For Your Information

News from PIMS

The Pacific Institute for the Mathematical Sciences (PIMS) is pleased to announce that Alejandro Adem has been appointed the new director of PIMS. He will commence his five-year term on July 1, 2008.

Presently the PIMS deputy director, Adem is a professor of mathematics at the University of British Columbia in Vancouver, Canada, and holds the Canada Research Chair in Algebraic Topology. He received his B.Sc. in 1982 from the National University of Mexico and his Ph.D. from Princeton University in 1986. After holding a Szegő Assistant Professorship at Stanford University and spending a year at the Institute for Advanced Study in Princeton, he joined the faculty of the University of Wisconsin-Madison in 1990, where he remained until 2004. Adem has held visiting positions at the Eidgenössisches Technische Hochschule (ETH)-Zurich, the Max Planck Institute in Bonn, the University of Paris VII and XIII, and Princeton University.

Adem’s mathematical interests span a variety of topics in algebraic topology, group cohomology, and related areas. He has authored and coauthored numerous research articles as well as two highly regarded monographs, *Cohomology of Finite Groups* and *Orbifolds and Stringy Topology*. He has given over two hundred invited talks on his research throughout the world and has supervised several Ph.D. students and postdoctoral fellows. He was awarded the U.S. National Science Foundation Young Investigator Award in 1992, a Romnes Faculty Fellowship in 1995, and a Vilas Associate Award in 2003. He has extensive editorial experience and is currently an editor for the *Memoirs of the AMS* and *Transactions of the AMS*.

Adem brings extensive administrative experience to PIMS. He served as chair of the Department of Mathematics at the University of Wisconsin-Madison during the period 1999–2002, and since 2005 he has been the deputy director at PIMS. Adem’s credentials as a scientific organizer include serving for four years as cochair of the Scientific Advisory Committee at the Mathematical Sciences Research Institute at Berkeley (MSRI) and as a member of MSRI’s Board of Trustees. Since 2005 he has been a member of the Scientific Advisory Board for the Banff International Research Station (BIRS).

Adem brings a wealth of experience in organizing international collaborations connecting Canadian mathematical scientists with colleagues abroad. This includes his leadership in organizing the first joint meeting between the Canadian and Mexican mathematical societies in 2006, as well as his crucial role in the development of the Pacific Rim Mathematical Association (PRIMA). He will continue to build on PIMS’s outstanding record of mathematical collaboration between academic, industrial, and international partners.

Further information about PIMS is available on the Web at http://www.pims.math.ca.

—from a PIMS announcement

STIX Fonts Project Completes Design Phase

The AMS is one of a group of six scientific publishers that have collaborated to produce the Scientific and Technical Information Exchange (STIX) fonts. In October 2007 the group announced the release of the fonts in a beta test version. This free, comprehensive set of special characters, mainly mathematical or scientific, represents a significant breakthrough in scientific, technical, and medical publishing. The final production release of the STIX fonts was set to occur before the end of 2007.

The successful completion of the STIX fonts project will alleviate the need for publishers to assemble symbols from a variety of fonts. When posted to a website, documents using the STIX fonts will be properly rendered regardless of the fonts installed on a particular computer, saving editors’ valuable time.

In addition to the AMS, the other publishers that collaborated to design, fund, and manage the STIX project are the American Chemical Society (ACS), the American
Institute of Physics (AIP), the American Physical Society (APS), Elsevier, and the Institute of Electrical and Electronics Engineers (IEEE).

The technical development of the STIX Fonts Project was handled by MicroPress, Inc., a respected font designer, which has created and delivered nearly 8,000 characters/glyphs required for these comprehensive fonts. Glyphs designed by Elsevier for an earlier project push the final glyph total to 8,047.

“If you’ve ever had to assemble scientific symbols from a variety of fonts, many of which vary in character style, positioning, or size, you’ll immediately appreciate the benefits of STIX fonts,” said Robert Kelly, director, Journal Information Systems, the American Physical Society. “Aside from the fact that the STIX fonts work with a wide variety of Web browsers, word processors, and other scholarly communications software, they have the ability to support widely expanded character sets and layout features which provide richer linguistic support and advanced typographic control. We hope that all operating system and application vendors move quickly to support the fonts.”

By making the fonts freely available, the STIX project hopes to encourage the development of widespread applications that make use of these fonts. In particular, the STIX project will create a TeX implementation that TeX users can install and configure with minimal effort. The TeX version of the fonts is being developed by a subcontractor and should be available soon after the production version is released. For more information, visit the STIX fonts website at http://www.stixfonts.org.

—From a STIX news release

Program for ICM2010, Hyderabad

The next International Congress of Mathematicians (ICM) will be held in Hyderabad, India, August 19–27, 2010. The Program Committee has, based on the scientific programs of former ICMS and suggestions from mathematicians the world over, decided on the structure of the scientific program of ICM 2010.

Below is the list of sections, their descriptions, and the distribution of lectures to the sections. The program committee will finalize the descriptions in the spring of 2008 and invites comments on the section descriptions from the adhering organizations and mathematicians interested in helping make the ICM 2010 program as attractive as possible.

Proposals for changes may be submitted to Hendrik Lenstra, chair of the ICM 2010 Program Committee, hwl@icm.math.leidenuniv.nl, by the end of January 2008.

Total number of lectures (including panel discussions): 150–176.

7. **Lie theory and generalizations** (8–10 lectures). Algebraic and arithmetic groups. Structure, geometry and representations of Lie groups and Lie algebras. Related geometric and algebraic objects, e.g., symmetric spaces, buildings, vertex operator algebras, quantum groups. Noncommutative harmonic analysis. Geometric methods in representation theory. Discrete subgroups of Lie groups. Lie groups and dynamics, including applications to number theory.

of geometric origin. One-dimensional and holomorphic
dynamics. Multidimensional actions and rigidity in
dynamics. Ergodic theory, including applications to
combinatorics and combinatorial number theory.

11. **Partial differential equations** (9–10 lectures).
Solvability, regularity, stability and other qualitative
properties of linear and nonlinear equations and systems.
Asymptotics. Spectral theory, scattering, inverse prob-
lems. Variational methods and calculus of variations.
Optimal transportation. Homogenization and multiscale
problems. Relations to continuous media and control.
Modeling through PDEs.

12. **Mathematical physics** (10–12 lectures). Quantum
mechanics. Quantum field theory. General relativity. Sta-
tistical mechanics and random media. Integrable systems.
Electromagnetism, string theory, condensed matter, fluid
dynamics, multifield physics (e.g., fluid/waves, fluid/
solids, etc).

13. **Probability and statistics** (12–13 lectures). Classical
probability theory, limit theorems and large deviations.
Combinatorial probability. Random walks. Interacting par-
Stochastic networks. Random fields. Random matrices and
free probability. Statistical inference. High-dimensional
data analysis. Sequential methods. Spatial statistics.
Applications.

14. **Combinatorics** (7–8 lectures). Combinatorial struc-
tures. Enumeration: exact and asymptotic. Graph theory.
Probabilistic and extremal combinatorics. Designs and
finite geometries. Relations with linear algebra, repre-
sentation theory and commutative algebra. Topological
and analytical techniques in combinatorics. Combinato-
rial geometry. Combinatorial number theory. Polyhedral
combinatorics and combinatorial optimization.

15. **Mathematical aspects of computer science** (6–7
lectures). Complexity theory and design and analysis of
Algorithmic game theory. Cryptography. Coding theory.
Semantics and verification of programs. Symbolic com-
putation. Quantum computing. Computational geometry,
computer vision.

16. **Numerical analysis and scientific computing** (5–6
lectures). Design of numerical algorithms and analysis of
their accuracy, stability, and complexity. Approximation
theory. Applied and computational aspects of harmonic
analysis. Numerical solution of algebraic, functional,
and integral equations. Grid generation and
adaptivity.

17. **Control theory and optimization** (6–7 lectures).
Minimization problems. Controllability, observability, sta-
bility. Robotics. Stochastic systems and control. Optimal
control. Optimal design, shape design. Linear, nonlinear,
integer, and stochastic programming. Applications.

18. **Mathematics in science and technology** (8–10 lec-
tures). Mathematics applied to the physical sciences, engi-
neering sciences, life sciences, social and economic sciences,
and technology. Bioinformatics. Mathematics in interdisci-
plinary research. The interplay of mathematical modeling,
mathematical analysis and scientific computation, and its
impact on the understanding of scientific phenomena and
on the solution of real-life problems.

19. **Mathematics education and popularization of
mathematics** (3 lectures + 3 panel discussions). All aspects
of mathematics education, from elementary school to
higher education. Mathematical literacy and populariza-
tion of mathematics. Ethnomathematics.

20. **History of mathematics** (3 lectures). Historical
studies of all the mathematical sciences in all periods
and cultural settings.

—Martin Grötschel, Secretary, International
Mathematical Union