WHAT 1§

a Tropical Curve?

A tropical curve is an algebraic curve defined over
the semifield T of tropical numbers. The goal of
this note is to make sense out of this phrase.

Figure 1 depicts a union of two planar tropi-
cal curves (also known in physics as (p, q)-webs),
namely a tropical conic and a tropical line. Each
of them may look very different from its classical
counterpart, but they do share many features, e.g.,
a line (the tripod graph in the lower part of the
picture) intersects a conic (the rest of the pic-
ture) in two points. In can be shown that tropical
curves come as limits of classical curves (Riemann
surfaces) under a certain procedure degenerating
their complex structure. Tropical curves proved
to be useful en lieu of honest holomorphic curves
in a range of classical problems.
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Figure 1. A conic and a line in the plane.
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We define the tropical semifield T to be the
set RU {—o}, and we equip it with the “addi-
tion” operation “x + y” = max{x, y} and with the
“multiplication” operation “xy” = x + y. We use
the quotation marks to distinguish between the
standard and tropical arithmetic operations. Our
“additive zero” is —oo while the “multiplicative
unit” is 0. We have T* = T\ {—o0} = R.

The term tropical is taken from computer sci-
ence, where it was coined to commemorate contri-
butions of the Brazilian school. The term semifield
refers to the properties of the tropical arithmetic
operations: we have all the axioms required for a
field, except for the existence of subtraction (as
our addition is idempotent “x + x” = x). Lucki-
ly, one does not need subtraction to write down
polynomials (they are sums of monomials)!

Consider a polynomial in two variables

pP(x,y) =“ 2 apx/y*” = rr}gX(jx +ky +aje).
Jok ’
The tropical curve C defined by p consists of those
points (x,y) € R? where p is not differentiable. In
other words, C is the locus where the maximum is
assumed by more than one of the “monomials” of
p. It is easy to see that C C R? is a graph and its
edges are straight intervals with rational slopes.

The edge E, where “aj k, x/1y*1” = “aj,x,x2yk2”
is perpendicular to the vector (j, — jo, k1 — k2). We
can enhance E with a natural number w(E) (called
its weight) equal to GCD(j; — jo2, k1 — k2).

Take a vertex A € C and consider the edges
Ei,...,E, adjacent to A. Let v(E;) € Z° be the
primitive integer vector from A in the direction of
E;. Itis easy to see that we have the following bal-
ancing (or zero-tension) condition at each vertex
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of C:
(1) > w(Ej)V(E;) = 0.
Jj=1

Furthermore, one can easily show that any weight-
ed piecewise-linear graph in R? with rational slopes
of the edges and with the zero-tension condition at
the vertices is given by some tropical polynomial.

The plane R? can be thought of as a part of the
tropical affine plane T? = [—o0, +)2. The regu-
lar functions on T? are tropical polynomials, and
the regular functions on R? = (T*)? are tropical
Laurent polynomials. Note that a monomial is an
affine-linear function with an integer slope and
therefore the geometric structure on R? encoding
the tropical structure is the Z-affine structure.

The plane T? can be compactified to the pro-
jective plane TP?. To construct TP? we take the
quotient of T3 \ {(—o,—00,—0)} by the usual
equivalence relation (x, y, z) ~ (Ax,Ay,Az), A = 0.
As in the classical case we have three affine charts,
so TP? can be obtained by gluing three copies of
T?. Thus we may think of TP? as a triangle-like
compactification of R? taken with the tautolog-
ical Z-affine structure. Each side of the triangle
corresponds to a copy of TP! (which is itself a
compactification of R by two points). Similarly, we
may define TP" > R" as well as other tropical toric
varieties.

We have compact tropical curves in TP". Let T’
be a finite graph and h : T — TP" be a continuous
map that takes the interior of every edge E to
a straight (possibly unbounded) interval with a
rational slope in R™. If we can prescribe a positive
integer weight to each edge so that (1) holds at
every vertex in R", then we say that h: T — TP" is
a tropical curve.

The degree d of h(I') is the intersection num-
ber with any of the (n + 1) TP" !-divisors at
infinity. The degree can be calculated by examin-
ing the unbounded edges Ei,..., E). For example
the intersections with the “last” infinity divisor
D, = TP" \ T" are given by those E; whose
outward primitive vectors v(E;) have at least
one coordinate positive; the local intersection
number with D, is w(E;) times that coordinate
(assuming that it is maximal), and d is the sum
of these local intersection numbers. The balanc-
ing condition ensures that the total intersection
number with all infinity divisors is the same.
The genus of T is g = dimH;(I'). We see that
both the line and the conic from Figure 1 have
genus 0.

Note that tropical curves behave quite simi-
larly to classical algebraic curves. Prove (as an
exercise) that any two points in TP" can be con-
nected with a line. Curves in TP" of degree d and
genus g vary in a family of dimension at least
(n+1)d+ (n-3)(1 —g). In many cases this lower
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bound is exact, for instance if g = 0 (for any n) or
if n = 2 (for any g) if h is an immersion.

For example if we fix a configuration C of
3d — 1 + g generic points in TP? then only finitely
many curves h; : T; — TP? of degree d and genus
g will pass through C. In contrast to the case of
complex coefficients, the actual number of such
tropical curves h; will depend on the choice of
C. However, each such tropical curve comes with
a combinatorial multiplicity so that the number
of curves with multiplicity is invariant. And this
invariant coincides with the number of complex
curves of degree d and genus g passing through
a generic configuration of 3d — 1 + g points in
CP? and gives an efficient way of computing that
number.

There is also a different choice of multiplicities
for hj, responsible for enumeration over R (some
real curves are counted with the sign +1 and some
with —1, and their total number is different from
the complex counterpart). The sum of the real
multiplicities of h;(I;) gives the answer for the
corresponding real enumerative problem.

As an example consider the case d = 3 and
g = 0 (see Figure 2). We fix a configuration C of
8 points in R? ¢ TP?. Depending on the choice of
C there might be 9 or 10 tropical curves via C.
However, the sum of their complex multiplicities is
always 12 while the sum of their real multiplicities
is always 8.

Figure 2. A cubic of multiplicity 1 via 8 points.

A map h: T — TP" can be used to induce
tropical structure on I'. Tropical monomials p in
R" = (T*)" give smooth functions on every edge
E c T and can be used to measure the length of E.
Define the length of E to be the smallest of such
lengths divided by the weight of E. This turns
I' into a metric graph: the leaves (i.e., the edges
adjacent to 1-valent vertices) get infinite length
while the inner edges are finite.

Conversely, a metric graph structure on I' can
be used to define tropical maps I' — X, where X is
T", TP", or any other tropical variety (which can
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be defined in higher dimension as a polyhedral
complex equipped with an integer affine structure;
only in dimension 1 we can hide the integer affine
structure under the guise of a metric). Higher
weight appears when h “stretches” the edges by
an integer amount.

There is an equivalence relation between tropi-
cal curves generated by the following relation: at
any point x € I we may introduce an infinite length
interval connecting x with a new 1-valent vertex.
This equivalence allows us to turn a map given by
regular functions into a tropical morphism. Also
it allows us to treat any marked point as a 1-valent
vertex. This turns, e.g., the space M, of trees
with n marked points into an (n — 3)-dimensional
tropical variety.

Most classical theorems on Riemann surfaces
have counterparts for tropical curves, in particular,
the Abel-Jacobi theorem, the Riemann-Roch theo-
rem, and the Riemann theorem on the 8-functions.
Many features of complex and real curves become
easily visible after tropicalization.
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The “WHAT IS. .. ?” column carries short (one-
or two-page) nontechnical articles aimed at
graduate students. Each article focuses on
a single mathematical object rather than a
whole theory. The Notices welcomes feedback
and suggestions for topics. Messages may be
sent to notices-whatis@ams.org.
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