
Opinion

Open Source
Mathematical Software
Mathematical software has greatly contributed to mathemat-

ical research, enabling exciting advances in mathematics and

providing extensive data for conjectures. Perhaps three of the

most well-known applications of computation to mathemat-

ical research are the resolution of the four-color conjecture

by Appel and Haken in 1976 (though it is now reproven

with less need for computer verification by N. Robertson, D.

P. Sanders, P. D. Seymour and R. Thomas), Thomas Hales’s

proof of Kepler’s conjecture, and the formulation of the Birch

and Swinnerton-Dyer conjecture, which grew out of extensive

numerical computation.

Open source software, such as TEX, Mozilla Firefox, and

Linux has had a profound effect on computing during the

last decade, and we hope that open source mathematical

software will have a similar positive impact on mathematics.

I think we need a symbolic standard to make

computer manipulations easier to document

and verify. And with all due respect to the free

market, perhaps we should not be dependent

on commercial software here. An open source

project could, perhaps, find better answers

to the obvious problems such as availability,

bugs, backward compatibility, platform in-

dependence, standard libraries, etc. One can

learn from the success of TEX and more spe-

cialized software like Macaulay2. I do hope

that funding agencies are looking into this.

—Andrei Okounkov, 2006 Fields medalist

(see “Interviews with three Fields medalists”

Notices of the AMS, 54(3) (2007), 405–410).

The term open source is defined at http://www.

opensource.org/, but basically it means anyone (including

commercial companies or the defense department) should

be able to inspect open source software, modify it, and share

it with others.

One key difference between mathematical theorems and

software is that theorems require little maintenance, where-

as mathematical software requires substantial and potentially

expensive maintenance (bug fixes, updates when algorithms

or languages change, etc.). Mathematical research usually gen-

erates no direct revenue for researchers, and likewise open

source mathematical software is free to share and extend,

so it rarely generates revenue. Volunteer effort, donations,

and financial support from the NSF and other organizations

is thus critical to the success of open source mathematical

software.

There is a proof in the article by Campbell et al. in The

Atlas of Finite Groups—Ten Years On (1998) that describes

how many separate software packages were “easily used” to

deduce various mathematical facts—no code is given, and

some of the programs are proprietary software that runs

only on hardware many years out of date. Such proofs may

become increasingly common in mathematics if something

isn’t done to reverse this trend.
Suppose Jane is a well-known mathematician who an-

nounces she has proved a theorem. We probably will believe
her, but she knows that she will be required to produce
a proof if requested. However, suppose now Jane says a
theorem is true based partly on the results of software. The

closest we can reasonably hope to get to a rigorous proof
(without new ideas) is the open inspection and ability to use
all the computer code on which the result depends. If the
program is proprietary, this is not possible. We have every
right to be distrustful, not only due to a vague distrust of
computers but because even the best programmers regularly

make mistakes.
If one reads the proof of Jane’s theorem in hopes of

extending her ideas or applying them in a new context, it
is limiting to not have access to the inner workings of the
software on which Jane’s result builds. For example, consider

the following quote from the Mathematica tutorial1:

Particularly in more advanced applications of
Mathematica, it may sometimes seem worth-
while to try to analyze internal algorithms
in order to predict which way of doing a

given computation will be the most efficient.
[…] But most often the analyses will not be
worthwhile. For the internals of Mathemati-
ca are quite complicated, and even given a
basic description of the algorithm used for
a particular purpose, it is usually extremely

difficult to reach a reliable conclusion about
how the detailed implementation of this al-
gorithm will actually behave in particular
circumstances.

No journal would make a statement like the above about
the proofs of the theorems they publish. Increasingly, pro-

prietary software and the algorithms used are an essential
part of mathematical proofs. To quote J. Neubüser, “with this
situation two of the most basic rules of conduct in mathemat-
ics are violated: In mathematics information is passed on free
of charge and everything is laid open for checking.”

Full disclosure: The second author started a new math-

ematics software system in 2005 called SAGE (see www.
sagemath.org), which combines Python, GAP, Singular, PARI,
Maxima, SciPy, etc. with several hundred thousand lines of
new code. SAGE receives contributions from many mathe-
maticians worldwide that synthesize the latest algorithms
from a broad range of topics into a comprehensive toolkit

for mathematical research.

—David Joyner

U. S. Naval Academy, Annapolis
wdj@usna.edu
—William Stein

University of Washington, Seattle
wstein@u.washington.edu

1http://reference.wolfram.com/mathematica/tutorial/

WhyYouDoNotUsuallyNeedToKnowAboutInternals.html

November 2007 Notices of the AMS 1279

http://www.opensource.org/
http://www.opensource.org/
http://www.sagemath.org
http://www.sagemath.org
http://reference.wolfram.com/mathematica/tutorial/WhyYouDoNotUsuallyNeedToKnowAboutInternals.html
http://reference.wolfram.com/mathematica/tutorial/WhyYouDoNotUsuallyNeedToKnowAboutInternals.html

