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Starting with the two points (0,0) and (1,0), apply-

ing the standard operations with straight edge and

compass,onecanobtainanypointwithcoordinates

in a tower of quadratic extensions ofQ. There is an

analogousresultaboutorigamiconstructions.

In origami construction, one starts with the con-

figuration of the three lines x = 0, y = 0, x + y = 1

and applies certain basic origami operations I’ll de-

scribe in a moment. In this case, the points that one

obtainsarethosewithcoordinates inatowerofqua-

dratic and cubic extensions. One half of the proof

follows closely the argument for the classical case.

The interesting part is the explicit construction of

roots.

The basic object in origami is a line, and one

constructs it by folding along it. Mathematical-

ly, folding amounts to an orthogonal reflection

throughthe line.The simplestprinciplesoforigami

construction are that (1) points are constructed

by intersecting two lines, and, conversely, (2) any

two points determine a fold line through them.

But there are more interesting ways to “construct”

lines.Amorecomplicatedbutstillpracticalorigami

operationis that (3)given two points P andQ and

a line ℓ, one folds along a line throughQ, taking

P to a point P ′ on ℓ. In thiswayP ,Q, andℓgive rise

toanewline.
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Folding P to ℓ along a line through Q.
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One has to be careful. If P lies on ℓ then the fold

line constructed is the line throughQ perpendicu-

lar to ℓ. But if P doesn’t lie on ℓ then this operation

isnotalwayspossible, andwhenit is infactpossible

it will usually not be unique. Why is this? In terms of

algebra, we are looking for a line y = mx + b such

that

yQ =mxQ + b

(xP ′ ,0) = (xP , yP)− 2

(

yP −mxP − b
1+m2

)

[−m,1]

leading to a quadratic equation for m, which may

have two, one, or zero solutions. If P = (0,1), for

example, thenwegettheequations

m2 +m(2xQ)+ (2yQ − 1) = 0, b = yQ −mxQ
fromwhichweseethat

m = −xQ ±
√

x2
Q + 1− 2yQ .

Thishastworealrootsas longas

yQ < (x
2
Q + 1)/2 ,

or, equivalently, (xQ, yQ) lies outside the parabola

y = (x2+1)/2.

P
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Q

Fold lines are tangents to the parabola.

Geometrically, finding the line y = mx + b that

weare lookingforamounts tofindinga line through

Q tangent to this parabola, which is both the enve-

lope of all these lines and the parabola with focus P
anddirectrixℓ.
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The parabola is the envelope of the fold lines.

Since every point exterior to this parabola lies on
two tangents, we can make more precise the con-

struction stated somewhat imprecisely earlier: Let
P be a point and ℓ a line not containing P . If Q is

a point not inside the parabola with focus P and
directrix ℓ, suppose m to be a line through Q tan-

gent to that parabola. Folding along m, taking P
to a point on ℓ, is an allowable origami operation

that, in effect, constructsm.
It now becomes plausible that origami can cal-

culate square roots, establishing that it is at least as
potentasstraightedgeandcompass.

Another allowable origami construction is more

characteristic of origami, and more capable than
any available by means of straight edge and com-

pass. (4) Suppose P and Q to be distinct points,
ℓ and m two lines with P not on ℓ, Q not on m.

The new operation folds P onto ℓ, Q onto m,
in effect constructing the fold line, when this is

possible.
As before, we must answer some questions:

When is this operation possible? To what extent
is it unique? To answer, we first look at all possible

operations foldingP ontoℓ. This is simple, because
ifP ′ is a point onℓ, then the axis of reflection taking

P to P ′ must be the perpendicular bisector of PP ′.
Let that reflection be σP ′ . If we are given a further

pointQ and linem, we are reduced to asking: Does
one of the reflections σP ′ take Q to m? If so,

how many such reflections are there? Another,
equivalent, way to pose this question: let C be the

image ofQwith respect to the transformationsσP ′
as P ′ varies along ℓ. Does C intersect m? In how

many points?
The following figures suggest what happens. In

them, we fix P = (0,1) and ℓ equal to the x-axis,

whichwemaydowithoutlossofgenerality,andplot
the image of various points Q with respect to the
variousσP ′ .Theredhorizontal linesarethoseatdis-
tance d(P,Q) from ℓ. The image must lie between
them,sincereflectionsare isometries.

P

Q

P

Q

P

Q

The images of various fold maps.

The formula for the bisector of the segment be-
tween(0,1)and(t,0) is

y = tx+ (1− t2)/2
andthatforσ(t,0) takes(x, y)to

(x, y)− 2

(

y − tx− (1/2)(1− t2)
t2 + 1

)

[−t,1] .

As y → ±∞ this tends asymptotically to the line
at height y − 1. The image is therefore intersect-
ed by any line m with slope 6= 0. As for lines with
slope = 0, the image spans the entire closed range
|y| ≤ d(P,Q) except (as the first picture suggests)
whenQ lies on they-axis. In all cases wherem inter-
sects ℓ there exists at least one point onm to which
Q is mapped by some σP ′ . On the other hand, ifm
is parallel to ℓ then we must assume thatd(ℓ,m) ≤
d(P,Q) in order for the construction to be possi-
ble, and ifd(P,Q) = d(ℓ,m) thenmmust be on the
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side of P opposite to Q. In all cases, there are on-

ly a finite number of possibilities. It turns out that

finding these explicitly amounts to solving a cubic

equation.

So, givenourstartingconfigurationandthe rules

so far given for constructing points and lines, what

morecanweconstruct?

•Bymethod (1), fromthe three linesx = 0,y = 0,

x + y = 1 we can construct the three points (0,0),
(1,0), (0,1). This configuration of points and lines

guarantees that every line constructed has at least

two (constructed) points on it, and also that there

existsat leastonepointnotonit.

•We already know how to construct perpendicu-

lars.Usingthisconstructiontwice,wesee thatgiven

a point P not on ℓwe can construct the line parallel

toℓ throughP .

•GivenalineℓandapointP ,wecanconstructthe

reflectionofP inℓ—i.e., findanallowable foldalong

a line intersecting the perpendicular to ℓ through

P .

•With these procedures in hand, we can now do

anythingstraightedgeandcompasscando.

•Moreinteresting,wecantrisectangles.

Since

cos 3θ = 4 cos3 θ − 3 cosθ

trisecting an angle is equivalent to solving a cubic

equation. Activity 5 of Hull’s book (see review of

Project Origami on previous pages) explains how

to construct
3
√

2 (thus doubling the cube), and Ac-

tivity 6 how to construct a root of an arbitrary cubic

equationx3+ax+b = 0.
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θ

Trisection: 1. Start with an angle θ.

P

Q

m

ℓ

2. Construct two uniformly spaced horizontal
lines.

3. Fold P and Q to ℓ and m.

4. The line from the corner to its reflection
trisects the angle.
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