Survey of Non-Desarguesian
Planes

Charles Weibel

he abstract study of projective geometry
first arose in the work of J.-V. Poncelet
(1822) and K. von Staudt (1847). About
100 years ago, axiomatic frameworks
were developed by several people, in-
cluding G. Fano, D. Hilbert, E. H. Moore, 1. Schur,
and O. Veblen. It was a very active branch of
mathematics during 1900-1935, and a partial list
of people then in this field reads like a “Who’s
Who of Mathematics”: A. Albert, E. Artin, Dickson,
Jacobson, Jordan, Moufang, Wedderburn, Zassen-
haus, and Zorn. It was reinvigorated by R. Baer
and M. Hall about 50 years ago. To my delight, it
has many connections to modern mathematics.

Definition. By a projective plane we mean a set,
whose elements are called points, together with a
family of subsets called lines, satisfying the follow-
ing axioms:
(P1) Any two distinct points belong to exactly
one line;
(P2) Any two distinct lines meet in exactly one
point;
(P3) There exists a quadrilateral: a set of four
points, no three on any line.

Perhaps the most familiar example is the real
projective plane P?(R), whose “points” are the
lines through the origin in Euclidean 3-space and
whose “lines” are planes in 3-space. Of course the
projective plane P?(F) over any field F will also be
a projective plane. The smallest projective plane
is P?(F,), where [ is the field of 2 elements. It has
7 points and 7 lines, and is often called the Fano
plane, having been discovered in 1892 by Gino
Fano [Fano].
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The Fano plane of 7 points.

If there are exactly g + 1 points on any (hence
every) line, we say that the plane has order q. A
plane of order g has g® + g + 1 points, and also
q° + g + 1 lines. Of course, P?(F,) has order g. It is
conjectured that the order g of a finite projective
plane must be a prime power; this is known only
for g < 11. (Tarry proved in 1901 that g # 6;
g # 10 was only proven in 1988 by a computer
search [Lam] and even the case g = 12 is still
open.)

A projective plane is the same as a 2-dimen-
sional projective geometry. By a d-dimensional
projective geometry, we mean a set (of points),
together with a family of subsets (lines) satisfying
the following axioms, taken from the 1910 book
by Veblen and Young [VY]:

(PG1) Two distinct points lie on exactly one line;

(PG2) If a line meets two sides of a triangle, not
at their intersection, then it also meets the
third side;

(PG3) Every line contains at least 3 points;

(PG4) The set of all points is spanned by d + 1
points, and no fewer.
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Desargues’ Theorem.

The feature that makes projective planes more
complicated than higher dimensional projective
geometries is that Desargues’ Theorem need not
hold, an observation made by Hilbert in [Hi]. We
say that two triangles are perspective from a point
P (resp., from a line L) if their corresponding
vertices are on lines through P (resp., edges meet
on L).

Desargues’ Theorem.! Let F be any field (or divi-
sion ring). Two triangles in P4(F) are perspective
from a point if and only if they are perspective from
a line.

Definition. A projective geometry is said to be De-
sarguesian if whenever two triangles are perspec-
tive from a point, they are perspective from a line,
and vice versa. If this property fails, it is said to be
non-Desarguesian.

This terminology is due to Hilbert [Hi], who
proved (see [VB]) that any Desarguesian projective
geometry is just a projective space P4(F) over
a field (or division ring) F. If d > 3, every d-
dimensional projective geometry is Desarguesian.
The projective plane over Cayley’s Octonions (see
below) is non-Desarguesian.

Every finite projective plane of order g < 8 is
Desarguesian, and hence is isomorphic to the plane
P2(F,). There are three distinct non-Desarguesian
planes of order 9, each consisting of 91 points.
We will describe them below; the first of these was
constructed by Veblen and Wedderburn in [VW];
it is coordinatized by the Quaternionic near-field
(see below).

Collineations

Automorphisms of a projective plane must pre-
serve lines, so they are called collineations. The
collineations form a group, and the geometry of

L Girard Desargues (1591-1661) discovered this property
for projective spaces over R.
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the plane is reflected by the structure of this
group.

A collineation & # 1 is called a perspective if it
fixes every point on a line L (the axis of «). Every
perspective has a unique fixed point C (the center
of o) such that « fixes every line through C [Hall,
20.4.1]; x is called a C-L collineation and has no
fixed points other than C and the points of L. If
C € L, x is also called a translation with axis L;
there are no fixed points except those on L.

Not every collineation fixes the points on a line.
For example, if « is an automorphism of a field
F then (x:y:z) —» (axx:xy:xz) is a collineation
of P?(F) whose fixed points form the sub-plane
P2(F*).If a,b,c € F are distinct, the collineation
(x:y:z) — (ax:by:cz) fixes only (0:0:1), (0:1:0)
and (1:0:0).

The collineation group of P?(F) is the semi-
direct product of PGL,(F) and Aut(F). (Cf. [Hall,
20.9.4].) If L., is the line at infinity in P?(F), and
O is the origin, the O-L. collineations are the
dilations (x,y) — (mx,my) in PGL,(F).If C € L,
the C-L. collineations are just the translations
(x,y) » (x+a,y + b) such that (a,b) is on the
line OC.

A plane is said to be (P, Q)-transitive if it is
(P, L)-transitive for every line L through Q. This
condition is related to near-fields, as we shall see
below.

The following conditions, due to Baer [Baer],
are related to the linearity and distributivity of the
corresponding ternary rings.

Definition. The plane is said to be C-L transitive
if, for everyline L’ # L through C, the group of C-L
collineations acts transitively on the points of L’
(with the obvious exception of C and L n L’). This
condition is equivalent to the “little Desargues
property”, also called the (C,L)-Desarguesian
condition, that two triangles that are perspective
from C are perspective from L.

We say that a projective plane is a translation
plane with respect to a line L if it is C-L transi-
tive for every C € L. That is, for every C € L the
group of C-L collineations acts transitively on the
points (other than C) on every line L’ through C. In-
stead of “for every C € L”, it suffices to check two
points on L; see [Hall, 20.4.4]. Translation planes
are related to quasi-fields, as we shall see below.

Example. The Quaternionic non-Desarguesian
plane of order 9, described on page 1298, is a
translation plane with respect to a distinguished
line L, which is fixed (as a set) by every collineation.
The collineation group of this plane has order
311,040, far less than the order (42,456,960) of
PGL;,([Fy). See [Ha43].
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Modular lattices

We briefly mention the connection between pro-
jective geometry and modular lattices. Readers
interested in this connection may want to read the
recent article [Gr] by G. Gratzer in the Notices.

A lattice is said to be modular if x v (y A
z) = (x Vy) Az for every x,y,z with x < z.
Finite-dimensional modular lattices are graded by
height; height-one elements are called points, and
height-two elements are called lines. A lattice is
complemented if for every x there is an x’ so
thatx vx' =1, x A X' = 0. In a finite-dimensional
complemented modular lattice, every element is a
v of points. A lattice is simple if it has no quotient
lattices. The following result is proven in IV of
Birkhoff’s 1940 book [Bff].

Theorem. There is a 1-1 correspondence between
d-dimensional projective geometries and simple
complemented modular lattices of dimensiond + 1,
d #+ 0. Under this correspondence, the projective
geometry is the set of points and lines of the lattice.

One of Dilworth’s theorems states that every
finite-dimensional complemented modular lattice
is a product of a Boolean algebra and projective
geometries.

The Lenz-Barlotti classification

There is a classification of projective planes by
Lenz [Lenz], refined by Barlotti, according to the
possible central collineation groups. This classifi-
cation contains 53 possible classes, all but one of
which exists as a group; 36 of them exist as finite
groups. Between 7 and 12 exist as finite projective
planes, and either 14 or 15 exist as infinite pro-
jective planes. The list is given on pp. 123-126 of
[Dem)]. Rather than attempt any kind of exhaustive
description of this incomplete listing, I shall focus
on the classes of projective planes that I find most
interesting.

Moufang Planes and Alternative Division
Rings

I shall begin with Moufang planes, a class of (in-
finite) projective planes with many collineations
that was studied in the 1930s by Ruth Moufang
[Moul].

Definition. A Moufang plane is a projective plane
ITwith the property that, for every line L, the group
of automorphisms fixing L pointwise acts transi-
tively on the “affine plane” IT — L. In other words,
I1is a translation plane for every line.

Moufang related these planes to alternative al-
gebras; the algebra allows us to give a complete
classification. In particular, every finite Moufang
plane is a classical plane P?(F) over some finite
field F. To explain this, we need some algebraic
definitions.
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An alternative ring A is an abelian group
equipped with a multiplication that is left and
right distributive and that satisfies the two laws
(xx)y = x(xy), y(xx) = (yx)x. This implies that
the symmetric group 33 acts on the associator
(x,y,z) = (xy)z — x(yz) via the sign representa-
tion; the name (due to Zorn) comes from the fact
that the alternating group Aj; acts trivially on the
associator.

Definition. An alternative division ring A is an al-
ternative ring with a 2-sided identity 1, such that
every a # 0 has a two-sided inverse a~'. (It fol-
lows that the nonzero elements form a “loop,” i.e.,
a'(ab) = b = (ba)a™! for all b.) Of course, an
associative alternative division ring is just an (as-
sociative) division ring.

If A is an alternative division ring, we can form
a projective plane P?(A) following the classical
formulas: points are lines through the origin in
A3, and lines are planes through the origin.

Theorem. ([Hall, 20.5.3]) Thereisa 1-1 correspon-
dence between alternative division rings and Mo-
ufang planes, with A corresponding to P>(A).

Example. The classical Octonions form an 8-
dimensional alternative division algebra over R
(the reals). This gives a very interesting non-
Desarguesian plane.

The Artin-Zorn theorem ([Z]) states that every
finite alternative division ring is a field; it follows
that every finite Moufang plane is just the classical
P2(F,).

The Octonions are an example of a Cayley-
Dickson algebra. A Cayley-Dickson algebra is an
8-dimensional algebra A whose maximal subfields
are quadratic over F, with any two elements not
in a subfield generating a quaternion algebra.

Remark. Cayley-Dickson algebras over F are clas-
sified by the étale cohomology group H3,(F,Z/2);
the Cayley-Dickson division algebras over F cor-
respond to the nonzero elements; the Cayley-
Dickson algebra corresponding to zero is “split”.

This follows from the fact that the split Cayley-
Dickson algebra contains the matrix algebra
M, (F) as a quaternion subalgebra, and its auto-
morphism group is the algebraic group G»,. Thus
the set of isomorphism classes of Cayley-Dickson
algebras over F is the same as the nonabelian
cohomology set H'(F, G»). It is a deep theorem
that H\(F, G,) = H3,(F,Z/2).

In fact (see [SpV, 1.7]) the norm form of a
Cayley-Dickson algebra A is a Pfister form
({a,b,c)). Now 3-Pfister forms are a special
class of 8-dimensional quadratic forms and are
also classified by H'(F,G,). Thus there is a
1-1 correspondence between Cayley-Dickson al-
gebras, elements of H3(F,Z/2), and 3-Pfister
forms.
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Theorem. Every nonassociative alternative di-
vision ring is a Cayley-Dickson algebra over an
infinite field F. Moreover, if% € F then Cayley-
Dickson algebras over F are in 1-1 correspondence
with the elements of H3,(F,7/2).

The first part of this theorem was proven by
Bruck and Kleinfield [BK] and Skornyakov in 1950.
The second part follows easily from the above
remark. Note that Hjt([Fq,Z/Z) = 0 for every fi-
nite field, which provides another proof of the
Artin-Zorn theorem.

Remark. P. Jordan [J49] and Freudenthal [Fr51]
gave a “projective” description of the projective
plane P?(A) over any Cayley-Dickson algebra A
(they used the Octonions). Their construction
uses the exceptional simple Jordan algebra J over
A. The points of P>(A) are the irreducible idem-
potents in J, and the lines are the annihilators
of these idempotents. Note that J is the 27-
dimensional algebra of Hermitian 3 X 3 matrices
over A with multiplication X o Y = (XY + YX)/2.

Ternary Rings

Any field (or division ring, or alternative division
ring) F has a ternary operation T (a, b, c) = ab + c,
making it a “ring” in the following sense.

Definition. A ternary ring R is a set R with two dis-
tinguished elements 0,1 and a ternary operation
T : R® — R satisfying the following conditions:
(T1) T(1,a,0) =T(a,1,0) =aforalla € R;
(T2) T(a,0,c) =T(0,a,c) =c forall a,c € R;
(T3) If a,b,c € R, the equation T(a,b,y) = c
has a unique solution y;
(T4) If a,a’,b,b’ € R and a # a’, the equations
T(x,a,b) = T(x,a’,b’) have a unique so-
lution x in R;
(T5) If a,a’,b,b’ € R and a # a’, the equations
T(a,x,y) = b, T(a',x,y) = b’ have a
unique solution x, y in R.
If R is finite, the condition (T5) is redundant,
since it can fail only if the evident self-map
of R?, (x,y) - (b,b’), is not a bijection, i.e.,
if T(a,x,y) = T(a,x,y') and T(a',x,y) =
T(a',x',y’) for some (x,y) # (x’,y’)—and this
contradicts either (T3) if x = x’ or (T4) if x # x'.

Theorem. ([AS, 4.2]) Every ternary ring R deter-
mines a projective plane P?>(R) and a distinguished
quadrilateral Q = (X,Y,0,1) in that plane.

The construction of P?(R) follows a familiar
construction of P?(F). There is one line L “at
infinity” consisting of Y = (0 : 1 : 0) together
with special points (1 : a : 0), a € R; we set
X = (1:0:0). The other points are the elements
in R?, with O = (0,0) and I = (1, 1). For each x,
there is a “vertical” line consisting of Y together
with the points (x, y). For each (a, b) there is a line
consisting of (1 : a : 0) and the set of solutions
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Y =(0:1:0) g

) \: (1:a:0)
y=za (1:1:0)

Yy
the line b y== line L at
y=za+b a infinity

1 - X

I T
o ~
z 1 X=(1:0:0)

The ternary operation y = T(x,a,b) = xa + b.

(x,y) to y = T(x,a,b); in slope-intercept form,
this is the line y = xa + b.

Example. Let F be a field, or a division ring, or
an alternative division ring. The projective plane
determined by its associated ternary ring is just
P2 (F).

Plane coordinates. Conversely, any quadrilateral
(X,Y,0,I) in a projective plane gives rise to a
ternary ring R, via a coordinate system. Here is
a sketch of the construction, due to Von Staudt
(1856-1860 for R) and Hilbert (1899).

If R denotes the set of points on the line OI, ex-
cept the intersection (1:1:0) of OI with L = XY,
then there is a standard labeling of the points not
on L (the “affine points”) by the set R?; O is (0,0)
and I is (1,1). (It is useful to think of L = XY as
the line “at infinity”, the line O X as the X-axis and
the line OY as the Y-axis.) We say that a line has
slope m if it meets L in the same point as the line
through (0, 0) and (1, m). Each line not through Y
has a standard slope-intercept description, which
we may symbolically write as y = xm + b. The for-
mula y = T(x, m,b) makes R into a ternary ring.

It is clear that ternary rings are in 1-1 corre-
spondence with isomorphism classes of projective
planes and distinguished quadrilaterals.

Theorem. ([AS, 4.4]) If R and R’ are two ternary
rings for the same projective plane, arising from
quadrilaterals Q and Q’, then R = R’ if and only if
there is an automorphism of the plane sending Q
toQ’'.

Corollary. Every Desarguesian plane has a unique
associated ternary ring, which is an associative di-
vision ring.

Indeed, PGL,(F) acts transitively on quadrilat-
erals in P?(F).

Isotopisms. An isotopism between ternary rings
(R,T) and (R',T’) is a set of three bijections
(F,G,H) from R to R’ such that H(0) = 0 and
HT(a,b,c) = T'(Fa,Gb,Hc). It defines an iso-
morphism « : P>(R) = P?(R’) fixing O, X, and
Y by a(x,y) = (F(x),H(y)); lines of slope m
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map to lines of slope G(m). Conversely, every
isomorphism of projective planes fixing O, X,
and Y comes from an isotopism of the coordinate
ternary rings. (See [Kn65].)

Near-fields

Near-fields constitute a beautiful class of ternary
rings with T(a,b,c) = ab + c. They were intro-
duced in 1905 by Dickson [D05] and named in
[236]. Although Dickson found all finite near-
fields in [DO5], his list was shown to be exhaustive
only in Zassenhaus’ 1936 thesis [Z36]. We describe
them now, as motivation for linear ternary rings.

Definition. A (right) near-field is an associa-
tive ring K with 1 whose non-zero elements
K* = K — {0} form a group under multiplication,
such that:
(a) multiplication is right distributive: (a +
b)c = ab + ac; and
(b) Ifa,a’,b € K and a # a’, the equation xa —
xa’ = b has a (unique) solution x. Unique-
ness in (b) is automatic; if X is finite, all of
axiom (b) is redundant.

Clearly, the center F of a near-field K is a field,
and (by right distributivity) K is a subalgebra of
Endr(K); a finite near-field is an algebra over a
finite field F,.

Geometric interpretation. A ternary ring R is a
near-field if and only if it is (X, Y)-transitive. Asso-
ciativity is equivalent to being X-OY transitive; in
this case the map (x,y) — (ax,y) is a collineation
sending the line y = xm-+b to theline y = (ma)x+
b. (See [St, 12.3.3].)

The quaternionic near-field Jy. Additively, Jq is a
vector space over [F3 on basis {1,i}. Multiplicative-
ly Jo is the subset J = {0, 1, =i, =j, =k} of the
quaternions, and (Jo — {0}, -) is the quaternionic
group of order 8. The identification between the
additive and multiplicative descriptions is given
by setting j = 1 +i and k = 1 —1i. (See the addition
table below.) The verification that Jq is a near-field
is an easy exercise.

Veblen and Wedderburn observed in 1907 that
the projective plane P?(Jy) cannot be Desargue-
sian since Jy is not a division ring.

+]10|1]-1
0jo0|1|-1
ifi]jlk
Al kA

Addition table for the quaternionic near-field.

Dickson near-fields. Here is Dickson’s construc-
tion of a finite near-field K with center [F,; see [Hall,
20.7.2]. Let v be an integer whose prime factors all
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divide g — 1; if g = 3 (mod 4) we require 4 t v.
The abelian group underlying K will be F,» but the
product o in K is defined by w o u = u - w¥, where
g =1+j(@-1) modv(g-1), and u = gkv+J
for a fixed primitive root of unity € € F,v. It is a
subalgebra of M, (F,);if v =1 then K = F,.

To illustrate, note that wo € = Cw9,and Co C =
¢+ If v = 2, € generates a cyclic subgroup of K*
of order 2(g — 1) containing ;. When q = 3 and
v = 2, K is Jg, the unique near-field of order 9
described above.

Exceptional near-fields. Zassenhaus [Z36] classi-
fied all finite near-fields in 1936; in addition to the
Dickson near-fields described above, there are ex-
actly 7 exceptional near-fields—of orders 52, 72,
112, 112, 232, 292 and 592. They are described on
page 391 of [Hall]. For example, the multiplicative
group of the exceptional 25-element near-field is
SL,(F3), embedded in GL,([Fs) with generators the

0-1

two matrices of order 4 and 3, A = 1 0) and

1-2

B=1__ 2). The two 11-element exceptional

near-fields have multiplicative groups SL,(Fs) and
SLZ (|]:3 ) X C5 .

Zassenhaus’ classification is related to some
interesting group theory that lurks behind the
structure of near-fields. A Frobenius group is a
semidirect product G = K X H such that H n
gHg ' =1 for every g ¢ H. Elementary consid-
erations (see [AB], pp. 172-174) show that G acts
2-transitively on K = G/H, with K acting freely,
and that only the identity fixes two elements.

For example, if K is a near-field then the group G
of “affine” transformations g(x) = xm + b is such
a Frobenius group with H = K*. The following
result was proven in [Ha43]; see [Hall, 20.7.1].

Theorem. (Hall) Let G = K X H be a Frobenius
group. If H acts transitively on K then K has the
structure of a near-field and G is the group of affine
transformations g(x) = xm + b of K.

(1:1:0) y=xb (1::0)

y=x+b ab

a+b

a 1 a

Addition and multiplication in R. Horizontal
lines meet in X, and vertical lines meet in Y.
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Linear Ternary Rings
In a ternary ring R, it is convenient to write a + b
and ab for T(a,1,b) and T(a,b,0), respectively.
Axioms (T1) and (T2) imply the familiar identities
a+0=a=0+a,la=a=al and a0 = 0 = Oa for
all a. We may think of (R, +, -) as the underlying
binary ring of R.

In fact,both (R, +,0) and (R—{0}, -, 1) are loops,
or nonassociative groups, meaning that there is a
unique solution x to each equation xa = b, and
also to each equation ax = b. This follows from
(T4) and (T5), by setting a’ = 0.

Definition. A ternary ring is called linear if
T(a,b,c) = ab + c and (R, +,0) is a group. We
can also describe a linear ternary ring as a group
(R, +,0) equipped with a multiplication and an
identity 1, satisfying a0 = 0 = 0Oa, and such that
both xa = xa’ + b and ay = a’'y + b have unique
solutions for every a # a’ and b.

Clearly, if R is a linear ternary ring then so is
the opposite ring R°?. Any near-field K is a linear
ternary ring, and if K is not a division ring then
K°P cannot be a near-field because it is left dis-
tributive but not right distributive. In particular, Jy
and Jg” are distinct linear ternary rings (and yield
non-isomorphic projective planes of order 9).

Theorem. A ternary ring R is linear if and only if
its projective plane is Y-L transitive. That is, if and
only if the group of Y-L collineations acts transi-
tively on the affine points on any vertical line in the
plane.

This is proven in [Hall, 20.4.5]. The constructive
half of the proof is elementary: for each r € R,
the mapping 7, : (x,y) — (x,y + r) determines
a collineation of the corresponding plane, with
center Y and axis L. Hence the group G(Y,L)
of Y-L collineations acts transitively on the set
{(a,y) : y € R} of affine points on any vertical
line in the plane, and we may identify G(Y, L) with
(R, +).

Examples exist showing that (R, +) need not be
abelian; in this case, every collineation with axis L
has center Y; see [Hall, p. 359].

Lemma. Let R be a ternary ring, and let V be the
y-axis OY. Then the plane P(R) is X-V transitive if
and only if (a) T(x,m,b) = xm + b, and (b) (R —
{0}, -) is a group.

Proof. If multiplication is a group then each
(x,¥) — (xm,y) is a collineation fixing the y-axis,
the point X, and the lines y = b; these are enough
to make the plane (X,V) transitive. Conversely,
the X-V collineation o, sending (1 : m : 0) to
(1:1:0) on L must map the line y = T(x, m, b)
toy =T(x,1,b) and map (x,y) to (xm,y). Hence
if y=T(x,m,b) theny = T(mx,1,b) = xm + b.
Now 0,0y, and 0., send (x,1) to ((xm)n, 1) and
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rrP=rT,P z
TP

(¢

P oP Z

Proof that addition is commutative, using o.

(x(mn),1); as both send (1,1) to (mn,1) they
must agree and hence (xm)n = x(mn). O

Proposition. (Baer) Let R be a linear ternary ring.
If there is a nontrivial Z-L collation o for some point
Z #+# Y onlL, then (R, +) is abelian. Also, the abelian
group R is either torsion-free or an elementary p-
group for some prime p.

Proof. (See figure.) For r € R, let T, be the vertical
translation 7,(x,y) = (x,y + r). If P is any point
not on L, we must have oT,(P) = 7,0 (P) because
both operations take P to the intersection Q of the
lines o (PY) and T7(PZ). Hence o commutes with
every T,. Since o T, fixes L and no point off L, it
must be a Z-L collineation for some Z’ distinct
from Y and Z. Hence o T, and o must both com-
mute with T for every s € R, which implies that
T, and T, commute,i.e., ¥ +S =S + 7.

If (R, +) has torsion, there is an element r with
pr = 0 for some prime p. But then (oT,)? = 0F;
this collineation must be the identity because it
fixes the distinct lines PZ and PZ’. In turn this
yields ¥ = (0 1,)? and hence ¥ = 1 for all s €
R. O

Hughes planes. (See [Hu] [Hall, 20.9.13].) This is
an infinite family of projective planes that are not
transitive; their ternary rings are not quasi-fields
(see below). Let K be a near-field of odd order g
whose center is [F,. There is a 3 x 3 matrix « over
F, of order g? + g + 1 that cyclically permutes the
points and also the lines of [P’Z([Fq), when regard-
ed as a collineation. The Hughes plane is given by
extending « to a collineation of the plane coordi-
natized by K. The lines in the Hughes plane are
just the iterates under « of the g2 — g + 1 lines
y =xm+b,whereb =1orb ¢ F,.

Hughes has shown in [Hu] that the ternary ring
R associated to this plane has the opposite near-
field K°P as its underlying binary ring, but that R
is not a linear ternary ring.

NOTICES OF THE AMS



Quasi-fields and Translation Planes
Definition. A (right) quasi-field R is a linear
ternary ring in which + is abelian and multiplica-
tion is right distributive: (a + b)c = ac + bc.

In other words, a quasi-field is an abelian group
(R, +,0), with a right distributive multiplication
(with 1) forming a loop on R — {0}, with the addi-
tional condition that, for every a # a’ and b, there
is a unique solution x to xa — xa’ = b.

Quasi-fields were called Veblen-Wedderburn sys-
tems in the literature before 1975, since they were
first studied in the 1907 paper [VW]. A quasi-field
R with associative multiplication is just a (right)
near-field.

Although we do not yet have a satisfactory clas-
sification of quasi-fields, their importance stems
from their geometric interpretation as the coordi-
naterings of translation planes. This interpretation
was given in [VW].

Veblen-Wedderburn Theorem. A ternary ring is
a quasi-field if and only if its projective plane is a
translation plane with respect to the line L at infin-
ity.

The required C-L collineations with center C =
(1 : m:0) are just the translation operations
(x,¥) » (x + a,y + am); the group of these acts
transitively on every line through C.

Warning. Different quadrilaterals in a translation
plane may induce non-isomorphic quasi-fields.
For example, different quadrilaterals in the unique
non-Desarguesian translation plane of order 9 in-
duce four non-isomorphic quasi-fields of order 9.
Given nonzero ri,r» € R, we can form a new
quasi-field (R, +,0) by defining u = x o y when
there is a z so that ur; = xz and yr, = r,z; see
[Ha43].

9-element ternary rings. There are five non-
isomorphic quasi-fields of order 9, all linear. Two
of course are Fy and J9. Two others are Hall al-
gebras associated to the polynomials z2 + z — 1
(see below). The last one is the strange quasi-field
U in our next example. Except for [Fy, all of them
arise from systems of coordinates in the unique
non-Desarguesian translation plane of order 9,
and are described in the Appendix to [Ha43].

Example. (Hall [Ha43, p. 274].) Here is a strange
quasi-field of order 9. Its center is {0, 1} instead
of F3. Let U be a 2-dimensional left vector space
over [F3 on basis {1,a} equipped with right action
(a+i)(-1)=—-a+(-i+1),(—a+i)(-1)=—-a+
(—=i—1),1i € F3. Since we have (—x)y = —(xy), the
multiplication is given by the table:

row- col -1 a a+l | a-1 -a | -a+l | -a-1
a -a+l | a-1 1 -a a+l | -a-1 -1
a+1 -a -a-1 | a-1 -1 1 a -a+1
a-1 -a+1 -1 - a+l | -a+1 1 a
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The abelian group (R, +) underlying a quasi-
field is a vector space over a division ring F. Thus if
Ris finite its order must be p" for some prime p. To
see this, let E denote the ring of endomorphisms
of the abelian group (R, +), and let X denote the
set of all nonzero automorphisms x — xa in E.
Since 3 operates irreducibly on (R,+), Schur’s
lemma implies that F = Endg(X) is a division ring
and that R is a vector space over F.

Left quasi-fields. A left quasi-field R is a linear
ternary ring that is left distributive. That is, R°? is
a right quasi-field.

Pickert proved that the plane IT = P?(R) associ-
ated to a left quasi-field R is the dual plane of the
plane associated to R°?. (The point (a, b) of P*(R)
corresponds to the line y = ax — b of P?(R°?), Y
corresponds to L., and the point (1 : b : 0) at in-
finity corresponds to the vertical line x = b; see
[St, 11.2.4].)

It follows that IT is the dual of a translation
plane (with respect to Y): for every line L through
Y, the group of Y-L collineations acts transitively
on the lines (other than L) through every point on
L (except Y). (See [Dem, 3.1.36].) These planes are
sometimes called shear planes.

Semi-fields

We now turn to semi-fields, a class of linear
ternary rings that complements near-fields, first
studied by Dickson in 1906. The name dates to
1965 and is due to Knuth (see [Kn65]); they are
sometimes called “nonassociative division rings”
or “distributive quasi-fields”.

Definition. A semi-field S is an abelian group
(5,+,0), with a bilinear multiplication (with 1)
with the additional condition that for every a
and b there are unique solutions x,y to xa = b,
ay = b. That is, S is a linear ternary ring in which
+ is abelian and multiplication is left and right
distributive.

It is easy to see that a semi-field contains a
field. There are non-associative semi-fields of ev-
ery prime power order p" with n > 3, n # 8. None
are alternative.

I believe thatitis possible to give a classification
of all finite semi-fields in terms of descent data.
The families of semi-fields in this section pro-
vide supporting evidence for this belief. We have
already encountered two classes of semi-fields: as-
sociative division algebras and alternative algebras
(Cayley-Dickson algebras).

Example. The smallest non-associative semi-
fields have order 16; there are 23 of these, 18
isotopic to Sy and 5 isotopic to S,,; see [Kn65].
Here S, is the 2-dimensional algebra over [F4 on
generator A with multiplication (a +Ab)(c +Ad) =
(ac+b2d) +A(bc +a?d +b%d?). This is a semi-field
with 6 automorphisms.
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Another 16-element semi-field S, is defined by
the product (a + Ab)(c + Ad) = (ac + wb?d) +
A(bc + a*d), where w € F4 — {0, 1}. It has only 3
automorphisms.

Example. More generally, suppose that g = p" and
q > p (if p = 2 we also require n even). Then there
exists an w € [F, that is not a (p + 1)*' power. We
define S, to be the 2-dimensional ring over F2 with
basis {1,A}, and product

(a+ Ab) o (c + Ad) = (ac + wb?d) + A(bc + a’d).

This is a semi-field of order g? with exactly p+1 au-
tomorphisms: A — CA, CP*! = 1; see [AS, 7.2]. S,
is a twisted form of the algebra S;, and the forms
of S; over F, are classified by [F;/[FZ(’”D.

Jordan division algebras. Let A be an alternative
division algebra over an (infinite) field F. Then
not only is A a semi-field, but it has a canoni-
cal involution. Consequently, we can form the
27-dimensional exceptional Jordan algebra J of
Hermitian 3 x 3 matrices over A. It is known [P81]
that J is a semi-field.

Similarly, if D is any division algebra then the
associated Jordan algebra (i.e., D with product
(xy + yx)/2) is a semi-field if and only if no sub-
field E of D has a Galois group of order 2. This is
the case, for example, when dim D is odd.

Non-unital trick. A non-unital semi-field S is a ring
with bilinear product for which the equations xa =
b, ay = b have unique solutions (if it had a unit
it would be a semi-field). For each 0 # u € S, the
following trick produces a product o with unit u?,
making S into a unital semi-field. The maps s — su
and t — ut are linear automorphisms of S, so o is
determined by the formula (su) o (ut) = st.

Albert’s twisted semi-fields. (See [AA][Kn65].) Let
p be aprime and g = p™ with g > 2. Then from F;»
we may construct a semi-field S with g" elements,
depending on an element ¢ not a (g — 1)%' power
in F4n; ¢ exists because g > 2.

The (F,-bilinear) product (x, y) = xy9—cx7y on
S = F,» makes S into a non-unital semi-field. The
non-unital trick above (for u = 1) turns S into a
semi-field.

It is easy to see that x o y = xy for x € F,, and
that § is a commutative F,-algebra.If n > 2, Albert
has shown that the powers of any element not in
F, do not associate; this also implies that S is not
an alternative algebra.

Cubic semi-fields. Dickson discovered the fol-
lowing class of 3-dimensional commutative semi-
fields in [DO6]. Suppose that 1/2 € F and that
x3 + ax? + bx + c is an irreducible cubic over F.
Then the vector space S with basis {1,i,j} and
commutative product i> = j, ij = ¢ + bi + aj,
j? = (4ac — b?) — 8ci — 2bj is a semi-field.
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Kaplansky studied these algebras in [Kap],
showing that they all arise as irreducible twist-
ed forms of the algebra D presented with basis
{u;,uz,u3} and multiplication u? = 0, uu; =
(i +u; —uw)/2;1 =X u.

These cubic semi-fields over F are classified by
the irreducible cubic extension fields of F (up to
conjugacy). Since Aut(D) is the symmetric group
>3 (permuting the u;), the claim follows from an
analysis of the nonabelian cohomology calculation
that H'(F,¥;) = Hom(Gal(F/F), 23).

We now turn to the geometric interpretation
of semi-fields. The following result characterizes
them as being simultaneously shear planes and
translation planes.

Theorem (Albert). Every ternary ring isotopic to a
semi-field S is a semi-field, and two semi-fields are
isotopic if and only if they coordinatize the same
plane. Moreover, S is a semi-field if and only if:

(1) P?%(S) is C-L., transitive for every point C
on the line L, at infinity, and

(2) for every line L throughY, and every P on
L (P # Y), the group of Y-L collineations
acts transitively on the lines though P (ex-
cluding L).

Standard collineations of a semi-field plane. A
semi-field plane has lots of collineations. Transla-
tion by any pair (h, k) in S? is a collineation fixing
X and Y, acting on affine points by (x,y) - (x +
h,y + k). For r € S, the shear translation (x,y) —
(x,y + xr) fixes the y-axis OY but does not fix the
point X.

These standard collineations form a normal
subgroup of all collineations. The quotient is the
group of collineations fixing O, X and Y—and we
have seen that this is isomorphic to the group of
autotopisms of S. (See [Kn65].)

Classification of Translation Planes

We conclude our survey by returning to transla-
tion planes (and quasi-fields). We have described
several types of quasi-fields: division rings, alter-
native algebras, near-fields, and semi-fields. Each
characterizes something about the geometry of
its translation plane, so it is not surprising that a
geometric taxonomy exists.

A classification of translation planes (with re-
spect to a line L) was given by André in [And],
using the set Z of admissible pairs (p, g) of points
on the line L. We say that (p, q) is admissible if for
each line H through g, other than L, the group of
p-H collineations acts transitively on the points of
L - {P, 51}

Classification of Translation Planes. Every trans-
lation plane belongs to exactly one of the following
6 classes.
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(1) Z = @, the quasi-field R is not a left quasi-
field.

2) Z={(p,p)} for one p; R is a semi-field but
is not alternative.

(3) Z consists of all pairs (p,p); R is a Cayley-
Dickson alternative algebra.

4) Z=1{(p,q),(q,p)},;R is a near-field but not
a division ring, and |R| > 9. 2

(5) Z contains exactly one pair (p, q) for each
p € L, and also contains (q,p); R is the
unique near-field Jo of order 9 (other than
o).

(6) Z is all pairs; R is a division ring (or a field)
and the plane is P?(R).

Example. If a plane is a translation plane for two
lines, then it is a translation plane for every line
through their intersection; see [Hall, 20.5.1]. If the
intersection is the distinguished point Y, this im-
plies that (Y,Y) is admissible, so we are in cases
(2), (3) or (6) of the classification theorem. In this
case, R is a semi-field in which every element a # 0
has a two-sided inverse a~!, and a~!(ab) = b. See
[Hall, 20.5.2].

Hall algebras. Here is a family of quasi-fields in-
troduced in [Ha43]. Suppose that f (x) = X2 —rx—s
is an irreducible polynomial (in x) over a field F.
Let R denote the vector space F? with (a,b)c =
(ac,bc) and the following multiplication:

(a,b)(c,0) =(a,b)c = (ac,bc);
(a,b)(c,d) =(ac +d "b(rc +s — c?),ad — bc + rb)
ifd+0
=(sv,0) + (c,d)(u + rv),
if (a,b) =u+ (c,d)v,u,v € F.

This is a quasi-field in which every x # F satisfies
the equation f(x) = 0. It is also an algebra over F.
If F = F, then R = [Fy; if |F| > 2, then R is not a
division ring, because x> — rx — s = 0 has at least
three solutions.

If F = F3, then f(x) = x> + 1 yields the unique
near-field Jo of order 9, described above. The
choices f(x) = x? + x — 1 yield two of the other
quasi-fields of order 9. (There is another strange
quasi-field of order 9 in which the center is {0, 1}
instead of [F3. It is described on page 1300 above.)

André planes. Let I be a finite group of automor-
phisms of a field L with fixed subfield K, and f :
L*/K* — T a function with (1) = 1. For a,b #
0in L, define a o b = a?®bp. Then (L, +,0) is a
quasi-field. If f(a) = B(xa) for all x of norm 1,
the associated translation plane is called an André
plane. Lineburg has proven that André planes are
characterized by the fact that there is an abelian
collineation group A that fixes two vertical lines

2Such a plane may also be coordinatized by quasi-fields
that are not near-fields, but all of its coordinatizing near-
fields are isomorphic.
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Ly, L, such that, for any other vertical line H, its
stabilizer subgroup Ay acts transitively on H —
{Y}. (See [Li, II.12].) Little is known about André
planes. A typical result is that there are only 3 non-
Desarguesian André planes of order 25 [Chenl].
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