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A Higgs bundle is a holomorphic vector bundle together

with a Higgs field. Such objects first emerged twenty

years ago in Nigel Hitchin’s study of the self-duality

equations on a Riemann surface and in Carlos Simp-

son’s Ph.D. thesis and subsequent work on nonabelian

Hodge theory. Hitchin introduced the term “Higgs field”

because of similarities to objects labeled this way in

other equations of gauge theory. In those contexts Higgs

fields describe physical particles like the Higgs boson.

Simpson suggested the shorthand “Higgs bundle” for a

bundle together with a Higgs field.

Higgs bundles have a rich structure and play a role

in many different areas including gauge theory, Kähler

and hyperkähler geometry, surface group representa-

tions, integrable systems, nonabelian Hodge theory, the

Deligne–Simpson problem on products of matrices, and

(most recently) mirror symmetry and Langlands duality.

In this essay we will touch lightly on a selection of these

topics.

We start with the definition: A Higgs bundle is a pair

(E,φ) where E is a holomorphic vector bundle and φ,

the Higgs field, is a holomorphic 1-form with values in

the bundle of endomorphisms of E, satisfying φ∧φ = 0.

In the simplest examples the bundle is a complex

line bundle and the Higgs field is a holomorphic 1-form.

To see a nonabelian example, set E = K1/2
⊕ K−1/2

where K1/2 is a complex line bundle whose square is

K, the canonical bundle on a Riemann surface (i.e., the

bundle of holomorphic 1-forms). A Higgs field on E is

then equivalent to a bundle map φ : E -→ E ⊗ K. We
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obtain a family of Higgs fields on E parameterized by

quadratic differentials, i.e., sections a of the line bun-

dle K2
≅ Hom(K−1/2, K1/2

⊗ K), by setting φ =

(

0 a
1 0

)

,

where 1 is the identity section of the trivial bundle

Hom(K1/2, K−1/2
⊗ K).

We now look at how Higgs bundles emerge in non-

abelian Hodge theory. Hodge theory uses harmonic

differential forms to represent de Rham cohomolo-

gy classes on Riemannian manifolds. On a hermitian

manifold, say X, ∂̄-harmonic forms give analogous rep-

resentatives for Dolbeault cohomology classes. If the

metric on X is Kähler, the real and complex theories are

compatible. This relates topological and holomorphic

data on X and reveals additional structure on the topo-

logical side, i.e., on the cohomology groups Hk(X;C).

For k = 1 we get

(1) H1(X;C) ≅ H0,1(X)⊕H1,0(X).

On the holomorphic side, H0,1(X) describes deforma-

tions of holomorphic line bundles onX. The holomorphic

data thus come from a pair (E,φ), where E is a line

bundle and φ ∈ H1,0(X) is a holomorphic 1-form, i.e., it

comes from an abelian Higgs bundle. On the topological

side, H1(X;C) models the tangent space to the space of

homomorphisms from π1(X) to C∗. This is the same as

the space of flat complex line bundles on X.

In the nonabelian theory we replace C∗ by a non-

abelian Lie group. For definiteness we take SL(n,C). The

topological side of the Hodge theory now has SL(n,C)-

representations of π1(X) or, equivalently, flat complex

vector bundles on X. A theorem of Corlette and Don-

aldson provides the harmonic part of the theory; it

says that if the representation of π1(X) is complete-

ly reducible, then the corresponding flat bundle, say

E, supports a harmonic metric (solving an appropriate

generalization of Laplace’s equation). The holomorphic

interpretation uses the fact that flat structures are de-

fined by bundle connections with vanishing curvature.

The harmonic metric splits the flat connection into two

parts: a skew-hermitian (unitary) part and a hermitian
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part. The anti-holomorphic component of the former de-

fines a holomorphic structure on E; the latter defines a

holomorphic endomorphism-valued 1-form, i.e., a Higgs

field φ. The holomorphic data, i.e. (E,φ), thus define a

Higgs bundle.

We next explore some features of Higgs bundles,

starting with a theorem of Hitchin and Simpson that

says that, for a Higgs bundle to admit a harmonic

metric as above, it must satisfy a condition called stabil-

ity. Together with Corlette’s theorem this establishes a

correspondence between stable Higgs bundles on a Käh-

ler manifold and irreducible SL(n,C)-representations of

π1(X). This is a Higgs bundle version of a famous theo-

rem of Narasimhan–Seshadri on vector bundles and its

generalization by Donaldson and Uhlenbeck–Yau.

A key attribute of Higgs bundles is a C∗-action given

by λ(E, φ) := (E, λφ). Isomorphism classes of Higgs

bundles fixed by this action are complex variations of

Hodge structure (the focus of Simpson’s Ph.D. thesis).

Through them Higgs bundles reveal strong restrictions

on fundamental groups of compact Kähler manifolds.

Using the fact that stable Higgs bundles form a Tan-

nakian category, this C∗-action also reveals a C∗-action

on the pro-reductive completion of π1(X).

Another central feature of Higgs bundles is that they

have continuous moduli, i.e., they come in families pa-

rameterized by the points of a geometric space (in fact

a quasi-projective variety) known as a moduli space.

One method for constructing such spaces, using Mum-

ford’s geometric invariant theory (GIT), depends on a

property called stability. When X is a Riemann surface

(assumed from now on) the previously mentioned sta-

bility property corresponds precisely to the GIT notion.

The essence of nonabelian Hodge theory thus amounts

to an identification between the moduli space of sta-

ble Higgs bundles on the Riemann surface X and the

moduli space of irreducible SL(n,C)-representations of

its fundamental group. In the abelian counterpart all

Higgs bundles are stable and the space of holomorphic

1-forms is dual to the infinitesimal deformation space

of a line bundle. Thus the moduli space is the cotangent

bundle to the Jacobian variety of X. The correspond-

ing representation space is now the character variety

Hom(π1(X),C
∗) ≅ (C∗)2g .

The moduli space has a third description as a space

of solutions to the Hitchin equations. These are gauge-

theoretic equations for the Higgs field, φ, and an SU(n)

connectionA compatible with the holomorphic structure

on the bundle E:

FA + [φ,φ
∗] = 0

d′′Aφ = 0.

Here FA is the curvature of A, and d′′Aφ is the anti-

holomorphic part of the covariant derivative of φ.

Hitchin obtained these equations by considering instan-

tons (solutions to the anti-self-duality equations) that are

invariant under a two-dimensional group of symmetries

on a four-dimensional manifold. The equations express

both the flatness of an SL(n,C)-connection A+φ+φ∗

and the harmonicity condition for a metric in the result-

ing flat bundle. This links flat bundles and Higgs bundles

in the correspondence described earlier.

The four-dimensional origin and basic structure of

the equations account for a hyperkähler structure on the

moduli space. This is a Riemannian metric that is Kähler

with respect to three distinct complex structures de-

fined by operators I, J, and K satisfying the quaternionic

relations. The moduli spaces of Higgs bundles on Rie-

mann surfaces are noncompact hyperkähler manifolds.

The restriction of the C∗-action to S1 is Hamiltonian

with respect to one of the Kähler forms on the moduli

space. The associated symplectic moment map is given

by the L2-norm of the Higgs field. This map constitutes

a perfect Bott–Morse function on the moduli space and

provides a powerful tool for studying its topology.

In addition to providing a distinguished Morse func-

tion, the Higgs field is responsible for another signature

feature of the Higgs bundle moduli space M , namely the

Hitchin fibration. Since φ takes its values in endomor-

phisms of the bundle fibers, we can compute det(φ−λI).

The coefficients of this characteristic polynomial define

the Hitchin map

H : M -→

n
⊕

d=2

H0(X;Kd).

Here K is the canonical bundle on X. The target is a

vector space with dimension half that of M and the

generic fiber is an abelian variety, in fact the Jacobian

of the so-called spectral curve. This is an example of an

algebraically completely integrable system.

The Hitchin map has a section whose image is a com-

ponent of the moduli space of representations of π1(X)

in SL(n,R). It is a (n2
− 1)(g − 1)-dimensional complex

cell that for n = 2 corresponds to the Teichmüller space

of the surface. The Higgs bundles are precisely the rank

2 examples described earlier. Applying the existence

theorem for Hitchin’s equations to those with a = 0

provides a new proof of the uniformization theorem for

Riemann surfaces.

Virtually everything described above applies if

SL(n,C) is replaced by a complex semisimple Lie group

G. The resulting G-Higgs bundle theory introduces

holomorphic tools for studying representations of

π1(X) into G and also into the real forms of G. In a sign

that they still have much to teach us, Higgs bundles

play a role in the recent Kapustin–Witten interpretation

via topological field theory of the geometric Langlands

correspondence. We end by noting that the Hitchin

equations emerge here after imposing a two-dimensional

symmetry—much as in Hitchin’s original derivation of

his equations!
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