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a Tropical Curve?
Grigory Mikhalkin

A tropical curve is an algebraic curve defined over

the semifield T of tropical numbers. The goal of

this note is to make sense out of this phrase.

Figure 1 depicts a union of two planar tropi-

cal curves (also known in physics as (p, q)-webs),

namely a tropical conic and a tropical line. Each

of them may look very different from its classical

counterpart, but they do share many features, e.g.,

a line (the tripod graph in the lower part of the

picture) intersects a conic (the rest of the pic-

ture) in two points. In can be shown that tropical

curves come as limits of classical curves (Riemann

surfaces) under a certain procedure degenerating

their complex structure. Tropical curves proved

to be useful en lieu of honest holomorphic curves

in a range of classical problems.
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Figure 1. A conic and a line in the plane.
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We define the tropical semifield T to be the

set R ∪ {−∞}, and we equip it with the “addi-

tion” operation “x + y” = max{x, y} and with the

“multiplication” operation “xy” = x + y . We use

the quotation marks to distinguish between the

standard and tropical arithmetic operations. Our

“additive zero” is −∞ while the “multiplicative

unit” is 0. We have T× = TØ {−∞} = R.

The term tropical is taken from computer sci-

ence, where it was coined to commemorate contri-

butions of the Brazilian school. The term semifield

refers to the properties of the tropical arithmetic

operations: we have all the axioms required for a

field, except for the existence of subtraction (as

our addition is idempotent “x + x” = x). Lucki-

ly, one does not need subtraction to write down

polynomials (they are sums of monomials)!

Consider a polynomial in two variables

p(x, y) = “
∑

j,k

ajkx
jyk” = max

j,k
(jx+ ky + ajk).

The tropical curve C defined by p consists of those

points (x, y) ∈ R2 where p is not differentiable. In

other words, C is the locus where the maximum is

assumed by more than one of the “monomials” of

p. It is easy to see that C ⊂ R2 is a graph and its

edges are straight intervals with rational slopes.

The edge E, where “aj1k1x
j1yk1” = “aj2k2x

j2yk2”,

is perpendicular to the vector (j1− j2, k1−k2). We

can enhance E with a natural number w(E) (called

its weight) equal to GCD(j1 − j2, k1 − k2).

Take a vertex A ∈ C and consider the edges

E1, . . . , En adjacent to A. Let v(Ej) ∈ Z2 be the

primitive integer vector from A in the direction of

Ej . It is easy to see that we have the following bal-

ancing (or zero-tension) condition at each vertex
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of C:

(1)

n∑

j=1

w(Ej)v(Ej) = 0.

Furthermore, one can easily show that any weight-

ed piecewise-linear graph inR2 with rational slopes

of the edges and with the zero-tension condition at
the vertices is given by some tropical polynomial.

The plane R2 can be thought of as a part of the

tropical affine plane T2 = [−∞,+∞)2. The regu-

lar functions on T2 are tropical polynomials, and
the regular functions on R2 = (T×)2 are tropical

Laurent polynomials. Note that a monomial is an

affine-linear function with an integer slope and
therefore the geometric structure on R2 encoding

the tropical structure is the Z-affine structure.

The plane T2 can be compactified to the pro-

jective plane TP2. To construct TP2 we take the
quotient of T3 Ø {(−∞,−∞,−∞)} by the usual

equivalence relation (x, y, z) ∼ (λx, λy,λz), λ ≠ 0.

As in the classical case we have three affine charts,
so TP2 can be obtained by gluing three copies of

T2. Thus we may think of TP2 as a triangle-like

compactification of R2 taken with the tautolog-

ical Z-affine structure. Each side of the triangle
corresponds to a copy of TP1 (which is itself a

compactification of R by two points). Similarly, we

may define TPn ⊃ Rn as well as other tropical toric
varieties.

We have compact tropical curves in TPn. Let Γ

be a finite graph and h : Γ → TPn be a continuous

map that takes the interior of every edge E to
a straight (possibly unbounded) interval with a

rational slope in Rn. If we can prescribe a positive

integer weight to each edge so that (1) holds at
every vertex in Rn, then we say that h : Γ → TPn is

a tropical curve.

The degree d of h(Γ) is the intersection num-

ber with any of the (n + 1) TPn−1-divisors at
infinity. The degree can be calculated by examin-

ing the unbounded edges E1, . . . , El . For example

the intersections with the “last” infinity divisor
D∞ = TPn Ø Tn are given by those Ej whose

outward primitive vectors v(Ej) have at least

one coordinate positive; the local intersection

number with D∞ is w(Ej) times that coordinate
(assuming that it is maximal), and d is the sum

of these local intersection numbers. The balanc-

ing condition ensures that the total intersection
number with all infinity divisors is the same.

The genus of Γ is g = dimH1(Γ). We see that

both the line and the conic from Figure 1 have

genus 0.
Note that tropical curves behave quite simi-

larly to classical algebraic curves. Prove (as an

exercise) that any two points in TPn can be con-
nected with a line. Curves in TPn of degree d and

genus g vary in a family of dimension at least

(n+1)d+ (n−3)(1−g). In many cases this lower

bound is exact, for instance if g = 0 (for any n) or
if n = 2 (for any g) if h is an immersion.

For example if we fix a configuration C of
3d − 1+ g generic points in TP2 then only finitely
many curves hj : Γj → TP2 of degree d and genus
g will pass through C. In contrast to the case of
complex coefficients, the actual number of such
tropical curves hj will depend on the choice of
C. However, each such tropical curve comes with
a combinatorial multiplicity so that the number
of curves with multiplicity is invariant. And this
invariant coincides with the number of complex
curves of degree d and genus g passing through
a generic configuration of 3d − 1 + g points in
CP2 and gives an efficient way of computing that
number.

There is also a different choice of multiplicities
for hj , responsible for enumeration over R (some
real curves are counted with the sign+1 and some
with −1, and their total number is different from
the complex counterpart). The sum of the real
multiplicities of hj(Γj) gives the answer for the
corresponding real enumerative problem.

As an example consider the case d = 3 and
g = 0 (see Figure 2). We fix a configuration C of
8 points in R2 ⊂ TP2. Depending on the choice of
C there might be 9 or 10 tropical curves via C.
However, the sum of their complex multiplicities is
always 12 while the sum of their real multiplicities
is always 8.

Figure 2. A cubic of multiplicity 1 via 8 points.

A map h : Γ → TPn can be used to induce
tropical structure on Γ . Tropical monomials p in
Rn = (T×)n give smooth functions on every edge
E ⊂ Γ and can be used to measure the length of E.
Define the length of E to be the smallest of such
lengths divided by the weight of E. This turns
Γ into a metric graph: the leaves (i.e., the edges
adjacent to 1-valent vertices) get infinite length
while the inner edges are finite.

Conversely, a metric graph structure on Γ can
be used to define tropical maps Γ → X, where X is
Tn, TPn, or any other tropical variety (which can
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be defined in higher dimension as a polyhedral
complex equipped with an integer affine structure;
only in dimension 1 we can hide the integer affine
structure under the guise of a metric). Higher
weight appears when h “stretches” the edges by
an integer amount.

There is an equivalence relation between tropi-
cal curves generated by the following relation: at
any point x ∈ Γ we may introduce an infinite length
interval connecting x with a new 1-valent vertex.
This equivalence allows us to turn a map given by
regular functions into a tropical morphism. Also
it allows us to treat any marked point as a 1-valent
vertex. This turns, e.g., the space M0,n of trees
with n marked points into an (n− 3)-dimensional
tropical variety.

Most classical theorems on Riemann surfaces
have counterparts for tropical curves, in particular,
the Abel-Jacobi theorem, the Riemann-Roch theo-
rem, and the Riemann theorem on the θ-functions.
Many features of complex and real curves become
easily visible after tropicalization.
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