Gal(L/K) which takes each prime rational 0-
cycle P to its associated Frobenius automorphism
(P ,L/K) vanishes on the Albanese kernel ZaK and
induces an isomorphism CK/S

L
KCL ≈ Gal(L/K).

Moreover, from Lang’s geometric point of view,
this reciprocity law becomes transparent and
quite easy to prove.

A year later, in his first paper written in French,
Lang defined the analogue of Artin’s nonabelian
L-functions for Galois coverings f : W → V
and proved with them the analogue of Tcheb-
otarov’s density theorem. He also generalized
his reciprocity law for abelian coverings W → V
of Albanese type described above to any cover-
ing obtained by pullback of a separable isogeny

B → A of commutative group varieties, via a
map α : V → A defined outside a divisor. These
coverings, which he calls “de type (α,A)” can be
highly ramified, and Lang notes that in the case
where V is a curve, taking Rosenlicht’s general-
ized Jacobians for A and throwing in constant
field extensions, one gets all abelian coverings, so
that his theory recovers the classical class field
theory over global function fields.

These papers were the beginning of higher-
dimensional class field theory and earned Lang
a Cole Prize in 1959. In his acceptance remarks,
he acknowledges his indebtedness to others. In
his paper on unramified class field theory, he
expresses his great and sincere appreciation to
Chow, Matsusaka, and Weil for discussions on
the algebraic aspects of the Picard and Albanese
varieties and for proving the theorems he needed
for the work. (In the L-series paper he also thanks
Serre, writing “Je ne voudrais pas terminer cette
introduction sans exprimer ma reconnaissance
à J.-P. Serre, qui a bien voulu se charger de la
corection des phautes d’orthografe.” I too thank
Serre here for pointing out an error in my first
description of these results of Lang.)

During the next couple of years Lang collab-
orated with many people. In a paper “Sur les
revêtements non ramifiés” he and Serre proved
that coverings in characteristic p behave more or
less as in characteristic 0, provided the variety is
projective, and applied this to abelian varieties in
order to show that every covering is given by an
isogeny. After a paper with Chow on the birational
invariance of good reduction, Lang collaborated
with me on a study of the Galois cohomology of
abelian varieties. We were able to show, for each
positive integer m, the existence of a curve of
genus 1 over a suitable algebraic number field K,
the degrees of whose divisors defined over K are
exactly the multiples of m. Over a p-adic field F
we essentially proved the prime-to-p part of the
duality theorem

Hom(H1(Gal(F̄/F), A(F̄)),Q/Z) = Â(F)
for dual abelian varieties A and Â without stating
it that way.

Then, after a paper with Kolchin applying the
theory of torsors for algebraic groups to the Ga-
lois theory of differential fields, Lang published
with Néron a definitive account of the “theorem
of the base”: the finite generation of the Néron-
Severi group of divisors modulo algebraic equiva-
lence on a variety. Néron had proved this earlier,
but here the proof is made more transparent. Us-
ing a criterion of Weil, they show that the theorem
follows from the Mordell-Weil theorem for abelian
varieties over function fields, which they prove in
the usual way.

I view this as the end of Lang’s first period
of research, in which he applied Weil’s algebraic
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geometry to class field theory and to questions
of rational points on varieties with great suc-
cess. At this time (around 1960) he began to
consider questions of integral points on curves
and varieties and function field analogues of the
Thue-Siegel-Roth theorem on Diophantine ap-
proximations, a new direction in which his ideas
of generalization and unification of classical
results had great influence.

In addition to doing outstanding research, Lang
has had a tremendous influence as a communi-
cator, teacher, and writer, as everyone knows. In
closing I would like to mention a few examples
of these things from the period I am writing
about. Wonderful as it was, our graduate training
with Artin was almost totally one-dimensional
and nongeometric: number fields and function
fields in one variable. In the following years Serge
helped me become comfortable with higher-
dimensional things such as the Jacobian, Picard
and Albanese varieties over arbitrary ground
fields and also with “reduction mod p”, which
was not such a simple matter working with Weil’s
Foundations in those days before schemes. Serre
tells me it was Lang who made him appreciate
the importance of the Frobenius automorphism.
In general, Serge, who travelled regularly to Paris,
Bonn, Moscow, and Berkeley, was an excellent
source of information about what was happening
in the world of mathematics. He was an energetic
communicator who seemed driven to publish.
The Artin-Tate book on class field theory is a
good example. Lang took the original notes of
the seminar, typed them, continued for years to
urge their publication (over my perfectionist and
unrealistic objections), and finally arranged for
their publication by Addison-Wesley. His name
should be on the cover.

Serge Lang’s Early Work on
Diophantine and Algebraic
Geometry

Alexandru Buium

In this article we review some of Serge Lang’s ear-
ly work on Diophantine equations and algebraic
geometry. We are mainly concerned here with pa-
pers written before the 1970s (roughly the first
volume of his Collected Papers [44]).

Diophantine equations are polynomial equa-
tions f (x1, ..., xn) = 0 with rational coefficients or,
more generally, with coefficients in fields K that
have an “arithmetic flavor” (e.g., number fields,
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function fields, local fields, finite fields, etc.). The
main problem is to determine whether such an
equation has solutions with coordinates in K
and, more generally, to “count” or “construct” all
such solutions. Morally, one expects “many" solu-
tions if the degree d of f is “small” with respect
to the number n of variables, and one expects
“few” solutions if d is “big” with respect to n. In
the language of algebraic geometry, systems of
polynomial equations correspond to varieties (or
schemes) V over K, and solutions correspond to
K-points P ∈ V(K) of our varieties. According to
conjectures made by Lang in the 1980s, the above
conditions on d and n, controlling the size of the
set of solutions to f = 0, should be replaced by
precise algebro-geometric and complex analytic
properties of the varieties in question.

Most of Lang’s early work stems from his in-
terest in Diophantine equations. In his thesis [22]
Lang obtained remarkable new results on polyno-
mial equations of low degree over local fields and
function fields. Diophantine equations naturally
led Lang [23] to the study of algebraic groups
and their homogeneous spaces. Closely related
to these are Lang’s class field theory of function
fields of characteristic p [24] and his work with
Néron [29] on the Mordell-Weil theorem over
function fields of any characteristic. From the lat-
ter Lang passed to his investigation, in the line of
Mordell and Siegel, of finiteness of integral points
[30] and division points [31] on curves. In [30]
[31], he formulated his celebrated conjecture on
subvarieties of semiabelian varieties. (Later [41],
[42], [43] Lang came back to this circle of ideas
by formulating his Diophantine conjectures for
arbitrary varieties; we will not review this aspect
of Lang’s later work here.) Problems on integral
points are intertwined with problems in the theo-
ry of Diophantine approximation, while the latter
shares its spirit and methods with transcendence
theory; in both these theories Lang made impor-
tant contributions [32], [33], [34], [38], [39], [40],
[5].

These are but a few of the themes that Lang
pursued in his early work. Lang’s impact on
these themes was substantial. Not only did he
contribute fundamental results, but, at the same
time, he reorganized and systematized each of
these subjects by attempting to clearly define
their scope, formulate their basic problems, and
make sweeping conjectures. In what follows we
will review these themes in some detail.

Equations of Small Degree over Local
Fields
E. Artin defined quasi-algebraically closed fields
(in Lang’s terminology, C1 fields [22]) as fields
K such that any form of degree d in n variables
with n > d and coefficients in K has a nontrivial
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zero in K. He noted that a method of Tsen [60]
implies that function fields of one variable over
an algebraically closed field are C1 and conjec-
tured that finite fields are C1; this was proved
by Chevalley [9]. Artin also conjectured that cer-
tain “local fields", such as Qurp (the maximum
unramified extension of the p-adic field), are C1.
This conjecture was proved by Lang in his thesis
[22]; here is his strategy. Lang first uses Witt
coordinates to transform the equation f = 0 with
coefficients in K = Qurp into an infinite system
of equations f0 = f1 = f2 = · · · = 0 in infinitely
many variables with coefficients in the algebraic
closure k of the prime field Fp. He is able to solve
this infinite system in an algebraically closed
extension k1 of k by purely algebro-geometric
considerations; here the hypothesis on the degree
d is used to control the dimensions of the alge-
braic sets defined by various truncations of the
infinite system. From the solution of the system
in k1 he gets a solution of f = 0 in K1, a complete
field with residue field k1. Next he specializes this
solution to a solution in K̂, the completion of K.
Finally, from a solution in K̂ he gets solutions
in K itself via a beautiful argument involving a
variant of “Newton approximation”. The proof
outlined above contained a number of fruitful
new ideas that provided starting points for fur-
ther developments by other mathematicians. The
step involving “Newton approximation” is one of
the origins of M. Artin’s work on approximating
formal solutions to algebraic equations [4], which
was crucial in his work on moduli. The viewpoint
whereby equations over K̂ can be transformed
into infinite systems of equations over k was put
into a general context by M. Greenberg [19] and
has been intensely used ever since; in particular,
it plays a role in Raynaud’s work [54], [55] on
Lang’s conjecture [31] on division points; cf. the
discussion below.

Points on Homogeneous Spaces over
Finite Fields
In [23] Lang proves his celebrated theorem that if
Fq is a finite field, then any homogeneous space
H/Fq for an algebraic group G/Fq has an Fq-point.
The proof is beautifully simple and runs as fol-
lows: Let G(k) → G(k), x ֏ x(q) be the q-power
Frobenius map on k-points where k is the alge-
braic closure of Fq. Then Lang proves that the
map G(k) → G(k), x ֏ x−1x(q) is surjective. He
then takes any point y0 ∈ H(k). By transitivity
of the G-action there is a point x0 ∈ G(k) such
that x0y

(q)
0 = y0. By surjectivity of x ֏ x−1x(q)

there is a point x1 ∈ G(k) such that x0 = x−1
1 x

(q)
1 .

Then x−1
1 x

(q)
1 y

(q)
0 = y0; hence (x1y0)(q) = x1y0, so

one finds the desired point x1y0 ∈ H(Fq). Lang’s
theorem generalizes a result of F. K. Schmidt
about elliptic curves and also generalizes a result

of Châtelet, who had proved that if a variety over
Fq becomes isomorphic over the algebraic closure
of Fq to a projective space Pn, then the variety is
already isomorphic over Fq to Pn.

In [24], [25], [23] Lang uses the map x֏ x−1x(q)

as a key ingredient in his class field theory for
function fields over finite fields (equivalently for
coverings of varieties over finite fields). He shows
that abelian coverings are essentially induced by
appropriate isogenies of commutative algebraic
groups (of which x ֏ x−1x(q) is a basic example),
and he introduces his reciprocity mapping, which
turns out to have the expected properties. It is
interesting to note that this function field theory
was developed (long) after E. Artin’s work in the
1920s [3] on its number field prototype; usually,
in the history of number theory, the number field
theorems are being proved after their function
field analogues. (Cf. the discussion of the Mordell
conjecture below.) In the case at hand, the func-
tion field analogue had to wait until the necessary
algebro-geometric tools (especially the algebraic
theory of abelian varieties) became available.

Finite Generation of Points of Abelian
Varieties over Function Fields
Lang was actively involved [26], [27], [28] in estab-
lishing the foundations of the algebraic theory of
abelian varieties, following the pioneering work
of Weil, Chow, and Matsusaka. With this theory at
hand, Lang and Néron [29] were able to provide
elegant proofs for some basic finiteness theorems
in algebraic geometry. Néron had proved [50] the
“Néron-Severi” theorem of the base stating that
the group D(V) of divisors on a variety V (over
an algebraically closed field k) modulo the group
Da(V) of divisors algebraically equivalent to 0 is
finitely generated. In [29] Lang and Néron show
how to reduce the proof of the finite generation
of D(V)/Da(V) to proving the finite generation
of a group of the form A(K)/τB(k), where A is
an abelian variety over a function field K over k
and (B, τ) is the K/k-trace of A. Then they prove
the finite generation of A(K)/τB(k), which is the
“Mordell-Weil” theorem in the function field con-
text. Recall that the number field version of the
Mordell-Weil theorem asserts that for any abelian
variety A over a number field K, the group A(K)
is finitely generated. The latter was conjectured
by Poincaré and proved by Mordell [48] in case
dimA = 1, K = Q, and by Weil [66] in general.
Here again, the number field theorem preceded
the function field theorem.

Integral Points, Rational Points, and
Division Points
Lang became interested in questions related to
the Mordell conjecture around 1960; this conjec-
ture and the impact of Lang’s insights into it have
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a long history. We briefly sketch the evolution of
this circle of ideas below; our discussion is inher-
ently incomplete and is meant to give only a hint
as to the role of some of Lang’s early ideas on the
subject. Mordell [48] had conjectured that a non-
singular projective curve V of genus g ≥ 2 over
a number field K has only finitely many points in
K. In particular, an equation f = 0 where f is a
nonsingular homogeneous polynomial of degree
≥ 4 in 3 variables with Q-coefficients should have,
up to scaling, only finitely many solutions in Q.
Siegel [58] proved, using Diophantine approxima-
tions, that if V is an affine curve over a number
field K, of genus g ≥ 1, then V has only finitely
many integral points (i.e. points with coordinates
in the ring of integers of K). Mahler [45] conjec-
tured that the same holds for S-integral points
(S a finite set of places), and he proved this for
g = 1 and K = Q. In [30] Lang proves Mahler’s
conjecture by revisiting the arguments of Siegel
and Mahler in the light of the new developments
in Diophantine approximations (Roth’s Theorem)
and abelian varieties (especially the Lang-Néron
paper [29]). Lang also makes, in [30], a conjec-
ture which later, in [31], he strengthens to what
came to be known as the Lang conjecture (on
subvarieties of semiabelian varieties):

(*) Let G be a semiabelian variety over an al-
gebraically closed field F of characteristic 0, let
V ⊂ G be a subvariety, and let Γ ⊂ G be a finite
rank subgroup. Then V contains finitely many
translates Xi of algebraic subgroups of G such
that V(F)∩ Γ ⊂ ∪iXi(F).

Here, by Γ of finite rank, one understands that
dimQ Γ ⊗ Q < ∞. The weaker version of Conjec-
ture (*) stated in [30] only assumes Γ is finitely
generated; this is a reformulation and general-
ization of a conjecture of Chabauty [8]. A proof
in case V is a curve, G is a linear torus, and Γ is
finitely generated is given by Lang in [36] using
Diophantine approximations. Lang remarks in
[30] that Conjecture (*) (for Γ finitely generated)
implies the Mordell conjecture; indeed if V is
a curve of genus ≥ 2 defined over a number
field K, then one lets F be the algebraic closure
of K, embeds V into its Jacobian A, and notes
that V(K) = A(K) ∩ V(F). But A(K) is finitely
generated by the Mordell-Weil Theorem, so V(K)
is finite and the Mordell conjecture follows. In a
similar vein, Lang conjectures in [30] that if V is a
nonsingular projective curve over a function field
K of characteristic zero such that V(K) is infinite,
then V can be defined over the constants of K;
this is the Mordell conjecture over function fields
of characteristic zero. Lang proves in [30] that
a curve as in the latter conjecture cannot have
infinitely many points of bounded height; this
implies an analogue of Siegel’s Theorem [58] for

curves over function fields of characteristic zero.
In the same paper [30] Lang conjectures that
(**) If V is an affine open set of an abelian variety
over a number field K and S is a finite set of places
of K, then the set of S-integral places of V is finite.

The Mordell conjecture for curves over func-
tion fields of characteristic zero was proved by
Manin [46]. Subsequently other proofs and new
insights were provided [18], [56], [51], [2], [59],
[12], etc. In Manin’s work the question arose
whether a curve, embedded into its Jacobian,
contains only finitely many torsion points. This
was independently asked by Mumford and came
to be known as the Manin-Mumford conjecture.
In [31] Lang stated Conjecture (*) so as to make
the Mordell conjecture and the Manin-Mumford
conjecture special cases of one and the same
conjecture. The Manin-Mumford conjecture was
proved by Raynaud [54], and in the same year
Faltings [13] proved the original Mordell conjec-
ture. Faltings’s proof did not involve Diophantine
approximations; later Vojta [61] provided a com-
pletely different proof of the Mordell conjecture
involving Diophantine approximations. This led
to another breakthrough by Faltings [14] in the
higher-dimensional case, followed by more work
of Vojta [62]. The full Lang conjecture (*) was sub-
sequently proved by McQuillan [47], based partly
on ideas of Hindry [20] and Raynaud about how
to reduce the case “Γ of finite rank” to the case “Γ
finitely generated”. For curves over function fields
in characteristic p, a remarkably short proof of
a variant of the Lang conjecture (*) was given
by Voloch [63]; cf. also [1]. Conjecture (**) was
proved by Faltings [14]; function field analogues
of Conjecture (**) were proved in [52], [7], [64].

We would like to close this discussion by
noting that the Lang conjecture (*) is a pure-
ly algebro-geometric statement, i.e., a statement
about varieties over an algebraically closed field F ,
and one could expect a purely algebro-geometric
proof of this conjecture (in which the arithmetic
of a global field of definition contained in F
doesn’t play any role). Implicit in Lang’s view-
point was that the Mordell conjecture could be
attacked via the Lang conjecture (*); the whole
arithmetic in the proof could then be concentrat-
ed into the Mordell-Weil Theorem. The decisive
breakthroughs in the subject (by Manin and Falt-
ings) went the other way around: the Mordell
conjecture was proved directly (and then the
Lang conjecture (*) followed by work of Raynaud,
Hindry, McQuillan). A proof along Lang’s original
plan of attack was given by the author in [6],
where the Lang conjecture (*), in the case A has
no quotient defined over a number field and V
is nonsingular, was proved “without global field
arithmetic”; no such proof is known for A defined
over a number field. The proof in [6] had a key
complex analytic ingredient; Hrushovski [21] saw
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how to replace this ingredient by an argument
from mathematical logic (model theory) which
also applied to function fields in characteristic p.
In characteristic zero, Hrushovski’s model theo-
retic argument can be rephrased, in its turn, as an
entirely algebro-geometric argument [53].

Diophantine Approximations
and Transcendence
A surprising discovery of Lang’s [32] was that if
β is a quadratic real irrational number and c ≥ 1,
then the number of integers q with |q| ≤ B such
that 0 < qβ − p < c|q|−1 for some integer p
is a multiple of logB + O(1). This was in sharp
contrast with the known fact that for c sufficient-
ly small the inequality |qβ − p| < c/q has only
finitely many solutions. Lang further explored
asymptotic approximations in [33], [35], [34]. As
already mentioned, Diophantine approximations
are closely related to Lang’s conjecture on in-
tersections of subvarieties of algebraic groups
with finitely generated subgroups. Partially mo-
tivated by this circle of ideas, Lang conjectured
[37] strong inequalities for heights of points
in algebraic groups; these conjectures roughly
replaced heights in inequalities following from
work of Mahler, Siegel, and Roth by logarithmic
heights. The subject of Diophantine approxi-
mations evolved spectacularly after the 1970s,
mainly due to breakthroughs by Baker, Bertrand,
Bombieri, Brownawell, Faltings, Feldman, Lang,
Masser, Nesterenko, Philippon, Roy, Schmidt, Vo-
jta, Waldschmidt, Wüstholz, and many others. In
particular, the following conjecture of Lang was
recently proven by David and Hirata-Kohno [11],
[10] (following work of Ably and followed by a
generalization by Gaudron [16]): if E is an elliptic
curve over a number field K and φ is a rational
function on E/K, then there is a constant c > 0
such that for any point P ∈ E(K) which is not a
pole of φ, one has

|φ(P)| ≥ (ĥ(P)+ 2)−c ,

where ĥ is the Néron-Tate height. Lang’s original
form of this conjecture [37] actually makes the
constant c more explicit in terms of E/K and φ;
in this more precise form the conjecture is still
open. We refer to [11] for a history of work on this
conjecture of Lang. For an in-depth presentation
of Diophantine approximations on linear groups
up to the year 2000, we refer to [65]. For more on
Diophantine approximations on abelian varieties,
we refer to [4], [43], [49].

In [38] Lang proved a conjecture of Cartier
stating that if G is an algebraic group over a
number field K and α ∈ (LieG)(K) is such that
t ֏ expG(tα) is not an algebraic function, then
exp(α) is transcendental over K. For G a linear
group this reduces to the classical result about

the exponential function. The novelty comes from
the nonlinear case; in case G is an abelian vari-
ety, Lang’s result is a transcendence result for
values of theta functions. Lang derived the above
theorem from his transcendence criterion gener-
alizing the method of Gelfond [17] and Schneider
[57]. His criterion says the following: Let K be a
number field and let g1, . . . , gn be meromorphic
functions on C of finite order ρ such that the field
K(g1, . . . , gn) has transcendence degree ≥ 2 over
K. Assume d/dt sends K[g1, . . . , gn] into itself.
Let w1, . . . , wm ∈ C be distinct complex numbers
such that gi(wj) ∈ K. Then m ≤ 10ρ[K : Q].
Using ideas of Schneider, Lang extended his tran-
scendence criterion to meromorphic functions
of several variables in [39], [40]. In particular,
in [40] he derives the celebrated “Theorem on
the 6 exponentials”: if β1, β2 ∈ C are Q-linearly
independent and z1, z2, z3 ∈ C are Q-linearly
independent, then not all 6 numbers eβizj are
algebraic. (Apparently this had been known to
Siegel; Lang rediscovered the result, and his proof
was the first published proof.) In the same vein,
Lang proves that if A is an abelian variety over
a number field K and Γ ⊂ A(K) is a subgroup of
rank ≥ 7 contained in a 1-parameter subgroup of
A, then this 1-parameter subgroup is algebraic,
i.e., an elliptic curve. Later, using deep analytic
arguments, Bombieri and Lang [5] extended this
theory to s-parameter subgroups. For a compre-
hensive survey of transcendence up to the year
1997, we refer to [15].
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Serge Lang’s Contributions
to the Theory of
Transcendental Numbers2

Michel Waldschmidt

When Serge Lang started to work on transcenden-
tal number theory in the early 1960s, the subject
was not fashionable. It became fashionable only a
few years later, thanks to the work of S. Lang cer-
tainly, but also to the contributions of A. Baker.
At that time the subject was considered as very
technical, not part of the main stream, and only
a few specialists were dealing with it. The proofs
were somewhat mysterious: why was it possible
to prove some results while other conjectures
resisted?

With his outstanding insight and his remark-
able pedagogical gifts, Lang comes into the pic-
ture and contributes to the subject in at least
two very different ways: on the one hand, he
simplifies the arguments (sometimes excessively)
and produces the first very clear proofs which
can be taught easily; on the other hand, he in-
troduces new tools, like group varieties, which
put the topic closer to the interests of many a
mathematician.

His proof of the Six Exponentials Theorem is a
good illustration of the simplicity he introduced
in the subject. His arguments are clear; one un-
derstands for instance why the construction of an
auxiliary function is such a useful tool. Probably
nobody knows so far why the arguments do not
lead to a proof of the four exponentials conjec-
ture, but this is something which will be clarified
only later. Several mathematicians knew the Six
Exponentials Theorem; Lang was the first to pub-
lish its proof (a few years later, K. Ramachandra
rediscovered it).

Another nice example is the so-called Schneider-
Lang criterion. Schneider had produced a general
statement on the algebraic values of meromorphic
functions in 1949. This statement of Schneider is
powerful; it includes a number of transcendence
results, and it was the first result containing at
the same time the Hermite–Lindemann Theorem
on the transcendence of logα, the Gel’fond–
Schneider solution of Hilbert’s seventh problem

2Editor’s note: An expanded version of Waldschmidt’s
contribution is published in: “Les contributions de Serge
Lang à la théorie des nombres transcendants”, Gaz.
Math. 108 (2006), 35–46.
Michel Waldschmidt is a professor at the Université P.
et M. Curie (Paris VI). His email address is miw@math.

jussieu.fr.

on the transcendence of αβ, and the Six Exponen-
tials Theorem. However, Schneider’s criterion was
quite complicated; the statement itself included
a number of technical hypotheses. Later, in 1957
(in his book on transcendental number theory),
Schneider produced a simplified version dealing
with functions satisfying differential equations (at
the cost of losing the Six Exponentials Theorem
from the corollaries, but Schneider did not state
this theorem explicitly anyway). S. Lang found
nice hypotheses which enabled him to produce a
simple and elegant result.

Lang also extended this Schneider-Lang cri-
terion to several variables, again using ideas of
Schneider (which he introduced in 1941 for prov-
ing the transcendence of the values B(a, b) of
Euler’s Beta function at rational points). Lang’s
extension to several variables involves Cartesian
products. M. Nagata suggested a stronger state-
ment involving algebraic hypersurfaces. This con-
jecture was settled by E. Bombieri in 1970 using
a generalization in several variables of Schwarz’s
Lemma, which was obtained by Bombieri and
Lang using also some deep L2 estimates from
Hörmander. It is ironic that Bombieri’s Theorem
is not required but that the statement with Carte-
sian product suffices for the very surprising proof
of Baker’s Theorem (and its extension to elliptic
curves) found by D. Bertrand and D. W. Masser in
1980.

The introduction by S. Lang of group vari-
eties in transcendental number theory followed
a conjecture of Cartier, who asked him whether
it would be possible to extend the Hermite-
Lindemann Theorem from the multiplicative
group to a commutative algebraic group over
the field of algebraic numbers. This is the result
that Lang proved in 1962. At that time there
were a few transcendence results (by Siegel and
Schneider) on elliptic functions and even Abelian
functions. But Lang’s introduction of algebraic
groups in this context was the start of a number
of important developments in the subject.

Among the contributions of Lang to tran-
scendental number theory (also to Diophantine
approximation and Diophantine geometry), the
least are not his many conjectures which shed a
new light on the subject. On the contrary, he had
a way of considering what the situation should be,
which was impressive. Indeed, he succeeded in
getting rid of the limits from the existing results
and methods. He made very few errors in his
predictions, especially if we compare them with
the large number of conjectures he proposed. His
description of the subject will be a guideline for a
very long time.
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Lang’s Work on Modular Units
and on Frobenius Distributions3

David E. Rohrlich

In 1972 Lang joined the Department of Mathe-
matics of Yale University, where he remained a
faculty member until his retirement. The move
to Yale coincided with a change of direction in
Lang’s research, a change which reflected a broad-
er trend in number theory as a whole: Whereas
the theory of automorphic forms had previously
been the exclusive domain of specialists, by the
early seventies modular forms and the Langlands
program were playing a central role in the think-
ing of number theorists of a variety of stripes.
In Lang’s case these influences were particularly
apparent in the work with Kubert on modular
units and in the work with Trotter on Frobenius
distributions.

Modular Units
Two brief notes on automorphisms of the mod-
ular function field (articles [1971c] and [1973] in
the Collected Papers) signaled Lang’s developing
interest in modular functions, but his primary
contribution in this domain was the joint work
with Kubert on modular units, expounded in a
long series of papers from 1975 to 1979 and
subsequently compiled in their book Modular
Units, published in 1981. The work has two dis-
tinct components: the function theory of modular
units on the one hand and the application to
elliptic units on the other.

The Function-Theoretic Component

In principle the problem considered by Kubert
and Lang can be formulated for any compact
Riemann surface X and any finite nonempty set S
of points on X. Let CS be the subgroup of the di-
visor class group of X consisting of the classes of
divisors of degree 0 which are supported on S. If
one prefers, one can think of CS as the subgroup
of the Jacobian of X generated by the image of S
under an Albanese embedding. In any case, the
problem is to determine if CS is finite, and when
it is finite to compute its order.

In practice this problem is rarely of interest: if
the genus of X is ≥ 1, then for most choices of
S we can expect that CS will be the free abelian
group of rank |S|−1, and there is nothing further
to say. However, in the work of Kubert and Lang
X is a modular curve and S its set of cusps. In

3Editor’s note: In addition to contributions to both No-
tices articles about Lang, David Rohrlich has also written
the following piece: “Serge Lang”, Gaz. Math. 108 (2006),
33–34.
David E. Rohrlich is professor of mathematics at Boston
University. His email address is rohrlich@math.bu.edu.

this case Manin [18] and Drinfeld [9] had already
proved the finiteness of CS , but their proof rested
on a clever use of the Hecke operators and gave
no information about the order of CS . Kubert and
Lang found an altogether different proof of the
Manin-Drinfeld theorem in which the whole point
was to exhibit a large family of functions on X
with divisorial support on S. (These functions,
by the way, are the “modular units”. If RS is the
subring of the function field of X consisting of
functions holomorphic outside S, then the modu-
lar units are indeed the elements of the unit group
R×S of RS .) In optimal cases, in particular when X
is the modular curve usually denoted X(N) and
N is a power of a prime p ≥ 5, Kubert and Lang
were able to deduce an explicit formula for |CS|
in terms of certain “Bernoulli-Cartan numbers”
closely related to the generalized Bernoulli num-
bers b2,χ which appear in formulas for the value
of a Dirichlet L-function L(s, χ) at s = −1.

This work found immediate application in
the proof by Mazur and Wiles [19] of the main
conjecture of classical Iwasawa theory, and since
then it has found many other applications as
well. But quite apart from its usefulness, the
work can be appreciated as a counterpoint to the
“Manin-Mumford conjecture”, enunciated by Lang
in an earlier phase of his career (see [1965b]) in
response to questions posed by the eponymous
authors. The conjecture asserts that the image
of a curve X of genus ≥ 2 under an Albanese
embedding intersects the torsion subgroup of
the Jacobian of X in only finitely many points.
A strong form of the conjecture was proved
by Raynaud in 1983 [23], and the subject was
subsequently enriched by Coleman’s theory of
“torsion packets” [5]: a torsion packet on X is an
equivalence class for the equivalence relation

P ≡ Q⇔ n(P −Q) principal for some n ≥ 1

on the points of X. Of particular relevance here
is the proof by Baker [1] of a conjecture of Cole-
man, Kaskel, and Ribet, from which it follows that
for most values of N (including in particular N =
pn with p outside a small finite set) the cuspidal
torsion packet on X(N) consists precisely of the
cusps. Thus the results of Kubert and Lang pro-
vide one of the relatively rare examples of a curve
for which the order of the subgroup of the Jaco-
bian generated by the image under an Albanese
embedding of a nontrivial torsion packet on the
curve has been calculated explicitly.

Elliptic Units

Let us now view modular functions f as func-
tions on the complex upper half-plane H rather
than on the modular curves. Given an imaginary
quadratic field K, we can then embed K in C and
evaluate f at points τ ∈ K ∩H. It has been known
since the time of Kronecker and Weber that for
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appropriate choices of f and τ the values f (τ)
generate ray class fields L of K, and if f is in
addition a modular unit, then f (τ) is a unit of
L. Roughly speaking, the group of elliptic units
of L is the group of units obtained in this way,
and a major theme of the theory is that the index
of the group of elliptic units in the group of all
units of L should be closely related to the class
number of L. Achieving an optimal statement of
this sort has proved to be an incremental process.
Kubert and Lang built on the work of Siegel [28],
Ramachandra [22], and especially Robert [24],
and they also drew inspiration from Sinnott [29],
who had solved the analogous problem which
arises when the base field K is replaced by Q

(the role of the elliptic units is then played by
the cyclotomic units). In the end it was Lang’s
doctoral student Kersey who obtained some of
the definitive results of the theory, for example
the determination of a group of roots of elliptic
units in the Hilbert class field H of K such that
the index of this group in the group of all units
of H is precisely the class number of H. Kersey
was in effect a third author of the part of Modular
Units having to do with class number formulas.

In recent years the theory of elliptic units
has to some extent been subsumed in and over-
shadowed by broader developments in Iwasawa
theory, notably Rubin’s proof [25] of the one-
variable and two-variable main conjectures in the
Iwasawa theory of imaginary quadratic fields. But
the need for explicit formulas at finite level never
really ends. The very recent work of Á. Lozano-
Robledo [17] and A. L. Folsom [12] attests to the
ongoing vitality of the problems considered more
than a quarter of a century ago by Robert and
Kubert-Lang.

Frobenius Distributions

The circle of ideas known as the “Lang-Trotter
conjectures” comprises two distinct themes that
are developed respectively in the book Frobenius
Distributions in GL2-Extensions (reproduced in its
entirety as article [1976d] of the Collected Papers)
and the paper “Primitive points on elliptic curves”
[1977b]. What these two works have in common,
besides their joint authorship with Trotter, is that
both are concerned with Frobenius distributions
arising from elliptic curves. Here the term “Frobe-
nius distribution” is used broadly to include any
function p ֏ a(p) from prime numbers to inte-
gers which arises naturally in algebraic number
theory or Diophantine geometry. Henceforth E

denotes an elliptic curve over Q and ∆ its minimal
discriminant.

Frobenius Distributions in GL2-Extensions

In this subsection we assume that E does not have
complex multiplication. For p ∤ ∆ put

a(p) = 1+ p − |Ẽ(Fp)|,
where Ẽ is the reduction of E modulo p. Given
an integer t and an imaginary quadratic field K,
Lang and Trotter consider the counting func-
tions Nt(x) and NK(x) corresponding to what
they call the “fixed trace” and “imaginary qua-
dratic” distributions of the map p ֏ a(p). By
definition, Nt(x) is the number of primes p ≤ x
(p ∤ ∆) such that a(p) = t , and NK(x) is the
number of primes p ≤ x (p ∤ ∆) such that the
polynomial X2 − a(p)X + p factors into linear
factors in K. Of course this polynomial is just the
characteristic polynomial of a Frobenius element
σp ∈ Gal(Q̄/Q) acting on the ℓ-adic Tate mod-
ules of E (ℓ 6= p), and the “trace” in “fixed trace
distribution” is an allusion to this interpretation
of a(p). In fact Lang and Trotter define Nt(x)
and NK(x) for any strictly compatible family of
ℓ-adic representations ρℓ : Gal(Q̄/Q) → GL(2,Zℓ)
such that the image of the product representa-
tion into GL(2, Ẑ) is an open subgroup of GL(2, Ẑ)
and such that the characteristic polynomial of
ρℓ(σp) has the form X2−a(p)X+p with a(p) ∈ Z

and |a(p)| ≤ 2
√
p. The authors ask by the way

whether any such families exist besides the ones
coming from elliptic curves, and to my knowledge
their question has not been explicitly addressed
in the literature. In any case, given this framework
Lang and Trotter define certain constants ct ≥ 0
and cK > 0 (depending on the compatible family
{ρℓ} as well as on t and K) and conjecture that

Nt(x) ∼ ct
√
x/ logx

and
NK(x) ∼ cK

√
x/ logx

for x → ∞. Here we are following the convention
of Lang-Trotter that if ct = 0, then the relation
Nt(x) ∼ ct

√
x/ log x means that Nt(x) is constant

for large x (in other words the underlying set of
primes is finite).

Let us refer to this conjecture as the first Lang-
Trotter conjecture; the conjecture on primitive
points discussed below is then the second Lang-
Trotter conjecture. An important aspect of the
first conjecture is the precise definition of the
constants ct and cK , which is based on a prob-
abilistic model. This feature distinguishes the
conjecture from, say, Tuskina’s earlier attempt
[30] to study the asymptotics of supersingular
primes (the case t = 0) without a probabilistic
model and without any prediction about the val-
ue of c0. A similar comment pertains to V. K.
Murty’s paper [21], which is in other respects a
vast generalization of the Lang-Trotter conjec-
ture. On the other hand, in their study of the
asymptotics of supersingular primes for modular
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abelian varieties, Bayer and González [2] do con-
sider a probabilistic model generalizing that of
Lang and Trotter.

What is immediately striking about the first
Lang-Trotter conjecture is its apparent utter inac-
cessibility. As Lang once remarked, the conjecture
is contained “in the error term of the Riemann
hypothesis.” Nonetheless, there are a few results
(referring for the most part to an elliptic curve
E rather than to an abstract compatible family
{ρℓ} satisfying the Lang-Trotter axioms) that have
some bearing on the conjecture. To begin with,
the theorem of Elkies [10] that an elliptic curve
over Q has infinitely many supersingular primes
is at least consistent with the conjecture, because
Lang and Trotter show that c0 > 0 in this case.
Also consistent are a number of “little oh” re-
sults about Nt(x) and NK(x), starting with Serre’s
observation that these functions are o(x/ logx)
(i.e., the underlying sets of primes have density 0)
and even o(x/(log x)γ) with γ > 1 (see [26], [27]).
Further improvements in the bound for Nt(x)
were made by Wan [31] and V. K. Murty [20], and
in the case of supersingular primes the bound
N0(x) = O(x3/4) was obtained by Elkies, Kaneko,
and M. R. Murty [11]. There are also results giving
the conjectured growth rate “on average” for
N0(x) (Fouvry-Murty [13]) and more generally for
Nt(x) (David-Pappalardi [8]), the average being
taken over a natural two-parameter family of el-
liptic curves. As for NK(x), the best upper bound
to date is in the recent paper of Cocojaru, Fouvry,
and M. R. Murty [4], who also give estimates un-
der the generalized Riemann hypothesis. Finally,
and in an altogether different direction, analo-
gous problems for Drinfeld modules have been
investigated by Brown [3] and David [6], [7].

Primitive Points on Elliptic Curves

The first Lang-Trotter conjecture can be viewed
as an analogue of the Chebotarev density theo-
rem in which finite Galois extensions of Q are
replaced by the infinite Galois extensions gen-
erated by division points on elliptic curves. The
second Lang-Trotter conjecture also has a clas-
sical antecedent, but it is Artin’s primitive root
conjecture, which predicts the density of the set
of primes p such that a given nonzero integer a is
a primitive root modulo p. In particular, if a 6= −1
and a is not a square, then this density is conjec-
tured to be positive. The analogue proposed by
Lang and Trotter involves an elliptic curve E over
Q of positive rank and a given point P ∈ E(Q)
of infinite order. There is no longer any need to
assume that E is without complex multiplication.
Consider the set of primes p ∤ ∆ such that Ẽ(Fp)
is generated by the reduction of P modulo p (and
is therefore in particular cyclic). Lang and Trotter
conjecture that this set has a density, and they

explain how to compute the conjectured density
using reasoning analogous to Artin’s. More gener-
ally, Lang and Trotter consider an arbitrary free
abelian subgroup Γ of E(Q). If we let NΓ (x) de-
note the number of primes p ≤ x (p ∤ ∆) such that
Ẽ(Fp) coincides with the reduction of Γ modulo p,
then the general form of the conjecture is that

NΓ (x) ∼ cΓx/ log x

for some constant cΓ .
Just as Hooley [16] was able to prove Artin’s

primitive root conjecture by assuming the gen-
eralized Riemann hypothesis, R. Gupta and M. R.
Murty [14] were able to prove a conditional result
in the Lang-Trotter setting: Under the generalized
Riemann hypothesis we have NΓ (x) ∼ cΓx/ logx
whenever the rank of Γ is ≥ 18. In fact in the
case of elliptic curves with complex multipli-
cation, Gupta and Murty obtain an asymptotic
relation of this sort even when the rank of Γ is
one, but for a slightly different counting func-
tion, say N′

Γ (x), which differs from NΓ (x) in that
we count only primes which split in the field of
complex multiplication. Unconditionally, Gupta
and Murty prove that if the rank of Γ is ≥ 6, then
N′
Γ (x)≫ x/(log x)2.
An analogue of the second Lang-Trotter con-

jecture can also be formulated for an elliptic curve
over a global field of positive characteristic, and in
very recent work Hall and Voloch [15] have proved
the analogue whenever the rank of Γ is ≥ 6.
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Serge Lang’s Work in Diophantine
Geometry

Paul Vojta

I first knew of Serge Lang through his books: Alge-
bra, Algebraic Number Theory, and Elliptic Func-
tions. Later, as I was finishing my degree and get-
ting ready to join him at Yale, he was finishing
his book Fundamentals of Diophantine Geometry,
a substantial rewrite of his earlier Diophantine Ge-
ometry. In Serge’s world view, the way you choose
to look at a theorem is often more important than
the theorem itself. As the title suggests, Serge’s
outlook on number theory was decidedly geomet-
ric. While others at the time shared this viewpoint
(e.g., Weil, Tate, Serre), it is easy to forget that oth-
ers did not, as Mordell’s review of the earlier Dio-
phantine Geometry attests.

A few years later Serge wrote Introduction to
Arakelov Theory, which, together with Cornell-
Silverman and Soulé-Abramovich-Burnol-Kramer,
forms the short list of key introductory books in
this area.

Beyond books, Serge’s influence on number
theory derives more from his conjectures than
from his theorems, although he had quite a few
of those, too. His earliest major conjecture in this
area was that a projective variety over a number
field embedded in C is Mordellic (i.e., had only
finitely many points rational over any given num-
ber field containing the field of definition of the
variety) if and only if the corresponding complex
projective variety is Kobayashi hyperbolic. Recall
that the Kobayashi semidistance on a complex
space X is the largest semidistance satisfying
the property that all holomorphic maps from
D to X are distance nonincreasing, where D is
the unit disk in C with the Poincaré metric. A
complex space is then Kobayashi hyperbolic if its
Kobayashi semidistance is actually a distance. For
example, a compact Riemann surface of genus
g is Kobayashi hyperbolic if and only if g ≥ 2,
exactly the condition of Mordell’s conjecture.
Later Serge extended this conjecture to include
subfields of C finitely generated over Q.

In 1978 Brody showed that a compact com-
plex space X is Kobayashi hyperbolic if and only
if there are no nonconstant holomorphic maps
from C to X, thus simplifying the above conjec-
ture to the assertion that X is Mordellic if and
only if there are no nonconstant holomorphic
maps C → X. In general, this conjecture is still
open, although it has been proved for curves and
more generally for closed subvarieties of abelian
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varieties. It is also closely related to conjectures
and theorems in Nevanlinna theory.

The above special case came as a consequence
of a proof of another of Lang’s conjectures. Let A
be a semiabelian variety over C, let X be a closed
subvariety of A, and let Γ be a subgroup of A(C)
such that dimQ Γ ⊗Z Q is finite. Then Γ ∩ X(C)
is contained in a finite union of translated semi-
abelian subvarieties of A contained in X. This
was proved by Faltings, Vojta, and McQuillan
(who stated it over the algebraic closure Qa of
Q, but the general case follows by the function
field variant of the same theorem). This gives
finiteness statements for X(k) in the abelian case
by letting Γ = A(k) and correctly anticipated the
fact that working with rational points (or inte-
gral points in the semiabelian case) really boils
down to finite rank of Γ . The conjecture was also
proved for function fields of characteristic p > 0
by Hrushovsky (suitably restated). Returning to
the case over Qa, this conjecture of Lang has been
combined with Bogomolov’s conjecture on points
in X(Qa) of small height to give an elegant result
conjectured by Poonen and proved by Rémond.

Another conjecture of Lang that has received
a lot of attention is his conjecture (originally
posed as a question by Bombieri) that if X is a
pseudo-canonical projective variety defined over
a subfield of C finitely generated over Q, then
X is pseudo-Mordellic. Here a variety is pseudo-
canonical if it is of general type. This follows
Griffiths’s definition that a variety is canonical
if its canonical bundle is ample; in Lang’s ter-
minology, pseudo means outside of a proper
Zariski-closed subset, so pseudo-ample means
big and therefore pseudo-canonical means gen-
eral type.4 Likewise pseudo-Mordellic means that
the rational points over any given subfield of
C finitely generated over Q and containing the
field of definition of the variety are not Zariski
dense. This is sometimes called the “weak Lang
conjecture”; the strong version asserts that there
is a proper Zariski-closed subset Z of X such that
X(k) \ Z(k) is finite for all fields k as above.

A number of consequences of these con-
jectures have been proved over the years. For
example, Caporaso, Harris, and Mazur showed
that if the weak Lang conjecture holds, then for
all integers g ≥ 2 and for all number fields k there
is a bound B(g, k) ∈ Z such that #C(k) ≤ B(g, k)
for all curves C of genus g over k. If the strong
Lang conjecture is true, they showed in addition
that for all g ≥ 2 there is a bound N(g) ∈ Z

such that for all k there are only finitely many
smooth projective curves of genus g over k (up
to isomorphism) with #C(k) > N(g). It should be

4As Serge would say, “The notation is functorial with
respect to the ideas.”

noted that some people (e.g., Bogomolov) believe
this conjecture to be false.

Serge never let controversy stop him, though,
and he formulated additional conjectures regard-
ing the proper Zariski-closed subset in the strong
form of his conjecture. Let X be a projective va-
riety over a field k ⊆ C. We define the algebraic
special set to be the Zariski closure of the union
of the images of all nonconstant rational maps of
group varieties over ka into X ×k ka. He then con-
jectured that X is pseudo-canonical if and only
if its special set is not all of X. He further con-
jectured that if X is pseudo-canonical, then the
proper Zariski-closed subset in his strong conjec-
ture can be taken to be the special set and also (as-
suming k = C) that all nonconstant holomorphic
maps C → X lie in the special set (pseudo-Brody
hyperbolic). This last conjecture thus generalizes
his conjecture on Kobayashi hyperbolicity. A re-
curring theme in these conjectures is that one has
algebraic criteria for analytic conditions of hyper-
bolicity.

In recent years Serge set aside these conjec-
tures in favor of working on the heat kernel, but
he returned to an aspect of them during his last
few years. Recall that Roth’s theorem (in its sim-
plest form) states that if α is an algebraic number
and ǫ > 0, then there are only finitely many
p/q ∈ Q (with p and q relatively prime integers
and q > 0) such that − log |α−p/q| > (2+ǫ) logq.
In the 1960s Lang conjectured that this could be
improved to 2 logq+c log logq for some constant
c, possibly 1 + ǫ, and subsequent computations
with Trotter backed this up. Furthermore, based
on a theorem of Khinchin, he conjectured that
the error term ǫ logq in Roth could be improved
to logψ(q) for any given increasing function ψ
for which the sum

∑
(q logψ(q))−1 converges. His

philosophy was that Khinchin’s theorem applied
to almost all real numbers, in a measure theoretic
sense, and that algebraic numbers should behave
likewise.

When the conjecture with Nevanlinna theory
came on the scene, he posed the corresponding
question in that context. It was proved by P.-M.
Wong and Lang, and subsequent refinements have
been obtained by Hinkkanen, Ye, and others. The
original question on Diophantine approximation
still remains open though.

In the last two years, Lang and van Franken-
huijsen started work on the question of what the
best error term should be for the abc conjecture.
For some time it has been well known that a
Khinchin-type error term is too strong. Instead,
they suggest O

(√
h/ logh

)
, where h is the loga-

rithmic height of the point [a : b : c]. Sadly, van
Frankenhuijsen will have to continue work on this
on his own.
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Diophantine Geometry As
Galois Theory in the Mathematics
of Serge Lang

Minhyong Kim

Lang’s conception of Diophantine geometry is
rather compactly represented by the following
celebrated conjecture [4]:

Let V be a subvariety of a semi-abelian vari-
ety A, G ⊂ A a finitely generated subgroup,
and Div(G) the subgroup of A consisting of
the division points of G. Then V ∩ Div(G)
is contained in a finite union of subvarieties
of V of the form Bi + xi , where each Bi is a
semi-abelian subvariety of A and xi ∈ A.

There is a wealth of literature at this point survey-
ing the various ideas and techniques employed
in its resolution, making it unnecessary to review
them here in any detail [10], [39]. However, it
is still worth taking note of the valuable gener-
ality of the formulation, evidently arising from
a profound instinct for the plausible structures
of mathematics. To this end, we remark mere-
ly that it was exactly this generality that made
possible the astounding interaction with geo-
metric model theory in the1990s [3]. That is to
say, analogies to model-theoretic conjectures and
structure theorems would have been far harder
to detect if attention were restricted, for example,
to situations where the intersection is expected
to be finite. Nevertheless, in view of the sparse
subset of the complex net of ideas surrounding
this conjecture that we wish to highlight in the
present article, our intention is to focus exactly
on the case where A is compact and V does not
contain any translate of a connected nontrivial
subgroup. The motivating example, of course, is
a compact hyperbolic curve embedded in its Jaco-
bian. Compare then the two simple cases of the
conjecture that are amalgamated into the general
formulation:

(1) V∩A[∞], the intersection between V and
the torsion points of A, is finite.
(2) V ∩G is finite.

Lang expected conjecture (1) to be resolved using
Galois theory alone. This insight was based upon
work of Ihara, Serre, and Tate ([28], VIII.6) deal-
ing with the analogous problem for a torus and
comes down to the conjecture, still unresolved,
that the image of the Galois representation in
Aut(A[∞]) ≃ GL2g(Ẑ) contains an open subgroup
of the homotheties Ẑ∗. Even while assertion (1)
is already a theorem of Raynaud [44], significant
progress along the lines originally envisioned by
Lang was made in [2] by replacing A[∞] with

Minhyong Kim is a professor of mathematics at Purdue
University. His email address is kimm@math.purdue.edu.

A[p∞], the points of p-power torsion, and making
crucial use of p-adic Hodge theory.

It is perhaps useful to reflect briefly on the
overall context of Galois-theoretic methods in
Diophantine geometry, of course without at-
tempting to do justice to the full range of in-
teractions and implications. Initially, that Galois
theory is relevant to the study of Diophantine
problems should surprise no one. After all, if we
are interested in X(F), the set of rational points
of a variety X over a number field F , what is more
natural than to observe that X(F) is merely the
fixed point set of Γ := Gal(F̄/F) acting on X(F̄)?
Since the latter is an object of classical geometry,
such an expression might be expected to nicely
circumscribe the subset X(F) of interest. This
view is of course very naive, and the action of
Γ on X(F̄) is notoriously difficult to use in any
direct fashion. The action on torsion points of
commutative group varieties on the other hand,
while still difficult, is considerably more tractable,
partly because a finite abelian subgroup behaves
relatively well under specialization. Such an arith-
metic variation exerts tight control on the fields
generated by the torsion points, shaping Galois
theory into a powerful tool for investigations
surrounding (1).

On the other hand, for conjecture (2), where the
points to be studied are not torsion, it is not at all
clear that Galois theory can be as useful. In fact,
my impression is that Lang expected analytic ge-
ometry of some sort to be the main input to con-
jectures of type (2). This is indicated, for example,
by the absence of any reference to arithmetic in
the formulation. We might even say that implicit
in the conjecture is an important idea that we will
refer to as the analytic strategy:

(a) Replace the difficult Diophan-
tine set V(F) by the geometric in-
tersection V ∩G.
(b) Try to prove this intersection
finite by analytic means.

In this form, the strategy appears to have been
extraordinarily efficient over function fields, as
in the work of Buium [4]. Even Hrushovski’s [15]
proof can be interpreted in a similar light where
passage to the completion of suitable theories is
analogous to the move from algebra to analysis
(since the theory of fields is not good enough).
These examples should already suffice to con-
vince us that it is best left open as to what kind
of analytic means are most appropriate in a giv-
en situation. The proof over number fields by
Faltings [9], as well as the curve case by Vojta
[47], utilizes rather heavy Archimedean analytic
geometry. Naturally, the work of Vojta and Falt-
ings draws us away from the realm of traditional
Galois theory. However, in Chabauty’s theorem
[5], where V is a curve and the rank of G is strictly
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less than the dimension of A, it is elementary
non-Archimedean analysis, more specifically p-
adic abelian integrals, that completes the proof.
Lang makes clear in several different places ([28],
[28], notes to Chapter 8; [36], I.6) that Chabauty’s
theorem was a definite factor in the formulation
of his conjecture. This then invites a return to
our main theme, as we remind ourselves that
non-Archimedean analysis has come to be viewed
profitably over the last several decades as a pro-
jection of analysis on Galois groups, a perspective
of which Lang was well aware ([33], Chapter 4).
As such, it has something quite substantial to
say about nontorsion points, at least on elliptic
curves ([18], for example). Hodge theory is again a
key ingredient, this time as the medium in which
to realize such a projection [43].

It is by now known even to the general pub-
lic that a careful study of Galois actions under-
lies the theorem of Wiles [49] and roughly one-
half of the difficulties in the theorem of Faltings
[8]. There, Galois representations must be stud-
ied in conjunction with an array of intricate aux-
iliary constructions. However, the most basic step
in the Galois-theoretic description of nontorsion
points, remarkable in its simplicity, goes through
the Kummer exact sequence

0→A[m](F)→A(F)→A(F)
δ→ H1(Γ , A[m])→H1(Γ , A)→ . . . .

In this case, an easy study of specialization al-
lows us to locate the image of δ inside a subgroup
H1(ΓS , A[m]) of cohomology classes with restrict-
ed ramification which then form a finite group.
We deduce thereby the finiteness of A(F)/mA(F),
the weak Mordell-Weil theorem. Apparently, a
streamlined presentation of this proof, systemat-
ically emphasizing the role of Galois cohomology,
first appears in Lang’s paper with Tate [38]. There
they also emphasize the interpretation of Ga-
lois cohomology groups as classifying spaces for
torsors, in this case, for A and A[m]. (We recall
that a torsor for a group U in some category
is an object corresponding to a set with simply
transitive U-action, where the extra structure of
the category, such as Galois actions, prevents
them from being trivial. See, for example, [40],
III.4.) This construction has been generalized in
one direction to study nontorsion algebraic cycles
by associating to them extensions of motives [7].
More pertinent to the present discussion, howev-
er, is a version of the Kummer map that avoids
any attempt to abelianize, taking values in fact in
nonabelian cohomology classes.

In the course of preparing this article, I looked
into Lang’s magnum opus [28] for the first time
in many years and was a bit surprised to find a
section entitled “Non-abelian Kummer theory”.

What is nonabelian there is the Galois group that
needs to be considered if one does not assume a
priori that the torsion points of the group variety
are rational over the ground field. The field of
m-division points of the rational points will then
have a Galois group H of the form

0→A[m]→H→M→0

where M ⊂ GL2g(Z/m). Thus, “non-abelian” in
this context is used in the same sense as in
the reference to nonabelian Iwasawa theory. But
what is necessary for hyperbolic curves is yet
another layer of noncommutativity, this time in
the coefficients of the action. Given a variety X
with a rational point b, we can certainly consider
the étale fundamental group π̂1(X̄, b) classifying
finite étale covers of X̄. But the same category
associates to any other point x ∈ X(F) the set of
étale paths

π̂1(X̄;b, x)

from b to x which is naturally a torsor for π̂1(X̄, b).
All these live inside the category of pro-finite sets
with Galois action. There is then a nonabelian
continuous cohomology set H1(Γ , π̂1(X̄, b)) that
classifies torsors and a nonabelian Kummer map

δna : X(F)→H1(Γ , π̂1(X̄, b))

sending a point x to the class of the torsor
π̂1(X̄;b, x). This is obviously a basic construction
whose importance, however, has begun to emerge
only in the last twenty or so years. It relies very
much on the flexible use of varying base points in
Grothendieck’s theory of the fundamental group,
and it appears to have taken some time after the
inception of the arithmetic π1 theory [45] for the
importance of such a variation to be properly
appreciated [12], [6], [16]. In fact, the impetus
for taking it seriously came also for the most
part from Hodge theory [13], [14]. As far as Dio-
phantine problems are concerned, in a letter to
Faltings [12] written shortly after the proof of the
Mordell conjecture, Grothendieck proposed the
remarkable conjecture that δna should be a bijec-
tion for compact hyperbolic curves. He expected
such a statement to be directly relevant to the
Mordell problem and probably its variants like
conjecture (2). This expectation appears still to be
rather reasonable. For one thing, it is evident that
the conjecture is a hyperbolic analogue of the
finiteness conjecture for Tate-Shafarevich groups.
And then profound progress is represented by
the work of Nakamura, Tamagawa, and Mochizu-
ki [42], [46], [41], where a statement of this sort
is proved when points in the number field are
replaced by dominant maps from other varieties.
Some marginal insight might also be gleaned from
[22] and [23], where a unipotent analogue of the
Kummer map is related to Diophantine finiteness
theorems. There, the ambient space inside which
the analysis takes place is a classifying variety
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H1
f (Γv , U

et
n ) of torsors for the local unipotent étale

fundamental group (rather than the Jacobian),
while the finitely generated group G is replaced
by the image of a map

H1
f (ΓS , U

et
n )→H1

f (Γv , U
et
n )

coming from a space of global torsors. Thereby,
one obtains a new manifestation of the analytic
strategy proving X ∩ Im[H1

f (ΓS , U
et
n )] to be finite

in some very special circumstances and in general
for a hyperbolic curve over Q if one admits stan-
dard conjectures from the theory of mixed mo-
tives (for example, the Fontaine-Mazur conjecture
on geometric Galois representations). Fortunately,
Chabauty’s original method fits naturally into this
setting as the technical foundation of the analytic
part now becomes nonabelian p-adic Hodge theo-
ry and iterated integrals. Incidentally, some sense
of the Diophantine content of these ideas can al-
ready be gained by deriving the injectivity of δna

from the Mordell-Weil theorem.
It should be clear at this point that the Galois

theory of the title refers in general to the theory
of the fundamental group. Serge Lang was pro-
foundly concerned with the fundamental group
for a good part of his mathematical life. A rather
haphazard list of evidence might be comprised
of:

—his foundational work on unramified class
field theory for varieties over finite fields, where
he proves the surjectivity of the reciprocity map
among many other things [25], [26];

—his study of the ubiquitous “Lang torsor”
[27];

—his work with Serre on fundamental groups
of proper varieties in arbitrary characteristic [37];

—his extensive study with Kubert of the mod-
ular function field [24];

—his work with Katz [21] on finiteness the-
orems for relative π1’s that made possible the
subsequent proof by Bloch [1] and then Kato
and Saito [19], [20] of the finiteness of CH0 for
arithmetic schemes.

Besides these influential papers, the reader is
referred to his beautiful AMS colloquium lectures
[31] for a global perspective on the role of cover-
ing spaces in arithmetic.

Even towards the end of his life when his
published work went in an increasingly analytic
direction, he had a keen interest both in fun-
damental groups and in the analogy between
hyperbolic manifolds and number fields wherein
fundamental groups play a central role. In my last
year of graduate school, he strongly urged me to
study the work of Kato and Saito (and apply it to
Arakelov theory!) even though it had been years
since he had himself been involved with such
questions. From the spring of 2004 I recall a char-
acteristically animated exchange in the course of
which he explained to me a theorem of Geyer [11]

stating that abelian subgroups of Gal(Q̄/Q) are
pro-cyclic. It was clear that he perceived this fact
to fit nicely into his vivid ideas about the heat
kernel [17], but in a manner that I failed (and
still fail) to comprehend properly. (He was un-
fortunately secretive with his deeper reflections
on the arithmetic significance of his later work,
allowing only informal glimpses here and there. It
is tempting but probably premature to speculate
about a Galois theory that encompasses even
Archimedean analysis.) The preoccupation with
hyperbolic geometry that was evident even from
the 1970s ([30], [34], [35], and [36], Chapters 8
and 9) could rather generally be construed as re-
flecting a persistent intuition about the relevance
of fundamental groups to Diophantine problems.
(An intuition that was shared by Grothendieck
[12] and even Weil [48].)

As for the direct application of nonabelian fun-
damental groups to Diophantine geometry that
we have outlined here, one can convincingly place
it into the general framework of Lang’s inquiries.
He is discussing the theorem of Siegel in the
following paragraph from the notes to Chapter 8
of [28]:

The general version used here was present-
ed in [28] following Siegel’s (and Mahler’s)
method. The Jacobian replaces the theta
function, as usual, and the mechanism of
the covering already used by Siegel appears
here in its full formal clarity. It is striking to
observe that in [25], I used the Jacobian in
a formally analogous way to deal with the
class field theory in function fields. In that
case, Artin’s reciprocity law was reduced
to a formal computation in the isogeny
u ֏ u(q) − u of the Jacobian. In the present
case, the heart of the proof is reduced to
a formal computation of heights in the
isogeny u ֏mu+ a.

We have emphasized above the importance of the
Kummer map

x֏ [π̂1(X̄;b, x)] ∈ H1(Γ , π̂1(X̄;b)).

When X is defined over a finite field Fq and we
replace π̂1(X̄, b) by its abelian quotient H1(X̄, Ẑ),
the map takes values in

H1(Gal(F̄q/Fq),H1(X̄, Ẑ))

= H1(X̄, Ẑ)/[(Fr− 1)H1(X̄, Ẑ)],

Fr ∈ Gal(F̄q/Fq) being the Frobenius element. But
this last group is nothing but the kernel

π̂ab1 (X)
0

of the structure map

π̂ab1 (X)→π̂1(Spec(Fq)).
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Thus the abelian quotient of the Kummer map be-
comes identified with the reciprocity map [19]

CH0(X)
0→π̂ab1 (X)

0

of unramified class field theory evaluated on the
cycle (x) − (b). In other words, the reciprocity
map is merely an “abelianized” Kummer map in
this situation. There is no choice but to interprete
the reciprocity law [19], [20] as an “abelianized
Grothendieck conjecture” over finite fields.

Of course it is hard to imagine exactly what
Lang himself found striking in the analogy when
he wrote the lines quoted above. What is not
hard to imagine is that he would have been
very much at home with the ideas surrounding
Grothendieck’s conjecture and the nonabelian
Kummer map.
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Serge Lang and the Heat Kernel

Jay Jorgenson

Beginning in the early 1990s, Serge Lang viewed the
heat kernel and heat kernel techniques as a poten-
tiallyunlimitedsourceofmathematicswhichwould
touch many fields of study. In [19] we presented an
argument supporting the term “the ubiquitous

Jay Jorgenson is a professor of mathematics at City Col-
lege of New York and the Graduate Center. His email
address is jjorgenson@mindspring.com.

heat kernel” by citing numerous results where the
heat kernel played a prominent role. In Lang’s own
writing, one can see the incorporation of the heat
kernel in several places, including: The Weierstrass
approximation theorem and Poisson summation
formula in [26], the explicit formulas for number
theory in [25], the Gamma function in [27], and
the background for the entire development in [28].
Lang’s fascination with the heat kernel was so thor-
ough that, according to Peter Jones, Serge began
referring to himself as “an analyst” when asked to
describehis researchinterests.

From the early 1990s until his death in 2005,
Serge’s own research activities can be described as
addressing two points: Analytic aspects of regular-
ized products and harmonic series, and geometric
constructions of zeta functions. Both endeavors
included heat kernels and heat kernel analysis, and
the projects together focused on the long-term goal
of developing a theory of “ladders” of zeta func-
tions. I had the unique honor of working with Serge
on these and other projects for nearly fifteen years,
andIwillnowdescribeaportionofthemathematics
SergeandIhadinmind.

Regularized Products and Harmonic Series
Children learn how to multiply numbers, devel-
oping the ability to compute the product of a
finite set of numbers. The astute student will
realize they actually can evaluate the product
of a countably infinite set of numbers provided
that all but a finite number of terms in the prod-
uct are equal to one. In undergraduate analysis
courses, students study a slight perturbation of
the elementary setting, namely when the terms
in the countably infinite sequence approach one
sufficiently fast. The convergence result estab-
lished also demonstrates that when evaluating
the infinite product, one can simply multiply a
sufficiently large number of terms in the sequence
and obtain an answer quite close to the theoret-
ical result which exists for the infinite product.
This connection with the elementary situation is
intuitively consistent with that which is learned
in childhood.

In another direction, one can seek other math-
ematical means by which one can determine the
product of a finite sequence and then study the
situations when the definition extends. For exam-
ple, let A = {ak} with k = 1, . . . , n be a finite se-
quence of real, positive numbers, and let

(1) ζA(s) =
n∑

k=1

a−sk ,

which we consider as a function of a complex vari-
able s. Elementary calculus applies to show that

(2)
n∏

k=1

ak = exp(−ζ′A(0)).
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In words, a special value of the zeta function (1)
can be used to realize a product of the elements
of the finite set of numbers A.

To generalize (2), we seek to describe the
countably infinite sets of numbers for which
(2) makes sense. Perhaps the first example to
consider is A = Z>0, the set of natural integers,
so then ζA(s) is the Riemann zeta function.
Classically, it is known that the Riemann zeta
function admits a meromorphic continuation to
all s ∈ C and is holomorphic at s = 0. Further-
more, it can be easily shown (using the functional
equation of the Riemann zeta function) that
−ζ′Z>0

(0) = log(
√

2π), which leads to the remark
“infinity factorial is equal to

√
2π”. Of course,

such a comment needs to be understood in the
sense of (2) and meromorphic continuation.

More generally, we define a countably infinite
sequence A = {ak} to have a zeta regularized
product, or regularized product, if the zeta func-
tion

ζA(s) =
∞∑

k=1

a−sk

converges for s ∈ C with Re(s) sufficiently large,
admits a meromorphic continuation at s = 0, and
is holomorphic at s = 0. With these conditions,
the regularized product of the elements of A is
defined by the special value of the zeta function
as in (2). The problem which naturally arises is to
determine the conditions on the sequence A for
which a regularized product exists. For this, we
rewrite the zeta function ζA as

(3) ζA(s) =
1

Γ(s)

∞∫

0

θA(t)t
s dt

t

where

(4) θA(t) =
∞∑

k=1

e−akt

and Γ(s) is the Gamma function. As further back-
ground, we refer to the articles [1] and [29], which
discuss some of the important roles played by the
zeta regularized products.

The first part of my work with Lang appeared
in [14] and [15]. The paper [14] establishes gener-
al conditions for theta functions which will lead
to regularized products as well as to regularized
harmonic series. As an example of the type of gen-
eral computations in [14], a connection is made
relating zeta regularized products with Weier-
strass products from complex analysis, which we
call the Lerch formula, thus establishing a relation
with the elementary notion of infinite products of
numbers which approach one sufficiently fast.

Further analysis in [15] and [17] leaned to-
ward a type of formal analytic number theory
associated with regularized products. Functional
equations of zeta functions were shown to be

equivalent to inversion formulas for the associat-
ed theta functions, so then one is drawn to study
theta functions rather than zeta functions in this
context. In the development of the explicit formu-
las, the Weil functional comes from evaluating a
complex integral involving the multiplicative fac-
tors in the functional equations of zeta functions.
If the multiplicative factors are assumed to be
expressed in terms of regularized products, then
in [15] it is shown that the Weil functional can
be evaluated in terms of a Parseval-type formu-
la, so again one is seeking theta functions with
certain properties, this time for the factors in the
functional equations.

Quite naturally, the problem which arises is to
characterize sequences from which one can ob-
tain regularized products. From (3), this problem
amounts to determining sequences whose asso-
ciated theta function admits certain asymptotic
behaviors as t approaches zero and infinity. From
Riemannian geometry, theta functions naturally
appear as the trace of heat kernels associated to
certain differential and pseuo-differential opera-
tors. The asymptotic conditions defined in [14]
were established with the heat kernel in mind.

From analytic number theory, where one does
not know if an appropriate operator exists, an ob-
vious sequence to study is given by the nontrivial
zeros of a zeta function. In [2] Cramér studied the
theta function

(5) θQ(z) =
∑
ρ

eρz ,

where the sum is over the zeros of the Riemann
zeta function with positive imaginary part, which
we denote by A+(Q), and with z ∈ C, again hav-
ing positive imaginary part. Cramér’s results in [2]
consisted of two main parts: The theta function
(5) admits a branched meromorphic continuation
to all z ∈ C, and the singularities of the continua-
tion of (5) are at points of the form ±i logpn for a
positive integer n and a prime number p; and if we
set z = it for t ∈ R>0, then (5) satisfies the asymp-
totic conditions required of a theta function (4)
in order to form a regularized product from the
sequence A+(Q). Cramér’s theorem forms a key
component in Deninger’s program [3], which has
the goal of developing a cohomological approach
to analytic number theory (see also [29] and [31]).

In [16] and [18] Lang and I extended Cramér’s
theorem to a wide range of zeta functions which
satisfy very general conditions. In addition, in
[20] we extended Guinand’s results from [7], [8],
and [9] which proved, among other theorems,
several functional relations for Cramér’s func-
tion. The point of view taken in [16], [18] and [20]
is to “load an induction”, as Lang would say, by
placing various hypotheses on the factors in the
functional equation; specifically, it was assumed
that the factors in the functional equations could
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be expressed as regularized products. With this
hypothesis and other general assumptions such
as the existence of an Euler product, or Bessel
sum, expansion, it was proved that the original
zeta function could be expressed as regularized
products. As an example, since the Gamma func-
tion can be expressed as a regularized product,
which comes from the first example mentioned
above, we concluded that the Riemann zeta func-
tion is also expressible as regularized products.
A similar argument applies to virtually all zeta
functions from number theory.

Turning to geometry, one can define a (Selberg)
zeta function associated to any finite volume hy-
perbolic Riemann surface (see [10] and references
therein for a complete development of the Selberg
zeta function in this context). In the case when
the surface is compact, the known functional
equation and Euler product expansions allow one
to apply the results from [16] to conclude that
the Selberg zeta function can be expressed as
regularized products, re-proving a known result
from [4] and [30]. For noncompact yet finite vol-
ume surfaces, attempts were made to express the
Selberg zeta function as a regularized product,
but the successful results required the surface
to be arithmetic. Using the results from [16], we
were able to conclude that the Selberg zeta func-
tion in general is a regularized product through
the induction we defined. The most interesting
example for us was the Selberg zeta function
associated to the discrete group PSL(2,Z), since
the functional equation involves the Riemann
zeta function, thus producing the following finite
“ladder” of functions: the Gamma function, the
Riemann zeta function, and the Selberg zeta func-
tion for PSL(2,Z). As stated, a direct calculation
shows that the Gamma function is a regular-
ized product, and the induction hypothesis from
[16] implies that the Riemann zeta function and
then the Selberg zeta function for PSL(2,Z) are
expressible as regularized products.

Constructions from Geometry
What is the next step in the “ladder” of zeta func-
tions? Lang and I believed that one can construct
zeta functions using heat kernel analysis on sym-
metric spaces, resulting in an infinite “ladder” of
zeta functions with functional equations involv-
ing zeta functions on the lower levels. Consider a
general setting involving a symmetric space X and
discrete group Γ with finite volume and noncom-
pact quotient Γ\X. As described in [23], the proce-
dure we propose is the following: Start with a heat
kernel on X, periodize with respect to Γ , evaluate
a regularized trace of the heat kernel, and then
compute a certain integral transform (the Gauss
transform, which is the Laplace transform with a
quadratic change of variables) of the regularized

trace of the heat kernel. The resulting object is
our proposed zeta function associated to Γ\X. In
the work we were undertaking, Lang and I were
focusing our attention on the symmetric spaces
associated to SL(n,C), though one certainly could
consider the spaces associated to SL(n,R). By tak-
ing Γ = SL(n,Z) and G = SL(n,R), we felt that one
could obtain an infinite “ladder” of zeta-type func-
tions for each n ≥ 2, with the case n = 2 yielding
the Selberg zeta function. Furthermore, we believe
that the functional equation for the zeta function
at level nwill involve all zeta functions from lower
levels, as demonstrated by the case n = 2.

In [21], [22], and [23], Lang and I initiated our
program of study, which I plan to continue. In
particular, in [22] we defined Eisenstein series
obtained by “twisting with heat kernels rather
than automorphic forms,” as Lang would say, and
we proposed what can be viewed as a repack-
aging of spectral decompositions in terms of
heat Eisenstein series. At this stage, we felt that
one could already see new relations involving
zeta functions, namely that the constant term
of Fourier expansions of heat Eisenstein series
should involve the Selberg zeta function of lower
levels. One implication of such a result would
be an identity involving L-functions and zeta
functions which would follow by comparing the
Fourier coefficients in the heat Eisenstein series
with the sum of Fourier coefficients of Eisenstein
series attached to automorphic forms, which are
known to be expressible in terms of L-functions
(see [6] and references therein).

Recent Developments

Throughout our time together Lang remained
optimistic that our proposed “ladder” of zeta
functions would provide new ideas in analytic
number theory. Admittedly, many of our con-
cepts have yet to be fully tested; only future
endeavors will determine if Lang’s belief in our
program of study was well founded.

Beyond our own work, there have been many de-
velopments inmathematicswhichLangwouldhave
pointedtoasprovidingfurthersupport forhis faith
in the heatkernel.Certainly, the successful comple-
tionofthePoincaréconjectureisoneinstancewhere
heatkernel ideashaveplayedarole. In[5] theauthor
states the need for a “second independent proof of
theMoonshineconjectures”andstatesthattheheat
kernel could provide one possibility. Lang would
have been thrilled by this statement. Serge was very
taken by the article [24], where the authors consid-
er spectral theory and spectral expansions on the
spaces nZ\Z, showing that even in the case when
n = 1theresultsarenontrivial. Inmyownworkwith
Kramer, we have used the heat kernel associated
to the hyperbolic metric to obtain new expressions
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for the analytic invariants of the Arakelov theo-
ry of algebraic curves; see [11] and [12]. In recent
developments, we have shown that by taking the
Rankin-Selberg integralofanidentity from[11],one
obtains theta-function type expressions involving
certain L-functions attached to nonholomorphic
Maass forms, ultimately obtaining an identity in
terms of the certain L-function attached to an or-
thonormal basis of holomorphic weight two forms;
the full development of this identity is presented in
[13]. In some ways, the work in [13] relates to one of
the first steps envisioned by Lang and me, namely
the uncovering of new relations, possibly regular-
ized in some sense, involving known and new zeta
functions.

Soon after Lang and I completed the article [19],
we discussed at length the ideas and hopes we had
for the results one could obtain from “ladders”. At
one point he said to me, “I wish I were thirty years
old again so I could concentrate on the heat kernel.”
GiventhewaySergedevotedhislifetomathematics,
let us take that statement as summarizing his sin-
cere and profound belief in the strength of the heat
kernelandheatkernelanalysis.
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