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T
he abstract study of projective geometry
first arose in the work of J.-V. Poncelet
(1822) and K. von Staudt (1847). About
100 years ago, axiomatic frameworks
were developed by several people, in-

cluding G. Fano, D. Hilbert, E. H. Moore, I. Schur,
and O. Veblen. It was a very active branch of
mathematics during 1900–1935, and a partial list
of people then in this field reads like a “Who’s
Who of Mathematics”: A. Albert, E. Artin, Dickson,
Jacobson, Jordan, Moufang, Wedderburn, Zassen-
haus, and Zorn. It was reinvigorated by R. Baer
and M. Hall about 50 years ago. To my delight, it
has many connections to modern mathematics.

Definition. By a projective plane we mean a set,
whose elements are called points, together with a
family of subsets called lines, satisfying the follow-
ing axioms:

(P1) Any two distinct points belong to exactly
one line;

(P2) Any two distinct lines meet in exactly one
point;

(P3) There exists a quadrilateral: a set of four
points, no three on any line.

Perhaps the most familiar example is the real
projective plane P2(R), whose “points” are the
lines through the origin in Euclidean 3-space and
whose “lines” are planes in 3-space. Of course the
projective plane P2(F) over any field F will also be
a projective plane. The smallest projective plane
is P2(F2), where F2 is the field of 2 elements. It has
7 points and 7 lines, and is often called the Fano
plane, having been discovered in 1892 by Gino
Fano [Fano].

Charles Weibel is professor of mathematics at Rutgers
University. His email address is weibel@math.rutgers.
edu.

The Fano plane of 7 points.

If there are exactly q + 1 points on any (hence
every) line, we say that the plane has order q. A
plane of order q has q2 + q + 1 points, and also
q2+q+1 lines. Of course, P2(Fq) has order q. It is
conjectured that the order q of a finite projective
plane must be a prime power; this is known only
for q ≤ 11. (Tarry proved in 1901 that q 6= 6;
q 6= 10 was only proven in 1988 by a computer
search [Lam] and even the case q = 12 is still
open.)

A projective plane is the same as a 2-dimen-
sional projective geometry. By a d-dimensional
projective geometry, we mean a set (of points),
together with a family of subsets (lines) satisfying
the following axioms, taken from the 1910 book
by Veblen and Young [VY]:

(PG1) Two distinct points lie on exactly one line;
(PG2) If a line meets two sides of a triangle, not

at their intersection, then it also meets the
third side;

(PG3) Every line contains at least 3 points;
(PG4) The set of all points is spanned by d + 1

points, and no fewer.
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Desargues’ Theorem.

The feature that makes projective planes more
complicated than higher dimensional projective
geometries is that Desargues’ Theorem need not
hold, an observation made by Hilbert in [Hi]. We
say that two triangles are perspective from a point
P (resp., from a line L) if their corresponding
vertices are on lines through P (resp., edges meet
on L).

Desargues’ Theorem.1 Let F be any field (or divi-
sion ring). Two triangles in Pd(F) are perspective
from a point if and only if they are perspective from
a line.

Definition. A projective geometry is said to be De-
sarguesian if whenever two triangles are perspec-
tive from a point, they are perspective from a line,
and vice versa. If this property fails, it is said to be
non-Desarguesian.

This terminology is due to Hilbert [Hi], who
proved (see [VB]) that any Desarguesian projective
geometry is just a projective space Pd(F) over
a field (or division ring) F . If d ≥ 3, every d-
dimensional projective geometry is Desarguesian.
The projective plane over Cayley’s Octonions (see
below) is non-Desarguesian.

Every finite projective plane of order q ≤ 8 is
Desarguesian, and hence is isomorphic to the plane
P2(Fq). There are three distinct non-Desarguesian
planes of order 9, each consisting of 91 points.
We will describe them below; the first of these was
constructed by Veblen and Wedderburn in [VW];
it is coordinatized by the Quaternionic near-field
(see below).

Collineations

Automorphisms of a projective plane must pre-
serve lines, so they are called collineations. The
collineations form a group, and the geometry of

1Girard Desargues (1591–1661) discovered this property
for projective spaces over R.

the plane is reflected by the structure of this
group.

A collineation α 6= 1 is called a perspective if it
fixes every point on a line L (the axis of α). Every
perspective has a unique fixed point C (the center
of α) such that α fixes every line through C [Hall,
20.4.1]; α is called a C-L collineation and has no
fixed points other than C and the points of L. If
C ∈ L, α is also called a translation with axis L;
there are no fixed points except those on L.

Not every collineation fixes the points on a line.
For example, if α is an automorphism of a field
F then (x : y : z) ֏ (αx :αy :αz) is a collineation
of P2(F) whose fixed points form the sub-plane
P2(Fα). If a, b, c ∈ F are distinct, the collineation
(x :y :z)֏ (ax :by :cz) fixes only (0:0:1), (0:1:0)
and (1:0:0).

The collineation group of P2(F) is the semi-
direct product of PGL2(F) and Aut(F). (Cf. [Hall,
20.9.4].) If L∞ is the line at infinity in P2(F), and
O is the origin, the O-L∞ collineations are the
dilations (x, y)֏ (mx,my) in PGL2(F). If C ∈ L∞,
the C-L∞ collineations are just the translations
(x, y) ֏ (x + a,y + b) such that (a,b) is on the
line OC.

A plane is said to be (P ,Q)-transitive if it is
(P , L)-transitive for every line L through Q. This
condition is related to near-fields, as we shall see
below.

The following conditions, due to Baer [Baer],
are related to the linearity and distributivity of the
corresponding ternary rings.

Definition. The plane is said to be C-L transitive
if, for every line L′ 6= L through C, the group of C-L
collineations acts transitively on the points of L′

(with the obvious exception of C and L∩ L′). This
condition is equivalent to the “little Desargues
property”, also called the (C, L)-Desarguesian
condition, that two triangles that are perspective
from C are perspective from L.

We say that a projective plane is a translation
plane with respect to a line L if it is C-L transi-
tive for every C ∈ L. That is, for every C ∈ L the
group of C-L collineations acts transitively on the
points (other than C) on every line L′ through C. In-
stead of “for every C ∈ L”, it suffices to check two
points on L; see [Hall, 20.4.4]. Translation planes
are related to quasi-fields, as we shall see below.

Example. The Quaternionic non-Desarguesian
plane of order 9, described on page 1298, is a
translation plane with respect to a distinguished
line L, which is fixed (as a set) by every collineation.
The collineation group of this plane has order
311,040, far less than the order (42,456,960) of
PGL2(F9). See [Ha43].
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Modular lattices

We briefly mention the connection between pro-
jective geometry and modular lattices. Readers
interested in this connection may want to read the
recent article [Gr] by G. Grätzer in the Notices.

A lattice is said to be modular if x ∨ (y ∧
z) = (x ∨ y) ∧ z for every x, y, z with x ≤ z.
Finite-dimensional modular lattices are graded by
height; height-one elements are called points, and
height-two elements are called lines. A lattice is
complemented if for every x there is an x′ so
that x∨ x′ = 1, x ∧ x′ = 0. In a finite-dimensional
complemented modular lattice, every element is a
∨ of points. A lattice is simple if it has no quotient
lattices. The following result is proven in IV of
Birkhoff’s 1940 book [Bff].

Theorem. There is a 1–1 correspondence between
d-dimensional projective geometries and simple
complemented modular lattices of dimension d+1,
d 6= 0. Under this correspondence, the projective
geometry is the set of points and lines of the lattice.

One of Dilworth’s theorems states that every
finite-dimensional complemented modular lattice
is a product of a Boolean algebra and projective
geometries.

The Lenz-Barlotti classification

There is a classification of projective planes by
Lenz [Lenz], refined by Barlotti, according to the
possible central collineation groups. This classifi-
cation contains 53 possible classes, all but one of
which exists as a group; 36 of them exist as finite
groups. Between 7 and 12 exist as finite projective
planes, and either 14 or 15 exist as infinite pro-
jective planes. The list is given on pp. 123–126 of
[Dem]. Rather than attempt any kind of exhaustive
description of this incomplete listing, I shall focus
on the classes of projective planes that I find most
interesting.

Moufang Planes and Alternative Division
Rings
I shall begin with Moufang planes, a class of (in-
finite) projective planes with many collineations
that was studied in the 1930s by Ruth Moufang
[Mou].

Definition. A Moufang plane is a projective plane
Πwith the property that, for every line L, the group
of automorphisms fixing L pointwise acts transi-
tively on the “affine plane” Π− L. In other words,
Π is a translation plane for every line.

Moufang related these planes to alternative al-
gebras; the algebra allows us to give a complete
classification. In particular, every finite Moufang
plane is a classical plane P2(F) over some finite
field F. To explain this, we need some algebraic
definitions.

An alternative ring A is an abelian group
equipped with a multiplication that is left and
right distributive and that satisfies the two laws
(xx)y = x(xy), y(xx) = (yx)x. This implies that
the symmetric group Σ3 acts on the associator
〈x, y, z〉 = (xy)z − x(yz) via the sign representa-
tion; the name (due to Zorn) comes from the fact
that the alternating group A3 acts trivially on the
associator.

Definition. An alternative division ring A is an al-
ternative ring with a 2-sided identity 1, such that
every a 6= 0 has a two-sided inverse a−1. (It fol-
lows that the nonzero elements form a “loop,” i.e.,
a−1(ab) = b = (ba)a−1 for all b.) Of course, an
associative alternative division ring is just an (as-
sociative) division ring.

If A is an alternative division ring, we can form
a projective plane P2(A) following the classical
formulas: points are lines through the origin in
A3, and lines are planes through the origin.

Theorem. ([Hall, 20.5.3]) There is a 1–1 correspon-
dence between alternative division rings and Mo-
ufang planes, with A corresponding to P2(A).

Example. The classical Octonions form an 8-
dimensional alternative division algebra over R
(the reals). This gives a very interesting non-
Desarguesian plane.

The Artin-Zorn theorem ([Z]) states that every
finite alternative division ring is a field; it follows
that every finite Moufang plane is just the classical
P2(Fq).

The Octonions are an example of a Cayley-
Dickson algebra. A Cayley-Dickson algebra is an
8-dimensional algebraA whose maximal subfields
are quadratic over F , with any two elements not
in a subfield generating a quaternion algebra.

Remark. Cayley-Dickson algebras over F are clas-
sified by the étale cohomology group H3

et(F,Z/2);
the Cayley-Dickson division algebras over F cor-
respond to the nonzero elements; the Cayley-
Dickson algebra corresponding to zero is “split”.

This follows from the fact that the split Cayley-
Dickson algebra contains the matrix algebra
M2(F) as a quaternion subalgebra, and its auto-
morphism group is the algebraic group G2. Thus
the set of isomorphism classes of Cayley-Dickson
algebras over F is the same as the nonabelian
cohomology set H1(F, G2). It is a deep theorem
that H1(F, G2) ≅ H

3
et(F,Z/2).

In fact (see [SpV, 1.7]) the norm form of a
Cayley-Dickson algebra A is a Pfister form
〈〈a,b, c〉〉. Now 3-Pfister forms are a special
class of 8-dimensional quadratic forms and are
also classified by H1(F, G2). Thus there is a
1–1 correspondence between Cayley-Dickson al-
gebras, elements of H3

et(F,Z/2), and 3-Pfister
forms.
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Theorem. Every nonassociative alternative di-
vision ring is a Cayley-Dickson algebra over an
infinite field F . Moreover, if 1

2
∈ F then Cayley-

Dickson algebras over F are in 1–1 correspondence
with the elements of H3

et(F,Z/2).

The first part of this theorem was proven by
Bruck and Kleinfield [BK] and Skornyakov in 1950.
The second part follows easily from the above
remark. Note that H3

et(Fq,Z/2) = 0 for every fi-
nite field, which provides another proof of the
Artin-Zorn theorem.

Remark. P. Jordan [J49] and Freudenthal [Fr51]
gave a “projective” description of the projective
plane P2(A) over any Cayley-Dickson algebra A
(they used the Octonions). Their construction
uses the exceptional simple Jordan algebra J over
A. The points of P2(A) are the irreducible idem-
potents in J, and the lines are the annihilators
of these idempotents. Note that J is the 27-
dimensional algebra of Hermitian 3 × 3 matrices
over A with multiplication X ◦ Y = (XY + YX)/2.

Ternary Rings
Any field (or division ring, or alternative division
ring) F has a ternary operation T(a, b, c) = ab+ c,
making it a “ring” in the following sense.

Definition. A ternary ringR is a setRwith two dis-
tinguished elements 0,1 and a ternary operation
T : R3 → R satisfying the following conditions:

(T1) T(1, a,0) = T(a,1,0) = a for all a ∈ R;
(T2) T(a,0, c) = T(0, a, c) = c for all a, c ∈ R;
(T3) If a, b, c ∈ R, the equation T(a, b, y) = c

has a unique solution y ;
(T4) If a,a′, b, b′ ∈ R and a 6= a′, the equations

T(x, a, b) = T(x, a′, b′) have a unique so-
lution x in R;

(T5) If a,a′, b, b′ ∈ R and a 6= a′, the equations
T(a, x, y) = b, T(a′, x, y) = b′ have a
unique solution x, y in R.

If R is finite, the condition (T5) is redundant,
since it can fail only if the evident self-map
of R2, (x, y) ֏ (b, b′), is not a bijection, i.e.,
if T(a, x, y) = T(a, x′, y ′) and T(a′, x, y) =

T(a′, x′, y ′) for some (x, y) 6= (x′, y ′)—and this
contradicts either (T3) if x = x′ or (T4) if x 6= x′.

Theorem. ([AS, 4.2]) Every ternary ring R deter-
mines a projective plane P2(R) and a distinguished
quadrilateral Q = (X, Y ,O, I) in that plane.

The construction of P2(R) follows a familiar
construction of P2(F). There is one line L “at
infinity” consisting of Y = (0 : 1 : 0) together
with special points (1 : a : 0), a ∈ R; we set
X = (1 : 0 : 0). The other points are the elements
in R2, with O = (0,0) and I = (1,1). For each x,
there is a “vertical” line consisting of Y together
with the points (x, y). For each (a, b) there is a line
consisting of (1 : a : 0) and the set of solutions

the line
y=xa+b

line L at
infinity
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a

b

1

O
x 1 X=(1:0:0)

Y =(0:1:0)

•

•

•

•

•

I
•

•

•

•

(1:a:0)

(1:1:0)y=xa

y=x

The ternary operation y = T(x, a, b) = xa+ b.

(x, y) to y = T(x, a,b); in slope-intercept form,
this is the line y = xa + b.

Example. Let F be a field, or a division ring, or
an alternative division ring. The projective plane
determined by its associated ternary ring is just
P2(F).

Plane coordinates. Conversely, any quadrilateral
(X, Y ,O, I) in a projective plane gives rise to a
ternary ring R, via a coordinate system. Here is
a sketch of the construction, due to Von Staudt
(1856-1860 for R) and Hilbert (1899).

If R denotes the set of points on the line OI, ex-
cept the intersection (1 : 1 : 0) of OI with L = XY ,
then there is a standard labeling of the points not
on L (the “affine points”) by the set R2; O is (0,0)
and I is (1,1). (It is useful to think of L = XY as
the line “at infinity”, the line OX as the X-axis and
the line OY as the Y -axis.) We say that a line has
slope m if it meets L in the same point as the line
through (0,0) and (1,m). Each line not through Y
has a standard slope-intercept description, which
we may symbolically write as y = xm+b. The for-
mula y = T(x,m,b) makes R into a ternary ring.

It is clear that ternary rings are in 1–1 corre-
spondence with isomorphism classes of projective
planes and distinguished quadrilaterals.

Theorem. ([AS, 4.4]) If R and R′ are two ternary
rings for the same projective plane, arising from
quadrilaterals Q and Q′, then R ≅ R′ if and only if
there is an automorphism of the plane sending Q
to Q′.

Corollary. Every Desarguesian plane has a unique
associated ternary ring, which is an associative di-
vision ring.

Indeed, PGL2(F) acts transitively on quadrilat-
erals in P2(F).

Isotopisms. An isotopism between ternary rings
(R, T) and (R′, T ′) is a set of three bijections
(F, G,H) from R to R′ such that H(0) = 0 and
HT(a, b, c) = T ′(Fa,Gb,Hc). It defines an iso-
morphism α : P2(R) ≅ P2(R′) fixing O, X, and
Y by α(x, y) = (F(x), H(y)); lines of slope m
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map to lines of slope G(m). Conversely, every
isomorphism of projective planes fixing O, X,
and Y comes from an isotopism of the coordinate
ternary rings. (See [Kn65].)

Near-fields
Near-fields constitute a beautiful class of ternary
rings with T(a, b, c) = ab + c. They were intro-
duced in 1905 by Dickson [D05] and named in
[Z36]. Although Dickson found all finite near-
fields in [D05], his list was shown to be exhaustive
only in Zassenhaus’ 1936 thesis [Z36]. We describe
them now, as motivation for linear ternary rings.

Definition. A (right) near-field is an associa-
tive ring K with 1 whose non-zero elements
K× = K − {0} form a group under multiplication,
such that:

(a) multiplication is right distributive: (a +
b)c = ab + ac; and

(b) If a,a′, b ∈ K and a 6= a′, the equation xa−
xa′ = b has a (unique) solution x. Unique-
ness in (b) is automatic; if K is finite, all of
axiom (b) is redundant.

Clearly, the center F of a near-field K is a field,
and (by right distributivity) K is a subalgebra of
EndF(K); a finite near-field is an algebra over a
finite field Fq.

Geometric interpretation. A ternary ring R is a
near-field if and only if it is (X, Y)-transitive. Asso-
ciativity is equivalent to being X-OY transitive; in
this case the map (x, y)֏ (ax, y) is a collineation
sending the line y = xm+b to the line y = (ma)x+
b. (See [St, 12.3.3].)

The quaternionic near-field J9. Additively, J9 is a
vector space over F3 on basis {1, i}. Multiplicative-
ly J9 is the subset J = {0,±1,±i,±j,±k} of the
quaternions, and (J9 − {0}, ·) is the quaternionic
group of order 8. The identification between the
additive and multiplicative descriptions is given
by setting j = 1+ i and k = 1− i. (See the addition
table below.) The verification that J9 is a near-field
is an easy exercise.

Veblen and Wedderburn observed in 1907 that
the projective plane P2(J9) cannot be Desargue-
sian since J9 is not a division ring.

+ 0 1 -1

0 0 1 -1
i i j -k
-i -i k -j

Addition table for the quaternionic near-field.

Dickson near-fields. Here is Dickson’s construc-
tion of a finite near-fieldK with center Fq ; see [Hall,
20.7.2]. Let ν be an integer whose prime factors all

divide q − 1; if q ≡ 3 (mod 4) we require 4 ∤ ν.
The abelian group underlying K will be Fqν but the

product ◦ in K is defined by w ◦u = u ·wqi , where
qi = 1 + j(q − 1) mod ν(q − 1), and u = ζkν+j

for a fixed primitive root of unity ζ ∈ Fqν . It is a
subalgebra of Mν(Fq); if ν = 1 then K = Fq.

To illustrate, note thatw ◦ζ = ζwq , and ζ◦ζ =
ζq+1. If ν = 2, ζ generates a cyclic subgroup of K×

of order 2(q − 1) containing F×q . When q = 3 and
ν = 2, K is J9, the unique near-field of order 9
described above.

Exceptional near-fields. Zassenhaus [Z36] classi-
fied all finite near-fields in 1936; in addition to the
Dickson near-fields described above, there are ex-
actly 7 exceptional near-fields—of orders 52, 72,
112, 112, 232, 292 and 592. They are described on
page 391 of [Hall]. For example, the multiplicative
group of the exceptional 25-element near-field is
SL2(F3), embedded inGL2(F5)with generators the

two matrices of order 4 and 3, A =

(
0
1
−1

0

)
and

B =

(
1

−1
− 2
− 2

)
. The two 11-element exceptional

near-fields have multiplicative groups SL2(F5) and
SL2(F3)× C5.

Zassenhaus’ classification is related to some
interesting group theory that lurks behind the
structure of near-fields. A Frobenius group is a
semidirect product G = K ⋊ H such that H ∩

gHg−1 = 1 for every g 6∈ H. Elementary consid-
erations (see [AB], pp. 172–174) show that G acts
2-transitively on K ≅ G/H, with K acting freely,
and that only the identity fixes two elements.

For example, ifK is a near-field then the groupG
of “affine” transformations g(x) = xm+ b is such
a Frobenius group with H = K×. The following
result was proven in [Ha43]; see [Hall, 20.7.1].

Theorem. (Hall) Let G = K ⋊ H be a Frobenius
group. If H acts transitively on K then K has the
structure of a near-field andG is the group of affine
transformations g(x) = xm + b of K.

ab

b

y=xb

y=x+b

a+b

b

a 1 a

(1:b:0)(1:1:0)

Addition and multiplication in R. Horizontal
lines meet in X, and vertical lines meet in Y .
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Linear Ternary Rings
In a ternary ring R, it is convenient to write a + b
and ab for T(a,1, b) and T(a, b,0), respectively.
Axioms (T1) and (T2) imply the familiar identities
a+0 = a = 0+a, 1a = a = a1 and a0 = 0 = 0a for
all a. We may think of (R,+, ·) as the underlying
binary ring of R.

In fact, both (R,+,0) and (R−{0}, ·,1) are loops,
or nonassociative groups, meaning that there is a
unique solution x to each equation xa = b, and
also to each equation ax = b. This follows from
(T4) and (T5), by setting a′ = 0.

Definition. A ternary ring is called linear if
T(a, b, c) = ab + c and (R,+,0) is a group. We
can also describe a linear ternary ring as a group
(R,+,0) equipped with a multiplication and an
identity 1, satisfying a0 = 0 = 0a, and such that
both xa = xa′ + b and ay = a′y + b have unique
solutions for every a 6= a′ and b.

Clearly, if R is a linear ternary ring then so is
the opposite ring Rop. Any near-field K is a linear
ternary ring, and if K is not a division ring then
Kop cannot be a near-field because it is left dis-
tributive but not right distributive. In particular, J9

and J
op
9 are distinct linear ternary rings (and yield

non-isomorphic projective planes of order 9).

Theorem. A ternary ring R is linear if and only if
its projective plane is Y-L transitive. That is, if and
only if the group of Y-L collineations acts transi-
tively on the affine points on any vertical line in the
plane.

This is proven in [Hall, 20.4.5]. The constructive
half of the proof is elementary: for each r ∈ R,
the mapping τr : (x, y) ֏ (x, y + r) determines
a collineation of the corresponding plane, with
center Y and axis L. Hence the group G(Y , L)
of Y-L collineations acts transitively on the set
{(a, y) : y ∈ R} of affine points on any vertical
line in the plane, and we may identify G(Y , L)with
(R,+).

Examples exist showing that (R,+) need not be
abelian; in this case, every collineation with axis L
has center Y ; see [Hall, p. 359].

Lemma. Let R be a ternary ring, and let V be the
y-axis OY . Then the plane P(R) is X-V transitive if
and only if (a) T(x,m,b) = xm + b, and (b) (R −
{0}, ·) is a group.

Proof. If multiplication is a group then each
(x, y)֏ (xm,y) is a collineation fixing the y-axis,
the point X, and the lines y = b; these are enough
to make the plane (X,V) transitive. Conversely,
the X-V collineation σm sending (1 : m : 0) to
(1 : 1 : 0) on L must map the line y = T(x,m,b)
to y = T(x,1, b) and map (x, y) to (xm,y). Hence
if y = T(x,m,b) then y = T(mx,1, b) = xm + b.
Now σnσm and σmn send (x,1) to ((xm)n,1) and

Y

τrτsP=τsτrP

τsP

τrP

P σP

Z′

Z

Q

Proof that addition is commutative, using σ .

(x(mn),1); as both send (1,1) to (mn,1) they
must agree and hence (xm)n = x(mn). �

Proposition. (Baer) Let R be a linear ternary ring.
If there is a nontrivialZ-L collationσ for some point
Z 6= Y on L, then (R,+) is abelian. Also, the abelian
group R is either torsion-free or an elementary p-
group for some prime p.

Proof. (See figure.) For r ∈ R, let τr be the vertical
translation τr(x, y) = (x, y + r). If P is any point
not on L, we must have στr(P) = τrσ(P) because
both operations take P to the intersectionQ of the
lines σ(PY) and τ(PZ). Hence σ commutes with
every τr . Since στr fixes L and no point off L, it
must be a Z ′-L collineation for some Z ′ distinct
from Y and Z . Hence στr and σ must both com-
mute with τs for every s ∈ R, which implies that
τr and τs commute, i.e., r + s = s + r .

If (R,+) has torsion, there is an element r with
pr = 0 for some prime p. But then (στr)p = σ p;
this collineation must be the identity because it
fixes the distinct lines PZ and PZ ′. In turn this
yields τ

p
s = (στs)

p and hence τ
p
s = 1 for all s ∈

R. �

Hughes planes. (See [Hu] [Hall, 20.9.13].) This is
an infinite family of projective planes that are not
transitive; their ternary rings are not quasi-fields
(see below). Let K be a near-field of odd order q2

whose center is Fq. There is a 3× 3 matrix α over
Fq of order q2 + q + 1 that cyclically permutes the
points and also the lines of P2(Fq), when regard-
ed as a collineation. The Hughes plane is given by
extending α to a collineation of the plane coordi-
natized by K. The lines in the Hughes plane are
just the iterates under α of the q2 − q + 1 lines
y = xm + b, where b = 1 or b 6∈ Fq.

Hughes has shown in [Hu] that the ternary ring
R associated to this plane has the opposite near-
field Kop as its underlying binary ring, but that R
is not a linear ternary ring.
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Quasi-fields and Translation Planes
Definition. A (right) quasi-field R is a linear
ternary ring in which + is abelian and multiplica-
tion is right distributive: (a+ b)c = ac + bc.

In other words, a quasi-field is an abelian group
(R,+,0), with a right distributive multiplication
(with 1) forming a loop on R − {0}, with the addi-
tional condition that, for every a 6= a′ and b, there
is a unique solution x to xa− xa′ = b.

Quasi-fields were called Veblen-Wedderburn sys-
tems in the literature before 1975, since they were
first studied in the 1907 paper [VW]. A quasi-field
R with associative multiplication is just a (right)
near-field.

Although we do not yet have a satisfactory clas-
sification of quasi-fields, their importance stems
from their geometric interpretation as the coordi-
nate ringsof translationplanes.This interpretation
was given in [VW].

Veblen-Wedderburn Theorem. A ternary ring is
a quasi-field if and only if its projective plane is a
translation plane with respect to the line L at infin-
ity.

The required C-L collineations with center C =
(1 : m : 0) are just the translation operations
(x, y) ֏ (x + a, y + am); the group of these acts
transitively on every line through C.

Warning. Different quadrilaterals in a translation
plane may induce non-isomorphic quasi-fields.
For example, different quadrilaterals in the unique
non-Desarguesian translation plane of order 9 in-
duce four non-isomorphic quasi-fields of order 9.
Given nonzero r1, r2 ∈ R, we can form a new
quasi-field (R,+,◦) by defining u = x ◦ y when
there is a z so that ur1 = xz and yr2 = r1z; see
[Ha43].

9-element ternary rings. There are five non-
isomorphic quasi-fields of order 9, all linear. Two
of course are F9 and J9. Two others are Hall al-
gebras associated to the polynomials z2 ± z − 1
(see below). The last one is the strange quasi-field
U in our next example. Except for F9, all of them
arise from systems of coordinates in the unique
non-Desarguesian translation plane of order 9,
and are described in the Appendix to [Ha43].

Example. (Hall [Ha43, p. 274].) Here is a strange
quasi-field of order 9. Its center is {0,1} instead
of F3. Let U be a 2-dimensional left vector space
over F3 on basis {1, a} equipped with right action
(a+ i)(−1) = −a+ (−i + 1), (−a+ i)(−1) = −a+
(−i−1), i ∈ F3. Since we have (−x)y = −(xy), the
multiplication is given by the table:

row· col -1 a a+1 a-1 -a -a+1 -a-1

a -a+1 a-1 1 -a a+1 -a-1 -1
a+1 -a -a-1 a-1 -1 1 a -a+1
a-1 -a+1 -1 -a a+1 -a+1 1 a

The abelian group (R,+) underlying a quasi-
field is a vector space over a division ring F . Thus if
R is finite its order must bepn for some primep. To
see this, let E denote the ring of endomorphisms
of the abelian group (R,+), and let Σ denote the
set of all nonzero automorphisms x ֏ xa in E.
Since Σ operates irreducibly on (R,+), Schur’s
lemma implies that F = EndE(Σ) is a division ring
and that R is a vector space over F .

Left quasi-fields. A left quasi-field R is a linear
ternary ring that is left distributive. That is, Rop is
a right quasi-field.

Pickert proved that the plane Π = P2(R) associ-
ated to a left quasi-field R is the dual plane of the
plane associated to Rop. (The point (a, b) of P2(R)
corresponds to the line y = ax − b of P2(Rop), Y
corresponds to L∞, and the point (1 : b : 0) at in-
finity corresponds to the vertical line x = b; see
[St, 11.2.4].)

It follows that Π is the dual of a translation
plane (with respect to Y ): for every line L through
Y , the group of Y -L collineations acts transitively
on the lines (other than L) through every point on
L (except Y ). (See [Dem, 3.1.36].) These planes are
sometimes called shear planes.

Semi-fields
We now turn to semi-fields, a class of linear
ternary rings that complements near-fields, first
studied by Dickson in 1906. The name dates to
1965 and is due to Knuth (see [Kn65]); they are
sometimes called “nonassociative division rings”
or “distributive quasi-fields”.

Definition. A semi-field S is an abelian group
(S,+,0), with a bilinear multiplication (with 1)
with the additional condition that for every a
and b there are unique solutions x, y to xa = b,
ay = b. That is, S is a linear ternary ring in which
+ is abelian and multiplication is left and right
distributive.

It is easy to see that a semi-field contains a
field. There are non-associative semi-fields of ev-
ery prime power order pn with n ≥ 3, n 6= 8. None
are alternative.

I believe that it is possible to give a classification
of all finite semi-fields in terms of descent data.
The families of semi-fields in this section pro-
vide supporting evidence for this belief. We have
already encountered two classes of semi-fields: as-
sociative division algebrasand alternative algebras
(Cayley-Dickson algebras).

Example. The smallest non-associative semi-
fields have order 16; there are 23 of these, 18
isotopic to S0 and 5 isotopic to Sω; see [Kn65].
Here S0 is the 2-dimensional algebra over F4 on
generator λ with multiplication (a+λb)(c+λd) =
(ac+b2d)+λ(bc+a2d+b2d2). This is a semi-field
with 6 automorphisms.
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Another 16-element semi-field Sω is defined by
the product (a + λb)(c + λd) = (ac + ωb2d) +

λ(bc + a2d), where ω ∈ F4 − {0,1}. It has only 3
automorphisms.

Example. More generally, suppose that q = pn and
q > p (if p = 2 we also require n even). Then there
exists an ω ∈ Fq that is not a (p + 1)st power. We
define Sω to be the 2-dimensional ring over F2

q with
basis {1, λ}, and product

(a+ λb) ◦ (c + λd) = (ac +ωbpd)+ λ(bc + apd).

This is a semi-field of order q2 with exactly p+1 au-
tomorphisms: λ ֏ ζλ, ζp+1 = 1; see [AS, 7.2]. Sω
is a twisted form of the algebra S1, and the forms

of S1 over Fq are classified by F×q /F
×(p+1)
q .

Jordan division algebras. Let A be an alternative
division algebra over an (infinite) field F . Then
not only is A a semi-field, but it has a canoni-
cal involution. Consequently, we can form the
27-dimensional exceptional Jordan algebra J of
Hermitian 3×3 matrices over A. It is known [P81]
that J is a semi-field.

Similarly, if D is any division algebra then the
associated Jordan algebra (i.e., D with product
(xy + yx)/2) is a semi-field if and only if no sub-
field E of D has a Galois group of order 2. This is
the case, for example, when dimD is odd.

Non-unital trick. A non-unital semi-field S is a ring
with bilinear product for which the equations xa =
b, ay = b have unique solutions (if it had a unit
it would be a semi-field). For each 0 6= u ∈ S, the
following trick produces a product ◦ with unit u2,
making S into a unital semi-field. The maps s ֏ su

and t ֏ ut are linear automorphisms of S, so ◦ is
determined by the formula (su) ◦ (ut) = st .

Albert’s twisted semi-fields. (See [AA][Kn65].) Let
p be a prime and q = pm with q > 2. Then from Fqn

we may construct a semi-field S with qn elements,
depending on an element c not a (q − 1)st power
in Fqn ; c exists because q > 2.

The (Fq-bilinear) product 〈x, y〉 = xyq−cxqy on
S = Fqn makes S into a non-unital semi-field. The
non-unital trick above (for u = 1) turns S into a
semi-field.

It is easy to see that x ◦ y = xy for x ∈ Fq, and
that S is a commutative Fp-algebra. If n > 2, Albert
has shown that the powers of any element not in
Fp do not associate; this also implies that S is not
an alternative algebra.

Cubic semi-fields. Dickson discovered the fol-
lowing class of 3-dimensional commutative semi-
fields in [D06]. Suppose that 1/2 ∈ F and that
x3 + ax2 + bx + c is an irreducible cubic over F .
Then the vector space S with basis {1, i, j} and
commutative product i2 = j, ij = c + bi + aj,
j2 = (4ac − b2)− 8ci − 2bj is a semi-field.

Kaplansky studied these algebras in [Kap],
showing that they all arise as irreducible twist-
ed forms of the algebra D presented with basis
{u1, u2, u3} and multiplication u2

i = 0, uiuj =

(ui + uj − uk)/2; 1 =
∑
ui .

These cubic semi-fields over F are classified by
the irreducible cubic extension fields of F (up to
conjugacy). Since Aut(D) is the symmetric group
Σ3 (permuting the ui), the claim follows from an
analysis of the nonabelian cohomology calculation
that H1(F,Σ3) = Hom(Gal(F/F),Σ3).

We now turn to the geometric interpretation
of semi-fields. The following result characterizes
them as being simultaneously shear planes and
translation planes.

Theorem (Albert). Every ternary ring isotopic to a
semi-field S is a semi-field, and two semi-fields are
isotopic if and only if they coordinatize the same
plane. Moreover, S is a semi-field if and only if:

(1) P2(S) is C-L∞ transitive for every point C
on the line L∞ at infinity, and

(2) for every line L through Y , and every P on
L (P 6= Y ), the group of Y -L collineations
acts transitively on the lines though P (ex-
cluding L).

Standard collineations of a semi-field plane. A
semi-field plane has lots of collineations. Transla-
tion by any pair (h, k) in S2 is a collineation fixing
X and Y , acting on affine points by (x, y) ֏ (x +

h, y + k). For r ∈ S, the shear translation (x, y) ֏
(x, y +xr) fixes the y-axis OY but does not fix the
point X.

These standard collineations form a normal
subgroup of all collineations. The quotient is the
group of collineations fixing O, X and Y—and we
have seen that this is isomorphic to the group of
autotopisms of S. (See [Kn65].)

Classification of Translation Planes
We conclude our survey by returning to transla-
tion planes (and quasi-fields). We have described
several types of quasi-fields: division rings, alter-
native algebras, near-fields, and semi-fields. Each
characterizes something about the geometry of
its translation plane, so it is not surprising that a
geometric taxonomy exists.

A classification of translation planes (with re-
spect to a line L) was given by André in [And],
using the set Z of admissible pairs (p, q) of points
on the line L. We say that (p, q) is admissible if for
each line H through q, other than L, the group of
p-H collineations acts transitively on the points of
L− {p, q}.

Classification of Translation Planes. Every trans-
lation plane belongs to exactly one of the following
6 classes.
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(1) Z = ∅; the quasi-field R is not a left quasi-
field.

(2) Z = {(p, p)} for one p; R is a semi-field but
is not alternative.

(3) Z consists of all pairs (p, p); R is a Cayley-
Dickson alternative algebra.

(4) Z = {(p, q), (q, p)}; R is a near-field but not
a division ring, and |R| > 9. 2

(5) Z contains exactly one pair (p, q) for each
p ∈ L, and also contains (q, p); R is the
unique near-field J9 of order 9 (other than
F9).

(6) Z is all pairs; R is a division ring (or a field)
and the plane is P2(R).

Example. If a plane is a translation plane for two
lines, then it is a translation plane for every line
through their intersection; see [Hall, 20.5.1]. If the
intersection is the distinguished point Y , this im-
plies that (Y , Y) is admissible, so we are in cases
(2), (3) or (6) of the classification theorem. In this
case,R is a semi-field in which every element a 6= 0
has a two-sided inverse a−1, and a−1(ab) = b. See
[Hall, 20.5.2].

Hall algebras. Here is a family of quasi-fields in-
troduced in [Ha43]. Suppose that f (x) = x2−rx−s
is an irreducible polynomial (in x) over a field F .
Let R denote the vector space F2 with (a, b)c =
(ac, bc) and the following multiplication:

(a, b)(c,0) =(a, b)c = (ac, bc);

(a,b)(c, d) =(ac + d−1b(rc + s − c2), ad − bc + rb)

if d 6= 0

=(sv,0)+ (c, d)(u + rv),

if (a, b) = u+ (c, d)v , u, v ∈ F .

This is a quasi-field in which every x 6= F satisfies
the equation f (x) = 0. It is also an algebra over F .
If F = F2 then R = F4; if |F| > 2, then R is not a
division ring, because x2 − rx− s = 0 has at least
three solutions.

If F = F3, then f (x) = x2 + 1 yields the unique
near-field J9 of order 9, described above. The
choices f (x) = x2 ± x − 1 yield two of the other
quasi-fields of order 9. (There is another strange
quasi-field of order 9 in which the center is {0,1}
instead of F3. It is described on page 1300 above.)

André planes. Let Γ be a finite group of automor-
phisms of a field L with fixed subfield K, and β :
L×/K× → Γ a function with β(1) = 1. For a,b 6=
0 in L, define a ◦ b = aβ(b)b. Then (L,+, ◦) is a
quasi-field. If β(a) = β(xa) for all x of norm 1,
the associated translation plane is called an André
plane. Lüneburg has proven that André planes are
characterized by the fact that there is an abelian
collineation group A that fixes two vertical lines

2Such a plane may also be coordinatized by quasi-fields
that are not near-fields, but all of its coordinatizing near-
fields are isomorphic.

L1, L2 such that, for any other vertical line H, its
stabilizer subgroup AH acts transitively on H −

{Y}. (See [Lü, II.12].) Little is known about André
planes. A typical result is that there are only 3 non-
Desarguesian André planes of order 25 [Chen].
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