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A
century of lattice theory was shaped

to a large extent by two problems.

This introductory article defines the

basic concepts, introduces these two

problems, and describes their effect

on lattice theory.

In Parts 1 and 3 there is a very brief introduc-

tion of the basic concepts. The reader may find a

more detailed introduction in Part 1 of my 2006

book, The Congruences of a Finite Lattice [8], and

complete coverage of the topic in my 1998 book,

General Lattice Theory, second edition [7].

The two areas we discuss are

Uniquely complemented lattices: discussed in

Part 2.

Congruence lattices of lattices: discussed in

Part 4.

The two problems, the personalities, and the

times are completely different for the solution of

these two problems. But they also share a lot. Each

problem has been around for half a century. It

is not clear—or known—who first proposed the

problem. Nevertheless, everybody knows about it.

Everybody expects a positive solution. And then

somebody overcomes the psychology of the prob-

lem and pushes really hard for a negative solution.

However, the negative solution turns out to require

groundbreaking new ideas and is technically very

complicated.

George Grätzer is Distinguished Professor of Mathemat-

ics at the University of Manitoba. His email address is

gratzer@ms.umanitoba.ca. The research of the author

was supported by the NSERC of Canada.

Acknowledgements

I received manuscripts, lecture notes, and cor-

rections from a number of individuals, including

H. Lakser, W. A. Lampe, R. Padmanabhan, V. Pratt,

R. W. Quackenbush, and F. Wehrung. On matters

historical, I was advised by J. B. Nation.

Part 1—Lattice Theory 101

Basic Concepts

Orders. An order A = 〈A,≤〉 (or A if ≤ is under-

stood) consists of a nonempty set A and a binary

relation ≤ on A (that is, a subset of A2)—called

an ordering—such that the relation ≤ is reflexive

(a ≤ a, for all a ∈ L), antisymmetric (a ≤ b and

b ≤ a imply that a = b, for all a, b ∈ L), and

transitive (a ≤ b and b ≤ c imply that a ≤ c, for

all a, b, c ∈ L). An order that is linear (a ≤ b or

b ≤ a, for all a, b ∈ L) is called a chain.

In an order P , the element u is an upper bound

of H ⊆ P iff h ≤ u, for all h ∈ H. An upper bound

u of H is the least upper bound of H iff, for any

upper bound v of H, we have u ≤ v . We shall

write u =
∨

H. The concepts of lower bound and

greatest lower bound (denoted by
∧

H) are simi-

larly defined. We use the notation a∧ b =
∧

{a, b}

and a∨b =
∨

{a,b} and call ∧ the meet and ∨ the

join of the elements a and b.

Lattices. An order L (or L if the ∧ and ∨

are understood) is a lattice iff a ∧ b and a ∨ b

always exist. In lattices, the join and meet are

both binary operations, which means that they

can be applied to a pair of elements a, b of L to

yield again an element of L. They are idempotent

(a ∧ a = a, a ∨ a = a, for all a ∈ L), commutative
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(a∧b = b∧a,a∨b = b∨a, for alla, b ∈ L), associa-
tive ((a∧b)∧c = a∧(b∧c), (a∨b)∨c = a∨(b∨c),
for all a, b, c ∈ L), and together satisfy the absorp-
tion identities (a∧ (a∨ b) = a, a∨ (a∧ b) = a, for
all a, b ∈ L).

An algebra L = 〈L,∧,∨〉 is a lattice iff L is a
nonempty set; ∧ and ∨ are binary operations on
L; both ∧ and ∨ are idempotent, commutative,
and associative; and they jointly satisfy the two
absorption identities.

It is the most intriguing aspect of lattice theory
that lattices can be viewed as orders, so we can use
order-theoretic concepts (such as completeness;
see Part 3); and they are also algebras, so we can
use algebraic concepts (such as free lattices).

It is easy to see that a lattice as an algebra and
a lattice as an order are “equivalent” concepts.
Starting with a poset L = 〈L,≤〉 which is a lattice,
set La = 〈L,∧,∨〉; then La is a lattice. Starting with
an algebra L = 〈L,∧,∨〉 which is a lattice, set a ≤ b
iff a ∧ b = a; then Lp = 〈L,≤〉 is an order, and the
order Lp is a lattice. In fact, for an order L = 〈L,≤〉
which is a lattice, (La)p = L; and for an algebra
L = 〈L,∧,∨〉 which is a lattice, (Lp)a = L.

If K and L are lattices as algebras and ϕ maps
K into L, then we call ϕ a homomorphism if
(a ∨ b)ϕ = aϕ ∨ bϕ and (a ∧ b)ϕ = aϕ ∧ bϕ.
If the map is one-to-one and onto, it is called an
isomorphism. If ϕ is one-to-one, it is called an
embedding. If K and L are lattices as orders andϕ
mapsK intoL, then we callϕ an isomorphism if it is
one-to-one and onto and a ≤ b iff aϕ ≤ bϕ. Note
that the two isomorphism concepts are equivalent.

Semilattices. An algebra 〈L,∧〉 is a meet-
semilattice iff L is a nonempty set; ∧ is a
binary operation on L; and ∧ is idempotent,
commutative, and associative. We can introduce
meet-semilattices as orders and establish the
equivalence of the two approaches as we did
for lattices. Similarly, we can define a join-
semilattice. A lattice is a meet-semilattice and
a join-semilattice defined on the same set that
jointly satisfy the two absorption identities.

Examples.
• All subsets of a set, ordered under inclusion;

meet is intersection, and join is union.
• All closed subspaces of a topological space,

ordered under inclusion; meet is intersection, and
join is the closure of the union.
• All continuous functions on the real [0,1]

interval, ordered componentwise.
•All subgroups of a group, ordered under inclu-

sion; meet is intersection, and join the subgroup
generated by the union. Similarly, for normal
subgroups of a group, ideals of a ring.
• All subspaces of a geometry ordered under

inclusion; meet is intersection, and join is the
subspace spanned by the union.

And of course everybody knows Boolean alge-
bras (lattices) from logic.

Let me give one more example. An equivalence

relation ε on a set X is a reflexive, symmetric

(a ≤ b iff b ≤ a, for all a, b ∈ L), and transitive
binary relation. If x and y are in relation ε, that is,
〈x, y〉 ∈ ε, we write x ε y or x ≡ y (ε). On the set
PartX of all equivalence relations on X, we can
introduce an ordering: ε1 ≤ ε2 if ε1 is a refinement
of ε2; that is, x ε1 y implies that x ε2 y . Then PartX
is a lattice, called the partition lattice of X. Clearly,
〈x, y〉 ∈ ε1 ∧ ε2 iff 〈x, y〉 ∈ ε1 and 〈x, y〉 ∈ ε2. The
join, however, is more complicated to describe.

Diagrams. In the order P , a is covered by b (in
notation, a ≺ b) iff a < b and a < x < b holds
for no x. The covering relation, ≺, determines the
ordering in a finite order.

The diagram of an order P represents the ele-
ments with small circles. The circles representing
two elements x, y are connected by a straight
line iff one covers the other: if x is covered by y ,
then the circle representing y is higher than the
circle representing x. Three examples are shown in
Figure 1: the two-element chain, the four-element
Boolean lattice, and the partition lattice on a
four-element set.

Figure 1. Three lattice diagrams.

Distributive Lattices. A lattice L is distributive

if

x∧ (y ∨ z) = (x∧ y)∨ (x∧ z)

holds for all x, y , z ∈ L; that is, ∧ distributes
over the ∨. It is an equivalent condition that ∨
distributes over the ∧. Modularity is the same,
except that we require the identity to hold only
for x ≥ z.

Distributive lattices are easy to construct. Take
a set A and a nonempty collection L of subsets of
A with the property that if X, Y ∈ L, then X ∩ Y ,
X ∪ Y ∈ L (a ring of sets). Then L is a distributive
lattice, since ∩ distributes over ∪. It is a result of
G. Birkhoff, 1933, that the converse holds: every

distributive lattice is isomorphic to a ring of sets.
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A lattice has a zero element, 0, if 0 ≤ x, for all
x ∈ L. A lattice has a unit element, 1, if x ≤ 1,
for all x ∈ L. A lattice is bounded if it has a zero
and a unit. A bounded lattice L is complemented

if for every x ∈ L, there is a y ∈ L with x ∧ y = 0
and x ∨ y = 1. A Boolean lattice is a distributive
complemented lattice. Of course, all subsets of a
set, ordered under inclusion, make up a Boolean
lattice; the complement is the set complement.

Now let B be a Boolean lattice, and let y and
z both be complements of the element x. Then
y = y ∧ 1 = y ∧ (x ∨ z) = (y ∧ x) ∨ (y ∧ z) =

0 ∨ (y ∧ z) = y ∧ z. Similarly, z = y ∧ z, and so
y = z. A Boolean lattice is uniquely complemented.
So we can consider a Boolean lattice B a Boolean

algebra 〈B,∧,∨,′ 〉, where ′ is a unary operation
and a′ is the (unique) complement of a.

How Lattice Theory Started

Garrett Birkhoff was the founder of modern lattice
theory with his 1940 book Lattice Theory [1] and
with the most influential second edition [2] in 1948
and the third edition [3] in 1967. The first edition
was built on a large body of work in the mid-
and late 1930s published by him, R. P. Dilworth,
O. Frink, J. von Neumann, O. Ore, S. Mac Lane, and
others.

The concept of a lattice comes from two sources.
The first source is usually cited as R. Dedekind’s
two classic papers, 1897 and 1900. However, by
tracing back the references in these, one can see
that R. Dedekind was thinking (modular) lattice-
theoretically for at least twenty years prior to
that. R. Dedekind took notes at Dirichlet’s lectures
on number theory and wrote them up as a book
with eleven “Supplements”, which went through
various revisions in the editions of 1863, 1871,
1879, and 1893. Section 169 in Supplement XI of
the 1893 edition is about lattices, including the ax-
ioms, modular law, duality, and the free modular
and distributive lattices on three generators—all
developed as properties of modules and ideals.
Furthermore, R. Dedekind points out that the
lattice terminology (and the modular law) were
already in an 1877 paper.

In his 1897 paper, R. Dedekind notes that gen-
eral lattices were treated by E. Schröder in his
famous book Algebra der Logik (1880, reprinted
in English in 1966) and that this had led him to
consider nonmodular lattices.

E. Schröder introduced—but did not name—
lattices as orders exactly as we did above, of
course, with different notation. There was a well-
publicized debate in which C. S. Peirce claimed that
all lattices were distributive, but counterexamples
were provided by A. Korselt, 1894, R. Dedekind,
and E. Schröder. Finally C. S. Peirce explained in
a footnote in E. V. Huntington, 1904, that by a
lattice he meant something somewhat different.

This debate had a profound effect. While dis-
cussing one of E. Schröder’s axiom systems for
Boolean algebras, E. V. Huntington, 1904, repro-
duced C. S. Peirce’s proof, showing that distribu-
tivity can be derived from Schröder’s axioms. Then
he added the problem which we will state in the
next section.

Part 2—Uniquely Complemented Lattices

The Problem

E. V. Huntington, 1904, stated the following prob-
lem:

Problem. Is every uniquely complemented lattice
distributive?

Two series of papers appeared which strength-
ened the belief that the answer is a resounding
YES. The first series was published by a reason-
ably large group of mathematicians interested in
the axiomatics of Boolean algebras. They proved
theorems of the type that if we make the com-
plementation just a bit special, we get Boolean
algebras. For instance, E. V. Huntington, 1904,
published the result that if 〈B,∧,∨,′ 〉 is a uniquely
complemented lattice with the property:

x∧ y = 0 implies that y ≤ x′,

then 〈B,∧,∨,′ 〉 is a Boolean algebra.
The second series of papers added a condi-

tion (P) to the lattices under consideration and
concluded that a uniquely complemented lattice
satisfying (P) is distributive. We call such prop-
erties Huntington Properties. The first may have
been stated by J. von Neumann and G. Birkhoff
with “P = modular”. So the result is:

Theorem 1. A uniquely complemented modular
lattice is distributive.

Here are some examples up to 1945:

• G. Bergman, 1929, “P = uniquely relatively
complemented” (for all a ≤ b ≤ c, there is
a unique d with b∧ d = a and b∨ d = c).

• G. Birkhoff and M. Ward, 1939, “P = com-
plete and atomic” (a lattice L is complete
if
∧

X and
∨

X exist for any subset X of
L; a lattice L is atomic if L has a 0 and for
every a ∈ L, 0 < a, there exists an element
p such that p ≤ a and p is an atom, that
is, if 0 ≺ p).

• R. P. Dilworth, 1940, re-proving G. Birkhoff
and M. Ward for “P = finite dimensional”.

Dilworth’s Bombshell. In 1945, R. P. Dilworth
announced a negative solution: there is a nondis-
tributive uniquely complemented lattice. But what
he published was so much more:

Theorem 2 (The Dilworth Theorem for Uniquely
Complemented Lattices). Every lattice can be em-
bedded in a uniquely complemented lattice.
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Dilworth was not very clear about the origin of
the problem: “For several years one of the out-
standing problems of lattice theory has been. . . ”
G. Birkhoff in Mathematical Reviews wrote: “It has
been widely conjectured that. . . ” Neither gives
any references as to the origin of the problem.
G. Birkhoff and M. Ward, 1933, reference E. V.
Huntington, 1904, for the lattice axioms, which
Huntington stated as being due to E. Schröder, but
not for the problem. If the reader is surprised, I
suggest he try to read the original paper of E. V.
Huntington, and there he may find the clue. In my
earlier papers on the subject, I reference only R. P.
Dilworth, 1945, but in my lattice books (e.g., [7]) I
give the correct reference. But I have no recollec-
tion of reading E. V. Huntington, 1904, until the
preparation for this article.

The Solutions

Dilworth’s Solution. After a year of attempting
to obtain an affirmative solution, R. P. Dilworth
decided to construct a counterexample. His paper,
providing the result, has four sections.

Section 1 describes the free lattice generated by
an order. To illustrate the concept, let us start with
the order P = {a,b}, where a and b are incompa-
rable (both a ≤ b and b ≤ a fail). Then we form
a∧b and a∨b and get the first lattice of Figure 2.
There are some things to prove: for instance, why
is it that we did not have to add the element
a∨ ((a∨b)∧ (a∧b))? Answer: because the lattice
axioms force that a∨ ((a ∨ b)∧ (a∧ b)) = a.

F (2)

b

c

a

F (P )

Figure 2. Two free lattices generated by
orders.

Next take the order P = {a, b, c}, where a < b.
Let us start by adding joins. Since a∨b = b, we add
only b∨ c and a∨ c; since ∨ is idempotent, we do
not have to bother with x∨ x. So now we have five
elements: a, b, c, a∨ c, b∨ c, and we start forming
meets; we get three new elements: b ∧ (a ∨ c),
b∧ c, and a∧ c. Now we are back to joins, and we
find that we get only one new element: a∨ (b∧ c).

It is now an easy computation to show that the
lattice axioms imply that this set of elements is
closed under join and meet. We obtain the second
lattice of Figure 2, the free lattice generated by P .
A typical step in the verification is to prove that
((a ∨ (b ∧ c))∨ c = a ∨ c.

R. P. Dilworth starts with an order P , forms
the lattice polynomials, and then describes when
p ≤ q is forced by the lattice axioms, for the lattice
polynomials p and q. Then introducing p ≡ q if
p ≤ q and q ≤ p, he shows the equivalence classes
form the free lattice over P .

To freely generate a uniquely complemented
lattice, Dilworth needs a unary operation. He de-
notes it by ∗, and instead of lattice polynomials,
he has to form operator polynomials, such as
((a ∨ (b∗ ∧ c)) ∨ b. He then describes when the
equivalence of two operator polynomials p and q
is forced by the lattice axioms. This is the hard-
est part of the paper: Section 2, the main result,
needs twenty-three steps, some really technical
and ingenious.

So now we have the free lattice with an operator,
but of course it is no good, because (p∗)∗ is never
(almost never) p, as it would be in a uniquely com-
plemented lattice. So in Section 3 Dilworth comes
up with a brilliant idea. Let N be the set of all
operator polynomials that have no subpolynomial
of the form (p∗)∗. It is easily seen that N defines
a sublattice of the free operator lattice, but clearly
N is not closed under ∗. So here is the idea: define
a unary operation, ′, on N. If p, p∗ ∈ N, then
p′ = p∗. If p∗ ∉ N, then he gives a clever inductive
definition of p′ so that p′ ∈ N. The main part of
this section is this idea. To prove that it works is
not that difficult. The heavy lifting was done in
Section 2.

Section 4 deals with the free uniquely comple-
mented lattices. The problem is that in the free
algebra constructed in Section 3, we do not have
p ∧ p′ = 0 and p ∨ p′ = 1. The bad polynomials
are those that contain (or are contained in) a p
and p′. So here is the final idea: take those poly-
nomials that have no such bad subpolynomials. It
then takes only two pages to compute that these
polynomials along with 0 and 1 define the free
uniquely complemented lattice over P .

Newer Solutions. Dean’s Theorem, 1964, ex-
tends Dilworth’s free lattice generated by an order
P to the free lattice generated by an order P with
any number of designated joins and meets; we re-
quire that they be preserved. Dean’s proof is the
same complicated induction as the one in R. P.
Dilworth, 1945. A greatly simplified proof can be
found in H. Lakser’s Ph.D. thesis, 1968; see also
H. Lakser, 2007, manuscript.

It was around 1966 when I finished my book on
universal algebra (it was published in 1968) and
I started working on a book on lattice theory. It
was clear to me that such a book should contain
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a proof of the Dilworth Theorem for Uniquely
Complemented Lattices, but it was also clear that I
would need a lattice-theoretic proof. And the most
substantial parts of the original proof (Sections
2 and 3) are well beyond the reach of a book on
lattices.

So D. Kelly, H. Lakser, C. Platt, J. Sichler, and
I started systematically to work on free lattices
and free products. The most important influence
of R. P. Dilworth’s paper came from the motiva-
tion and the ideas of Section 1, in particular the
concept of covering. So when C. C. Chen came
to Winnipeg in 1967, we had already developed a
good understanding of this field.

With C. C. Chen our goal was to produce
a proof of the Dilworth Theorem for Uniquely
Complemented Lattices for my book. This we ac-
complished in C. C. Chen and G. Grätzer, 1969. We
proved that the Dilworth Theorem for Uniquely
Complemented Lattices can be proved with the
ideas of Sections 1 and 4 of Dilworth’s paper,
completely eliminating Sections 2 and 3, which
are very complicated and not lattice-theoretic. The
proof is in two steps: the first is based on Sec-
tion 1, and the second is based on Section 4 of
R. P. Dilworth, 1945.

Actually, the result we proved is much stronger
than the Dilworth Theorem for Uniquely Com-
plemented Lattices. Let us call a lattice L almost

uniquely complemented if it is bounded and every
element has at most one complement. A {0,1}-
embedding is an embedding that maps the 0 to 0
and the 1 to 1.

Theorem 3. Let L be an almost uniquely comple-
mented lattice. Then L can be {0,1}-embedded into

a uniquely complemented lattice.

R. P. Dilworth’s embedding preserves no exist-
ing complement.

The method employed in C. C. Chen and
G. Grätzer, 1969, was generalized to (C-reduced)
free products in G. Grätzer, 1971 and 1973, with
some interesting applications in G. Grätzer and
J. Sichler, 1970, 1974, 2000.

A completely different approach was taken by
M. Adams and J. Sichler, 1978. They introduced
testing lattices that allowed them to construct
continuumly many such varieties (classes defined
by identities) in which the Dilworth Theorem for
Uniquely Complemented Lattices holds. See also
V. Koubek, 1984.

Newest Solution. As opposed to the two steps
of C. C. Chen and G. Grätzer, 1969, in G. Grätzer and
H. Lakser, 2006, we provide a one-step solution.

Let K be a bounded lattice. Let a ∈ K − {0,1},
and let u be an element not in K. We extend the
partial ordering≤ ofK toQ = K∪{u} by 0 ≤ u ≤ 1.
We extend the lattice operations ∧ and ∨ to Q as
commutative partial meet and join operations. For

x ≤ y in Q, define x ∧ y = x and x ∨ y = y . In
addition, let a∧ u = 0 and a∨ u = 1; see Figure 3.

To construct and describe the lattice F(Q)
freely generated by Q, we repeatedly form joins
and meets of elements of Q, obtaining the poly-
nomials over Q, which will represent elements of
F(Q). For the polynomials A and B over Q, let
A ≤ B denote the relation forced by the lattice
axioms and the structure of Q. We observe that
given any polynomial A, there is a largest element
A∗ of K with A∗ ≤ A and a smallest element A∗

of K with A∗ ≥ A.

aK

1

0

Q

u

Figure 3. The partial lattice Q.

An easy computation (less than a page) shows
that the following statements hold:

(i) u ≤ u. If x ∈ K, then u ≤ x iff x = 1.
(ii) u∗ = 0. If x ∈ K, then x∗ = x.

(iii) u ≤ A∧ B iff u ≤ A and u ≤ B.
(iv) (A∧ B)∗ = A∗ ∧ B∗.
(v) u ≤ A ∨ B iff either u ≤ A or u ≤ B or A∗ ∨

B∗ = 1.
(vi)

(A∨ B)∗ =















1 if a ≤ A∗ ∨ B∗ and

either u ≤ A or u ≤ B;

A∗ ∨ B∗ otherwise.

The only complement of u is a.
LetAbe a polynomial that defines a complement

of u. Then

1 = (A∨ u)∗ =

{

1 if a ≤ A∗ ∨ u∗ = A∗;

A∗ otherwise.

So either a ≤ A∗ or 1 = A∗; in either case, a ≤ A∗.
Dually, a ≥ A∗. Thus

A ≤ A∗ ≤ a ≤ A∗ ≤ A,

and so A ≡ a.
Isn’t this easy?
It is also easy to show that if K is almost

uniquely complemented, then the only other com-
plemented pairs in F(Q) are the complemented
pairs in K. Thus if a does not have a complement
in K, we get an almost uniquely complemented
{0,1}-extension in which a has a complement.
By transfinite induction on the set of noncomple-
mented elements of K, we get an almost uniquely
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complemented {0,1}-extension K1 of K0 = K,
where each element of K0 has a complement.
Then, by a countable induction, we get a uniquely
complemented {0,1}-extension Kω of K0 = K.

This method has applications that previous
techniques could not give (previous techniques
can be used only to construct complements, not
relative complements).

Theorem 4. Let [a, c] = {x ∈ K | a ≤ x ≤ c }
be an interval of a lattice K. Let us assume fur-
ther that every element in [a, c] has at most one
relative complement. Then K has an extension L
such that [a, c] in L, as a lattice, is uniquely com-
plemented.

See G. Grätzer and H. Lakser, 2005. There are
many variants of the stronger results; we give
only one more example. Let us say that a bounded
lattice has transitive complementation if whenever
b is a complement of a and c is a complement of b,
either a = c or c is a complement of a. Let us call a
lattice L n-complemented if every element a ≠ 0,1
has exactly n complements. Similarly, a lattice L is
at most n-complemented if every element a ≠ 0,1
has at most n complements; example: any at most
uniquely complemented lattice. For instance, in a
transitively 2-complemented lattice L, every ele-
ment a ≠ 0,1 belongs to a (unique) sublattice M3

(see Figure 4) so that every complement of a is
in this sublattice. Then we have (G. Grätzer and
H. Lakser, manuscript):

Figure 4. The lattice M3.

Theorem 5. Let K be an at most n-complemented
and transitively complemented lattice. Then K
can be {0,1}-embedded into a transitively n-
complemented lattice.

For n = 1, this gives the C. C. Chen and
G. Grätzer, 1969, result and so, in turn, the
Dilworth Theorem for Uniquely Complemented
Lattices.

Huntington Properties and Varieties

We have seen a few examples of Huntington Prop-
erties. Among the structural properties, one of the
nicest is from H.-J. Bandelt and R. Padmanabhan,
1979: every interval contains a covering pair.

A Huntington Variety is a lattice variety in which
every uniquely complemented lattice is distribu-
tive. W. McCune, R. Padmanabhan, and B. Veroff,
2007, observed that there are continuumly many
such varieties.

The forthcoming book of R. Padmanabhan and
S. Rudeanu [9] has a chapter on Huntington Vari-
eties. Here is an intriguing result from the book:

Theorem 6. The variety M∨N5 is Huntington.

M∨N5 is the smallest variety containing all mod-
ular lattices and the 5-element nonmodular lattice
N5.

We conclude this section with one more Hunt-
ington Property, an identity, from W. McCune,
R. Padmanabhan, and B. Veroff, 2007:

Theorem 7. Every uniquely complemented lattice
satisfying

x∧((y∧(x∨z))∨(z∧(x∨y))) = (x∧y)∨(x∧z)

is distributive.

Concluding Comments

It is interesting how little we know about a subject
on which we have published so many papers. Ask
any question and probably we do not know the
answer. Let me mention a (very) few of my favorite
ones.

All known examples of nondistributive unique-
ly complemented lattices are freely generated,
one way or another. Is there a construction of
a nondistributive uniquely complemented lattice
that is different?

In the same vein, is there a “natural” example of
a nondistributive uniquely complemented lattice
from geometry, topology, or whatever else?

Is there a complete example of a nondistributive
uniquely complemented lattice?

Part 3—Lattice Theory 201

Subalgebra Lattices of Algebras

Let A = 〈A,F〉 be an algebra; that is,A is a nonemp-
ty set and every f ∈ F is a finitary operation on
A. If F is understood, we denote the algebra by A.
In the case of lattices as algebras, F = {∧,∨}, and
both operations are binary. Boolean algebras are
usually defined as algebras with F = {∧,∨,′ ,0,1},
where ∧ and ∨ are binary operations, ′ is a unary
operation, while 0 and 1 are nullary operations.

A subalgebraB ⊆ A is a nonempty subset closed
under all the operations in F : that is, if f ∈ F is
n-ary and b1, . . . , bn ∈ B, then f (b1, . . . , bn) formed
in A is in B. So we can regard B = 〈B, F〉 as an
algebra, a subalgebra of A. The intersection of any
set of subalgebras is a subalgebra again, provided
that it is nonempty. This leads us to the following
notation: SubA is the set of subalgebras of A;
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if the intersection of all subalgebras of A is the
empty set, then we add 0 to SubA.

SubA under containment is an order, in fact, a
complete lattice. SubA is meet-continuous; that is,

X ∧
∨

C =
∨

(X ∧ C | C ∈ C),

for any chain C in SubA.
For any nonempty subset X of A, there is a

smallest subalgebra [X] containing X, called the
subalgebra generated by X. If a subalgebra B is of
the form [X], for a finite X, we call it a finitely
generated subalgebra.

Following G. Birkhoff and O. Frink, 1948, in
a complete lattice L, we call an element x join-
inaccessible if whenever x =

∨

C for a chain C in
L, x ∈ C. It is easy to see that finitely generated
subalgebras are exactly the join-inaccessible ele-
ments of SubA. We thus arrive at the breakthrough
definition of G. Birkhoff and O. Frink, 1948.

A lattice L is called compactly generated if it
is complete, meet-continuous, and every element
is a (complete) join of join-inaccessible elements.
G. Birkhoff and O. Frink, 1948, proved the following
result:

Theorem 8 (The Birkhoff-Frink Theorem). A lat-

tice L is isomorphic to the subalgebra lattice of a
finitary algebra iff it is compactly generated.

Congruence Lattices of Algebras

Let A (that is, A = 〈A,F〉) be an algebra. An equiv-
alence relation Θ is called a congruence relation
if it has the Substitution Property for all f ∈ F . If
f is n-ary, the Substitution Property for f is the
following:

a1 ≡ b1(Θ), . . . , an ≡ bn(Θ)

imply that f (a1, . . . , an) ≡ f (b1, . . . , bn)(Θ).

Fora ∈ A, we denote bya/Θ theΘ-class containing
a; that is,

a/Θ = {b ∈ A | a ≡ b(Θ) }

and A/Θ is the set of all a/Θ, a ∈ A. On A/Θ we
can define the operations f ∈ F by

f (a1/Θ, . . . , an/Θ) = f (a1, . . . , an)/Θ,

and we get the quotient algebra A/Θ (that is,
A/Θ = 〈A/Θ, F〉). This is how we construct quo-
tient groups, quotient rings, quotient lattices, and
so on.

Let A be an algebra and let a, b ∈ A. Since the
intersection of congruences is a congruence again,
there is a smallest congruence con(a,b) such that
a ≡ b. We call con(a, b) a principal congruence;
they correspond to one-generated subalgebras. Fi-
nite joins of principal congruences were called by
G. Birkhoff and O. Frink finitely generated congru-
ences (today, we call them compact congruences);
they are like the finitely generated subalgebras.

G. Birkhoff and O. Frink, 1948, observed:

Theorem 9. ConA, the congruences of the algebra
A, form a compactly generated lattice.

They raised the problem whether the converse
is true. The problem is also raised in [2]. Interest-
ingly, neither references G. Birkhoff, 1945, where
the problem is first raised for algebras finitary or
infinitary.

I rememberwhen we first started thinking about
this problem with E. T. Schmidt. Suppose for a
compactly generated lattice L that we construct
the algebra A. It really bothered me that I did not
know how to utilize the meet-continuity of L in
proving that L is isomorphic to ConA.

Variants of Compactly Generated Lattices

In the late 1950s it became clear to a number
of mathematicians that there are two important
variants of the definition of compactly generated
lattices. To state them, we need some elementary
concepts.

Let L be a complete lattice and c ∈ L. Let us
call c compact (L. Nachbin, 1959) if whenever
c ≤

∨

X, for some X ⊆ L, then c ≤
∨

X1, for some
finite X1 ⊆ X. We define an algebraic lattice as a
complete lattice in which every element is a join
of compact elements.

Let S be a join-semilattice with zero. An ideal I
of S is a subset with three properties:

(i) 0 ∈ L.
(ii) If a, b ∈ L, then a∨ b ∈ L.

(iii) If a ∈ L and x ≤ a, then x ∈ L.

The set Id S of all ideals of S is an order under
containment. It is a compactly generated lattice
in which the join-inaccessible elements are the
principal ideals: ↓a = {x ∈ S | x ≤ a }, for a ∈ S.

Theorem 10. The following conditions on a lattice
L are equivalent:

(i) L is a compactly generated lattice.
(ii) L is an algebraic lattice.

(iii) L can be represented as the ideal lattice of a
join-semilattice with zero.

The equivalence of the first two conditions was
observed by G. Birkhoff [3], while the equivalence
of the last two conditions is in L. Nachbin, 1959.
Further references: A. Komatu, 1943; R. Büchi,
1952; and G. Grätzer, 1965.

Theorem 10 is quite trivial, but note that the
Birkhoff-Frink Theorem can, as a result, be proved
in a few lines. Let L be compactly generated. Then
L = IdS for a join-semilattice S with zero. Define
on S the ∨, and for all a, b ∈ S define the unary
operation fa,b as follows:

fa,b(x) =

{

a∧ b, for x = a;

0 otherwise.

Set F = {∨} ∪ { fa,b | a, b ∈ S }. Then the sub-
algebras of 〈S, F〉 are exactly the ideals of S;
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hence Sub〈S, F〉 = L, proving the Birkhoff-Frink
Theorem.

Part 4—Congruence Lattices of Lattices

Congruence Lattices of Algebras

G. Birkhoff and O. Frink, 1948, raised the ques-
tion whether congruence lattices of algebras can
be characterized as compactly generated lattices.
This problem was earlier raised by G. Birkhoff in a
1945 lecture and again in [2] as Problem 50. This
problem was solved in G. Grätzer and E. T. Schmidt,
1963. (In this part, we use the acronym CLCT for the
mouthful “Congruence Lattice Characterization
Theorem”.)

Theorem 11 (CLCT for Algebras). The congruence
lattice of an algebra can be characterized as an
algebraic lattice.

An equivalent formulation is: Every join-
semilattice with zero can be represented as Conc A,
the join-semilattice with zero of compact congru-
ences of an algebra A.

For a long time I had the nightmare that some-
body would come along and present a brief con-
struction of the algebra and a few-lines-long proof
the way we did for the Birkhoff-Frink theorem.
Any takers?

More polished versions of the original proof
appeared in G. Grätzer [6]; W. A. Lampe, 1968,
1973; E. T. Schmidt, 1969; E. Nelson, 1980; and
P. Pudlák, 1985. Other variants by B. Jónsson and
R. N. McKenzie were written up, circulated, but
not published.

All these proofs, for larger algebraic lattices
L, construct algebras 〈A,F〉 with more and more
operations. This cannot be avoided. R. Freese,
W. A. Lampe, and W. Taylor, 1979, proved that
if we take the algebraic lattice of all subspaces
of an infinite-dimensional vector space over an
uncountable field of cardinality m and represent
it as the congruence lattice of an algebra 〈A,F〉,
then m ≤ |F|.

G. Birkhoff, in his 1945 lecture, raised the
question of how we can characterize congruence
lattices of not necessarily finitary algebras. The
congruence lattice is obviously complete, but we
no longer have meet-continuity or compact ele-
ments. This was solved in G. Grätzer and W. A.
Lampe, 1979:

Theorem 12 (CLCT for Infinitary Algebras). The
congruence lattice of an infinitary algebra can be
characterized as a complete lattice.

In the early 1980s, R. Wille raised a related
question (mentioned in K. Reuter and R. Wille,
1987). How can we characterize the lattice of com-
plete congruences of a complete lattice? Again,
this lattice is obviously complete.

I resolved Wille’s problem in G. Grätzer, 1989:

Theorem 13 (CLCT for Complete Lattices). The
lattice of complete congruences of a complete
lattice can be characterized as a complete lattice.

Note that Theorem 12 immediately follows from
this result.

A large number of papers (G. Grätzer, 1989,
1990; G. Grätzer and H. Lakser, 1991, 1992;
R. Freese, G. Grätzer, and E. T. Schmidt, 1991;
G. Grätzer and E. T. Schmidt, 1993 (three papers),
1995 (three papers)) obtained better results. I
quote just one from G. Grätzer and E. T. Schmidt,
1993:

Theorem 14 (CLCT for Complete and Distributive
Lattices). The lattice of complete congruences of a
complete and distributive lattice can be character-
ized as a complete lattice.

I believe that the complete and distributive
lattice constructed to prove this theorem is a
candidate for the most complicated complete and
distributive lattice ever constructed.

Congruence Lattices of Finite Lattices

For a lattice L, the congruence lattice is distribu-
tive. This remarkable—but easy to prove—fact
was published only in N. Funayama and T. Nakaya-
ma, 1942. About the same time R. P. Dilworth
discovered—but did not publish—the even more
remarkable converse:

Theorem 15 (The Dilworth Theorem for Finite
Congruence Lattices). Every finite distributive lat-
tice can be represented as the congruence lattice
of a finite lattice.

This result was made into an exercise (one with
an asterisk, meaning difficult) in [2]. E. T. Schmidt
and I got really interested in the result and in-
quired from G. Birkhoff where the result came
from, but he did not know and encouraged us to
write to R. P. Dilworth. Unfortunately, Dilworth
was busy editing the proceedings of a lattice theo-
ry meeting, but eventually we got a response. Yes,
he proved the result, and the proof was in his
lecture notes. No, copies of his lecture notes were
no longer available.

So we published a proof, G. Grätzer and E. T.
Schmidt, 1963. In fact, we proved something much
stronger. Let us call a lattice Lwith zero sectionally
complemented if for every a ≤ b ∈ L, there is a
c ∈ L with a ∧ c = 0 and a ∨ c = b. This is what
we proved:

Theorem 16 (CLCT for Finite Sectionally Comple-
mented Lattices). Every finite distributive lattice
can be represented as the congruence lattice of a
finite sectionally complemented lattice.

Proof Outline. An element a of a lattice D is
join-irreducible if a ≠ 0 and a = x∨ y implies that
a = x or a = y . The join-irreducible elements of
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D form an order J(D). If D is distributive, J(D)

determines D and every finite order P is repre-

sentable as the J(D) of a finite distributive lattice

D. For a finite lattice L, let ConJ L denote the order

of join-irreducible congruences.

A chopped lattice 〈M,∧,∨〉 is a finite meet-

semilattice 〈M,∧〉 in which∨ is a partial operation

so that whenever a∨ b is defined it is
∨

{a, b}. We

can define ideals just as for join-semilattices with

zero except that the second condition reads: If a,

b ∈ I and a∨ b exists, then a∨ b ∈ I. The set IdM

of all ideals of M is a lattice, and we can view M

as a part of IdM by identifying a ∈ M with ↓a.

Then we have (G. Grätzer and H. Lakser, 1968):

Theorem 17. Every congruence of M has one and

only one extension to IdM . In particular, the con-

gruence lattice of M is isomorphic to the congru-

ence lattice of IdM .

So now we can rewrite the theorem we want to

prove:

CLCT for Finite Lattices—order and chopped lat-

tice version. Every finite order P can be represent-

ed as ConJM for a chopped lattice M .

The basic gadget for the construction is the lat-

tice N6 = N(p, q) of Figure 5. The lattice N(p, q)

has only one nontrivial congruence relation, Θ,

where Θ is the congruence relation with congru-

ence classes {0, q1, q2, q} and {p1, p(q)}, indicated

by the dashed line. In other words, p1 ≡ 0 “im-

plies” that q1 ≡ 0, but q1 ≡ 0 “does not imply” that

p1 ≡ 0. We will use the N6 = N(p, q) to achieve

such “congruence-forcing”.

q1q2p1

p(q)

q

0

Figure 5. The lattice N6 = N(p, q) and the
congruence Θ.

To convey the idea of the proof, we present

two small examples in which we construct the

chopped lattice M from copies of N(p, q).

Let P = {a,b, c} with c ≺ b ≺ a. We take two

copies of the gadget, N(a,b) and N(b, c), and

“merge” them to form the chopped lattice M , as

shown in Figure 6.

b(c)

c1c2b1

a(b)

b c

b2

0
M

P

a

b

c

N(a, b) N(b, c)

a1

Figure 6. The chopped lattice M for P = C3.

b1
c1a1 a2

a

b(a) c(a)

0
PV a

b c

MV

N(b, a) N(c, a)

Figure 7. The chopped lattice for the order PV .

Next consider the three-element order PV of Fig-
ure 7. We take two copies of the gadget,N(b, a) and
N(c, a), and “merge” them to form the chopped
lattice MV ; see Figure 7.

The reader should now be able to picture the
general proof. Instead of the few atoms in these
examples, we start with M0, which has enough
atoms to reflect the structure of P . Whenever
b ≺ a in P , we build a copy of N(a, b) to obtain
the chopped lattice M ; see Figure 8.

. . .. . .
b1 b2

0

a1 a2q1 p1

. . .. . .

0

a1a2

a(b)

b
c1

c(d)

d2 b1b2d1

Figure 8. The chopped lattice M0 and M .

Sectionally Complemented Lattices. Actually,
the chopped lattices we construct are sectional-
ly complemented. Unfortunately, the ideal lattice
of a sectionally complemented chopped lattice is
not necessarily sectionally complemented. We are
not going to give the reason why it is sectionally
complemented for this construction, but refer the
reader to G. Grätzer and E. T. Schmidt, 1962; to
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the books [7] and [8]; and to the recent series of
papers: G. Grätzer and H. Lakser, 2005 (two pa-
pers); G. Grätzer, H. Lakser, and M. Roddy, 2005;
G. Grätzer and M. Roddy, 2007.

Other Special Properties for Finite Lattices.

Let’s see which properties (P) of finite lattices are
such that

Every finite distributive lattice can be represented

as the congruence lattice of a finite lattice with

property (P).

So

P = sectionally complemented

is such. I refer the reader to my book [8] for a thor-
ough survey of this field. Here is just one example.
Let L be a finite lattice and let Θ be a congruence.
We call Θ isoform if any two congruence classes
of Θ are isomorphic as lattices. A lattice is isoform

if all of its congruences are isoform. It was proved
in G. Grätzer and E. T. Schmidt, 2003, that

P = isoform

is such a property. For stronger results on this
property see G. Grätzer, R. W. Quackenbush, and
E. T. Schmidt, 2004, and G. Grätzer and H. Lakser,
two manuscripts.

The General Problem

Anybody familiar with the papersN. Funayama and
T. Nakayama, 1942, and G. Birkhoff and O. Frink,
1948, would naturally raise the question:

Problem. Can every distributive algebraic lattice L

be represented as the congruence lattice of a lattice

K?

Surprisingly, this did not make it into G. Birkhoff
and O. Frink, 1948, or [2]. When asked, Birkhoff
and Frink in 1961 called it an oversight (person-
al communication). Certainly, R. P. Dilworth was
aware of this problem. The first time it appeared
in print was in G. Grätzer and E. T. Schmidt, 1962,
but already in G. Grätzer and E. T. Schmidt, 1958,
a partial positive solution is given. For sure, the
second question raised in G. Grätzer and E. T.
Schmidt, 1962, was new:

Problem. Are further conditions on L necessary if

we require K to be sectionally complemented?

A join-semilattice with zero S is

(i) distributive if for all a, b, c ∈ S with c ≤ a∨b,
there are x ≤ a and y ≤ b such that c = x∨y ;

(ii) representable if it is isomorphic to Conc L, for
some lattice L.

Now we can state the semilattice formulation
of the general problem:

Problem. Is every distributive join-semilattice with

zero representable?

Positive Results. The first group of positive

results started with two papers of E. T. Schmidt,
1968, 1981. To state Schmidt’s results, we need
some concepts.

A congruence Θ of a join-semilattice with zero
S is monomial if any Θ-equivalence class has a
largest element. A congruence of S is distributive

if it is a join of monomial congruences.
A generalized Boolean semilattice is defined as

the underlying join-semilattice of a sectionally
complemented distributive lattice with zero. A
join-semilattice with zero satisfies Schmidt’s Con-

dition if it is isomorphic to B/Θ for some dis-
tributive congruence Θ of a generalized Boolean
semilattice B. One of the best results about the
representability of distributive semilattices with
zero is E. T. Schmidt, 1968:

Theorem 18. Any semilattice with zero satisfying

Schmidt’s Condition is representable.

Using this result, E. T. Schmidt, 1981, proved:

Theorem 19. Every distributive lattice with zero is

representable.

In a recent paper, F. Wehrung, 2003, extended
Schmidt’s result:

Theorem 20. Every countable union of distributive

lattices with zero is representable.

Surprisingly, Wehrung had to use methods in-
spired by set theory and forcing (Boolean-valued
models) to prove this result. No elementary proof
is known.

The second group of positive results is
phrased in terms of the cardinality of the join-
semilattice with zero. A. Huhn mentions in the
introduction of his first 1989 paper (both Huhn
papers of 1989 were prepared for publication
by H. Dobbertin after A. Huhn passed away in
1985) that around 1980, H. Bauer proved a result
(unpublished) implying the following:

Theorem 21. Every countable distributive join-

semilattice with zero is representable.

An extended version of this result is proved by
H. Dobbertin, 1986:

Theorem 22. Every distributive join-semilattice

with zero in which any principal ideal is countable

is representable.

A. Huhn, 1989, second paper, uses Schmidt’s
result to obtain:

Theorem 23. Every distributive join-semilattice

with zero of cardinality at most ℵ1 is representable.

An elementary proof of this result was pub-
lished in G. Grätzer, H. Lakser, and F. Wehrung,
2000.
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Wehrung’s Bombshell

Last year, F. Wehrung announced that

Theorem 24. There exists a distributive join-

semilattice with zero of cardinality ℵω+1 that is not

representable.

The manuscript was widely circulated and is
regarded by the experts as correct. In this section
I outline how this semilattice is constructed. The
reader should have no difficulty supplying the
missing details. In the following two sections I
discuss the background for this construction and
provide some hints about the proof. These sec-
tions are a bit more technical than the rest of this
exposition.

In this section we work with partial join-

semilattices, defined as P = 〈P,≤,0,∨〉 such that
〈P,≤〉 is an order; 0 ≤ a, for all a ∈ P ; and ∨ is
a partial binary operation such that if a ∨ b is
defined, then a ∨ b is the least upper bound of a
and b in the order 〈P,≤〉; and if a ≤ b in 〈P,≤〉,
then a∨ b = b = b ∨ a. The following is easy:

A partial join-semilattice P has a free extension

F(P) to a join-semilattice which contains P as a

subsemilattice.

We start with the following partial join-
semilattice. Let Ω and Ω′ be disjoint sets, and
let ′ : Ω → Ω′ be a bijection. Let PΩ be the disjoint
union of {0,1}, Ω, and Ω′. Define 0 < a, a′ < 1,
for all a ∈ Ω. Let PΩ = 〈PΩ,≤,0,∨〉 be the partial
join-semilattice induced by defining a ∨ a′ = 1,
for all a ∈ Ω. Then F(PΩ) is isomorphic to

{0,Ω ∪Ω′}
⋃

{A∪ B′ | A,B ⊆ Ω,

|A|, |B| < ω, A∩ B = 0 },

ordered by containment. So now we have a join-
semilattice and we have to make it distributive. It
is easy to describe this process. For each c ≤ a∨b,
add two elements a+, b+ with a+ ≤ a, b+ ≤ b and
declare that a+ ∨ b+ = c; this yields a partial join-
semilattice. Form the join-semilattice it generates.
Now iterate this countably many times and take
the union G(Ω) of the join-semilattices formed.

The distributive join-semilattice with zero,
G(Ω), thus formed is F. Wehrung’s bombshell: it
is not representable provided that ℵω+1 ≤ |Ω|.

Uniform Refinement Properties. Weakly dis-
tributive homomorphisms of join-semilattices
with zero are defined in E. T. Schmidt, 1968. The
following is a variant by F. Wehrung.

A {∨,0}-homomorphism µ : S → T of the join-
semilattices with zero is weakly distributive if for
all a, b ∈ S and all c ∈ T , µ(c) ≤ a∨b implies that
there are x, y ∈ S such that c ≤ x ∨ y , µ(x) ≤ a,
and µ(y) ≤ b.

In most related works, the following “uniform
refinement property” is used. It was introduced

in F. Wehrung, 1998, 1999, and modified in
M. Ploščica, J. Tůma, and F. Wehrung, 1998.

Let e be an element in a join-semilattice S
with zero. We say that the weak uniform refine-
ment property, WURP, holds at e if for all families
(ai | i ∈ I) and (bi | i ∈ I) of elements of S such
that ai ∨ bi = e, for all i ∈ I, there exists a family
(ci,j | 〈i, j〉 ∈ I × I) of elements of S such that the
relations

(1) ci,j ≤ ai , bj ,
(2) ci,j ∨ aj ∨ bi = e,
(3) ci,k ≤ ci,j ∨ cj,k

hold, for all i, j, k ∈ I. We say that S satisfies
WURP if WURP holds at every element of S.

In M. Ploščica and J. Tůma, 1998, it is proved
that WURP does not hold in G(Ω), for any set Ω of
cardinality at least ℵ2. Hence G(Ω) does not satisfy
Schmidt’s Condition. A similar result is proved in
F. Wehrung, 1999.

However, the join-semilattices with zero used
in these negative results are complicated. The
following result, proved in M. Ploščica, J. Tůma,
and F. Wehrung, 1998, is more striking, because
it shows that a very well-known lattice, F(ℵ2),
produces a representable semilattice that does not
satisfy Schmidt’s Condition.

Theorem 25. Let F(ℵ2) be the free lattice on
ℵ2 generators. The join-semilattice with zero,
Conc F(ℵ2), does not satisfy WURP. Consequently,
Conc F(ℵ2) does not satisfy Schmidt’s Condition.

In fact, they prove a lot more. Let FV(Ω) denote
the free lattice on Ω in V for any nondistributive
variety V of lattices.

The join-semilattice with zero, Conc FV(Ω), does
not satisfy WURP for any set Ω of cardinality at
least ℵ2. Consequently, Conc FV(Ω) does not satisfy
Schmidt’s Condition.

It is proved in J. Tůma and F. Wehrung, 2001,
that Conc FV(Ω) is not isomorphic to Conc L, for
any lattice L with permutable congruences. This is
an important contribution to the second problem
of G. Grätzer and E. T. Schmidt, 1963. By using a
slight weakening of WURP, this result is extended
to arbitrary algebras with permutable congru-
ences in P. Růžička, J. Tůma, and F. Wehrung (to
appear in J. Algebra). Hence, for example, if Ω has
at least ℵ2 elements, then Con FV(Ω) is not isomor-
phic to the normal subgroup lattice of any group
or the submodule lattice of any module.

(Actually, to keep the exposition at an elemen-
tary level, I omitted a great deal. This work started
with F. Wehrung, 1998, in which he attacked
a problem of H. Dobbertin, 1983, on measure
theory—Are there any nonmeasurable refinement
monoids?—and a ring-theoretic problem of K. R.
Goodearl, 1991—Is it the case that the positive
cone of every dimension group with order-unit
is isomorphic to V(R), for some regular ring R?
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Unfortunately, I do not know how to present these

topics in an introductory exposition within the
space constraints I have.)

Solving CLP; the Erosion Lemma. Let us restate
F. Wehrung’s bombshell:

Theorem 26. The join-semilattice with zero G(Ω)

is not isomorphic to Conc L, for any lattice L, when-

ever the set Ω has at least ℵω+1 elements.

So the lattice that is a counterexample to CLP

had been known for nearly ten years. All prior
results about this lattice made use of some form
of permutability of congruences. The novelty in
F. Wehrung’s approach was to find structure in con-
gruence lattices of non-congruence-permutable

lattices.
We shall denote by ε the “parity function” on

the natural numbers, defined by the rule

ε(n) =

{

0 if n is even,

1 if n is odd,
for any natural number n.

Let L be an algebra possessing a structure of a
semilattice 〈L,∨〉 such that every congruence of L

is also a congruence for ∨. We put

U∨V = {u∨v | 〈u, v〉 ∈ U×V }, for all U, V ⊆ L,

and we denote by ConUc L the 〈∨,0〉-subsemilattice
of Conc L generated by all principal congruences
ΘL(u, v), where 〈u, v〉 ∈ U×U . We put con+L (x, y) =
conL(x∨ y, y), for any x, y ∈ L.

The Erosion Lemma. Let x0, x1 ∈ L, and let Z =

{ zi | 0 ≤ i ≤ n }, for a positive integer n, be a finite

subset of L with
∨

i<n zi ≤ zn. Put

αj =
∨

(conL(zi , zi+1) | i < n, ε(i) = j),

for all j < 2.

Then there are congruences Θj ∈ Con
{xj }∨Z
c L, for

j < 2, such that

z0 ∨ x0 ∨ x1 ≡ zn ∨ x0 ∨ x1 (Θ0 ∨Θ1) and

Θj ⊆ αj ∩ con+L (zn, xj), for all j < 2.

The proof of Theorem 26 proceeds by estab-
lishing a “structure” theorem for congruence lat-
tices of semilattices, namely, the Erosion Lemma,

against “nonstructure” theorems for free distribu-
tive extensions G(Ω), the main one being called the
“Evaporation Lemma”. While these are technically
difficult, they are, in some sense, “predictable”. In
contrast, the proof of the Erosion Lemma is much

easier.
The cardinality bound ℵω+1 has been improved

to the optimalboundℵ2 byP.Růžička (manuscript).

Theorem 27. The semilattice G(Ω) is not isomor-

phic to Conc L, for any lattice L, whenever the setΩ

has at least ℵ2 elements.

A key part in F. Wehrung’s proof is a combina-
torial argument of K. Kuratowski, 1951. Let [X]<ω

denote the set of all finite subsets of X and [X]n

(for a positive integer n) the set of all n-element
subsets of X. For a map Φ : [X]n → [X]<ω, an
(n+ 1)-element subset U of X is free with respect
to Φ if x ∉ Φ(U − {x}) for all x ∈ U .

Theorem 28 (Kuratowski’s Free Set Theorem). Let
n be a natural number, and let X be a set of cardi-
nality at least ℵn. For every map Φ : [X]n → [X]<ω,
there exists an (n+1)-element free subset of X with
respect to Φ.

See the book P. Erdös, A. Hajnal, A. Máté, and
R. Rado [5], especially Chapter 10, for this result.

P. Růžička’s proof follows the main lines of
F. Wehrung’s proof, except that it introduces an
enhancement of Kuratowski’s Free Set Theorem,
called there the existence of free trees, which it
uses in the final argument involving the Erosion
Lemma.
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