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Interview with Martin 
Davis

Early Years
Notices: I’d like to start at the beginning of your 
life. Could you tell me about your family? Were you 
an only child?

Davis: I had a younger brother who died in 
childhood. He was 8 and I was 13.

Notices: That must have been very hard on 
your family.

Davis: It was devastating. My parents grew up 
in Poland; they were Polish Jews. They knew one 
another casually in Lodz but met again in New 
York and married. We were hit very hard by the 
Great Depression and were really quite poor. For 
a while we were on what was then called “home 

relief” and later called welfare. I went to school 
in the New York public school system, benefiting 
from the Bronx High School of Science. Later I 
went to City College where the tuition was free. I 
was not an athletic boy at all. I was a bookish boy. 
And I got beat up a lot by more athletic boys! I got 
interested in science quite early. I wanted to be a 
paleontologist, then I wanted to be a physicist, and 
finally I fell in love with mathematics.

Notices: What were your early influences as a 
child or teenager in pushing you toward math and 
science? Was it teachers, or books?

Davis: It was certainly more books. I read 
Bell’s Queen of the Sciences, and was delighted by 
another book that, as a mature mathematician I 
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latter). The unsolvability of Hilbert’s Tenth Problem 
follows immediately.

Davis became one of the earliest 
computer programmers when he 
began programming on the ORDVAC 
computer at the University of Illinois 
in the early 1950s. His book Com-
putability and Unsolvability [3] first 
appeared in 1958 and has become a 
classic in theoretical computer sci-
ence. After a peripatetic early career 
that included stints at Bell Labs in 
the era of Claude Shannon and at the 
RAND Corporation, Davis settled at 
New York University, where he spent 
thirty years on the faculty and helped 
to found the computer science de-
partment. He retired from NYU in 
1996 and moved to Berkeley, Cali-
fornia, where he now resides with his 
wife Virginia, who is a textile artist. 
Davis has a strong interest in history, 
and in 2000 he published a popular 
book The Universal Computer [4], 
which follows a strand in the history 
of computing from Leibniz to Turing 

(the book also appeared under the name Engines of 
Logic; it was reviewed by Brian Blank in the May 2001 
issue of the Notices).

What follows is the edited text of an interview with 
Martin Davis, conducted in September 2007 by Notices 
senior writer and deputy editor Allyn Jackson.

M
artin Davis is one of the world’s outstand-
ing logicians. He was born in 1928 in New 
York City, where he 
attended City College 
and was influenced by 

Emil L. Post. Early on, Davis came 
under the spell of Hilbert’s Tenth 
Problem: Does there exist an al-
gorithm that can, given an arbi-
trary Diophantine equation, decide 
whether that equation is solvable? 
Davis’s Ph.D. dissertation, written 
at Princeton University under the di-
rection of Alonzo Church, contained 
a conjecture that, if true, would 
imply that Hilbert’s Tenth Problem 
is unsolvable. In rough terms, the 
conjecture said that any computer 
can be simulated by a Diophantine 
equation. The implications of this 
conjecture struck many as unbeliev-
able, and it was greeted with a good 
deal of skepticism; for example, the 
conjecture implies that the primes 
are the positive part of the range 
of a Diophantine polynomial. Work 
during the 1950s and 1960s by Davis, Hilary Putnam, 
and Julia Robinson made a good deal of headway to-
wards proving the conjecture. The final piece of the 
puzzle came with work of Yuri Matiyasevich, in 1970. 
The resulting theorem is usually called either DPRM or 
MRDP (Matiyasevich favors the former and Davis the 

Martin Davis
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thought rather awful, Mathematics and the Imagi-
nation, by Kasner and Newman. At high school I 
met a lot of boys who had similar interests, and 
we bounced off one another. Then at City College, 
there were two people who had a big influence on 
me. One was Emil L. Post, who was a great logician 
and a very direct influence on the direction of my 
work, and Bennington Gill, who was really a very 
inspiring teacher, even though his mathematical 
productivity pretty much ended with his disserta-
tion.

Notices: Can we go back to the Bronx High 
School of Science? What was it like to be 
a student there at that time?

Davis: It was during the Second World 
War, and that dominated the atmosphere 
in many ways. The principal went to 
Washington and talked to various people 
in the government and came back with 
the idea of what were called “pre-induc-
tion courses”, to modify the curriculum 
in the direction of subjects that would 
be useful when we were taken into the 
army, which, it was assumed, we would 
be. So for example, light and sound 
were deleted as topics from the physics 
curriculum, and what was thrown in to 
replace them was a lot more work on 
alternating current circuits and things of 
that sort. We were told that these were 
very significant things and that a great 
deal of attention would be paid once we 
were in the army due to the fact that we 
had had these courses—which of course 
was a lot of nonsense.

The faculty adviser for the Math-
ematics Club thought that we should 
do things that were more useful, so suddenly we 
spent the semester talking about navigation and 
spherical trigonometry.

Notices: Did you find navigation interesting?
Davis: I found it boring! I remember I gave a talk 

about dead reckoning, which was the technique 
that Columbus used. I was also president of the 
Astronomy Club for a while.

Notices: You were clearly very motivated toward 
education. How much education did your parents 
have?

Davis: They had no formal education. They 
went to night school courses for immigrants to 
learn English. My father was really a remarkable 
man. His life would have been very different under 
other circumstances. He worked hard to support 
the family, but he was a very gifted artist. Recently 
we donated thirteen of his paintings to the YIVO 
Institute for Jewish Research in New York; they 
formed a cycle inspired by events in Europe dur-
ing the Second World War, especially by what was 
happening to the Jews.

Notices: So your parents encouraged you to get 
an education.

Davis: Oh yes, that was the given in Jewish fami-
lies in the Bronx. They imagined I would become a 
doctor or a lawyer, and they were at a loss to know 
what to make of the direction my interests were 
taking. They simply didn’t know what it was and 
were worried I would starve in a garret! And of 
course an academic career for a Jew in America was 
a very difficult thing before the war. That changed 
dramatically after the war.

Notices: You mentioned the influence on you 
of Emil Post. Can you tell me about 
him and the changes that were going 
on in logic at that time, with the work 
of Church and Turing?

Davis: Goodness, that’s a lot! You 
know, I edited Post’s collected works 
[6] and wrote an introductory article 
on his life and work. I gave a talk about 
him here at the Logic Colloquium just 
a couple of weeks ago. We could spend 
the whole interview talking about that! 
Briefly, Post was a bit older than Church 
and certainly older than Turing, and so 
he came into these ideas well before 
them, in the early 1920s. From one 
point of view, he really discovered all 
the main results well before them. From 
another point of view, he never got his 
formulations to the point where they 
would have been acceptable for publica-
tion. Post’s own comment on this I find 
very poignant. He was always writing 
postcards to people and sent one to 
Gödel shortly after they met. He apolo-
gized for what he thought was his over- 

exuberant behavior with Gödel and then said about 
his own earlier contributions, “The best I can say is 
that in 1921 I would have proved Gödel’s theorem 
if I had been Gödel.”

Notices: So he knew of Gödel’s result but wasn’t 
able to carry it through himself.

Davis: The problem was that, in effect, Post 
bumped up against what later was called Church’s 
Thesis, or the Church-Turing Thesis, and didn’t 
see how to justify it properly. His formulation 
was fundamentally based on the assumption of 
the adequacy of Russell and Whitehead’s Prin-
cipia Mathematica, for anything that could be 
done mathematically, whereas Gödel’s theorem 
itself partly contradicted that. So Post decided 
that what was needed was something he called 
“psychological fidelity”, which would somehow 
encompass any processes that the human mind 
could develop. And then he just went totally off 
the track, in my opinion, in how to develop such 
a thing. In effect, what he was looking for is what 
Turing did to analyze the notion of a computation, 
but he didn’t find it. Post had other difficulties. 
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One was that he suffered from bipolar disease. 
He was a manic-depressive and had episodes that 
were totally debilitating. Also, he faced a climate 
of mathematical opinion that was somewhat hos-
tile to the whole enterprise of mathematical logic. 
For example, some of the important results in his 
dissertation were not accepted for publication 
until they finally appeared a decade later, as an 
Annals study.

I had done calculus somewhat on my own before 
coming to City College, so I started with elective 
advanced courses right at the beginning. In my 
sophomore year, there was a course that Post gave 
in real variable theory, which was quite famous 
among City College students. But because of the 
war it wasn’t going to be given. So five of us went to 
him and asked whether he would be willing to give 

it as what was 
called an hon-
ors course, in 
effect a read-
ing course. He 
agreed, and 
we met once a 
week for a two-
hour period. 
Every one of 
the five of us 
would tell you 
that this was 
an emotionally 
wringing expe-
rience!

Notices: Why?
Davis: The pedagogical method was the follow-

ing. We had a textbook, which was awful; it was just 
full of mistakes. So Post had prepared about forty 
pages of material correcting and supplementing 
the text. Each week we were given an assignment 
for the next week in which there was a certain 
amount of text with accompanying notes that we 
had to read, absorb, and learn. Then what would 
happen during the two-hour period is that he 
would randomly call on us to go to the blackboard, 
with no notes, and expound parts of the text. This 
was very hard! But it was great training.

Notices: Did some of these five other than you 
go on in mathematics?

Davis: All of us.
Notices: So maybe he did something right!
Davis: Well, at that time, the mathematical tal-

ent at City College was just incredible. Everywhere 
you go, you find mathematicians who were gradu-
ates of City College.

Notices: Who do you remember in particular?
Davis: In the group in that real variable class, 

there was Murray Rosenblatt, who is a probabilist 
at La Jolla. Also Gerry Freilich, who wrote a fine 
dissertation and was on the faculty at Queens Col-
lege; Julie Dwork, who was at Burlington; Seymour 

Ginsburg, who became a computer scientist and 
an expert on context-free languages. People who 
arrived a little later included Donald Newman, 
Jack Schwartz, Leon Ehrenpreis, and Bob Aumann, 
2005 Nobel Laureate in economics. I should also 
mention John Stachel, who is now an Einstein 
scholar at Boston University. John was a broadly 
educated physics major with strong mathematical 
interests. I learned a lot from him about various 
things. His father was an important member of 
the American Communist Party, which in those 
years was a tricky business. During the McCarthy 
years, which of course came later, John was quite 
isolated. One of our fellow mathematics students, 
Herman Zabronsky, wrote a dissertation at Penn, 
and later got a job at a national lab, Oak Ridge or 
Los Alamos. Around Christmas week he came back 
to New York, and a bunch of us were going to get 
together somewhere, and he stipulated that John 
Stachel shouldn’t be there. He said, “If John Stachel 
is there I’m going to flunk the lie detector test”—to 
give you an idea of the atmosphere!

At City College, there was a required course for 
science majors in logic and scientific method, given 
in the Philosophy Department. I took that course 
in my freshman year, and it turned out to be a 
beginning course in symbolic mathematical logic. 
So I learned the basics of propositional calculus 
and quantification theory as a freshman in that 
philosophy course. There wasn’t any meta-theory, 
but still it meant I knew the basic material very 
early. I read in Bell’s Development of Mathematics 
that Post in his dissertation had developed a many-
valued logic. So I knew that he worked in the area 
of logic. His real variable theory course certainly 
touched on topics close to logic. Also, I had heard 
about Gödel, and there was a copy in the City 
College library—undoubtedly because Post put 
it there—of the mimeographed notes that Kleene 
and Rosser had taken of Gödel’s 1934 lectures at 
the Institute for Advanced Study. The notes were 
published in reasonable form only much later, first 
in my anthology The Undecidable [5], and then 
in Gödel’s Collected Works. So I took it out of the 
library and tried to make sense of it quite early, 
and I associated all that with Post—I don’t exactly 
know why or how, but somewhere along the line, 
I started talking with Post regularly. He gave me 
a batch of his reprints. John Stachel and I asked 
Post if we could do a reading course with him in 
mathematical logic. That was in my junior year. 
We didn’t get very far in the course, because Post 
had one of his breakdowns after a few weeks. He 
had just made an important discovery regarding 
incomparable degrees of unsolvability, and the 
excitement was too much for him and pitched him 
over into the manic phase. We didn’t see him again 
for some months.

Notices: You are mentioning Gödel and Post, 
who had mental problems. And there are others, 
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for example, Cantor. Do you think there is any as-
sociation between math and mental illness?

Davis: Probably. Particularly logicians seem to 
be prone to it! In fact, I had a joke with John Sta-
chel. Post had lost an arm in a childhood accident. 
Hans Reichenbach, who was sort of a logician and 
a philosopher, came to City College for a semester 
to give some courses, and he was essentially stone 
deaf. Church had vision problems—he had bad 
cataracts, which in those days was much more of 
a problem than it is today. So the joke was that, if 
I’m going to be a logician, maybe I should give up 
a finger now, instead of something worse!

By the time I graduated City College, I knew I 
wanted to be a logician. I had written a term paper 
for an advanced logic course in the Philosophy De-
partment, which in a way was a first draft of part of 
what was later my dissertation. I went to Princeton 
to work with Church, but I was really much more 
influenced by Post than by Church.

Culture Clash in Princeton
Notices: How was it for you as a graduate student 
at Princeton?

Davis: I was pretty unhappy there, all in all. 
Let’s say there was a very heavy culture clash. I 
grew up in a working class Jewish family in the 
Bronx. At the City College cafeteria we had our 
“mathematician’s table” where we argued and 
learned from each other. In that noisy atmosphere 
we had to speak loudly just to be heard. Besides in 
our culture, a loud voice simply indicated excite-
ment. I spoke at the Logic Seminar in Princeton 
shortly after I arrived. Leon Henkin’s comment on 
my talk was that it was too loud. Let me say without 
going into great detail that I certainly felt a culture 
clash. I finished my degree in two years and was 
very glad to leave when I was done.

Notices: Leon Henkin was a student there at the 
same time?

Davis: Earlier. He was a postdoc my first year.

Notices: What kind of person was Alonzo 
Church?

Davis: Alonzo Church was a shy, retiring man, 
extremely pedantic, very compulsive in his hab-
its. A famous, quite true story about him is the 
thorough way he would clean the blackboards 
every day before his lecture. One day some of us 
students cleaned the board before he came in. This 
had utterly no effect on his behavior; he cleaned 
it in exactly the same way. I have often thought 
that, when he was younger, when Kleene and 
Rosser were in his classes and he was developing 
lambda calculus, he must have had a much more 
spirited lecture style. His lecture style was slow, 
tediously slow.

Notices: Who else was there among your student 
colleagues when you were at Princeton?

Davis: My good friend from New York and 
roommate later, Melvin Hausner, who was a 

student of Bochner’s there and was later a col-
league at NYU. Washnitzer, who later was on the 
faculty at Princeton, was an older student, and 
to some extent acted as a mentor. Leo Goodman, 
who is in the National Academy, is a sociologist 
and a statistician who was part of my class. And 
of course John Nash was a fellow student when I 
was there. We didn’t get along at all. If you look 
at Sylvia Nasar’s biography of Nash [7], I make a 
brief entrance.

Notices: I read the book, but I don’t remember 
what you had to say about Nash.

Davis: She quotes me as saying that Nash once 
asked me whether I grew up in a slum. Serge Lang 
was also a fellow student in Princeton.

Notices: What was he like in those days? Was he 
as intense and committed as he was later on?

Davis: I knew him as being very eager to have 
Emil Artin take him on as a student and very 
worried that that might not happen. I always had 
friendly relations with him.

Notices: Was it when you were a graduate 
student that you got interested in Hilbert’s Tenth 
Problem? Or was that earlier?

Davis: Well, it was Post’s fault. An important 
paper of Post’s that was published in 1944 men-
tioned Hilbert’s Tenth Problem and said that it 
begged for an unsolvability proof. Most of my 
mathematical career I have had an ambivalent 
relationship with the problem. On the one hand, it 
fascinated me and pulled me in, seduced me, and 
on the other hand I felt that it was to a very large 
extent a number theory problem, and I was no 
number theorist. When I was a graduate student I 
kept thinking I should stay away from it, because 
I needed to write a dissertation! I had one topic 
that I knew was going to be easy because it was 
completely untouched territory—what was later 
called the hyperarithmetic hierarchy—and that 
topic was one part of my dissertation. But the 
dissertation also included my first contribution 
to Hilbert’s Tenth Problem—what later was called 
the Davis normal form.

Notices: Post said that it needed an unsolvability 
proof.

Davis: It wasn’t hard to see.

Notices: Why was that?
Davis: Well, people have been working on Dio-

phantine equations since Diophantus, and what 
is there to show for it? A lot of special cases. The 
idea that there should be a general algorithm that 
would tell you whether any Diophantine equation 
had a solution or not? That’s super-utopian. Once 
it becomes possible to consider that problems 
of that kind could be solved negatively, Hilbert’s 
Tenth Problem was a natural candidate. When Post 
said it begged for an unsolvability proof, he was 
exactly right, but that didn’t mean one knew how 
to construct such a proof.
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a function. Yuri finally 
proved this hypothesis 
ten years later by giv-
ing an explicit example. 
Georg Kreisel reviewed 
our paper for Mathe-
matical Reviews. In his 
review, he didn’t think it 
was worthwhile noting 
that we had shown that 
my conjecture, and con-
sequently the unsolv-
ability of Hilbert’s Tenth 
Problem, would follow 
from the Julia Robinson 
Hypothesis, but he did 
express his opinion that 
these results were likely 
not to have any con-
nection with Hilbert’s 
Tenth Problem. You can 
imagine why I like quot-
ing that!

Notices: Why did your 
conjecture seem hard to 
believe?

Davis: I can tell you 
what Kreisel’s reason 

was. One of the things that follows from my con-
jecture-become-a-theorem is that not only is every 
algorithmic process definable by a Diophantine 
equation, but it’s also definable by a Diophantine 
equation with a bounded number of variables. 
In fact, later work of Julia and Yuri brought the 
number of variables down to 9. And such a bound 
was thought to be totally implausible.

Notices: It does seem implausible, doesn’t it? It’s 
really surprising.

Davis: Yes! The point is that people talked about 
polynomial equations, but what they were thinking 
of was equations of degree maybe 3 or 4, and with 
maybe four or five unknowns. The idea of equa-
tions of arbitrary degree and arbitrary number of 
unknowns—people had no intuition or experience 
with those. It was too hard.

Hilary Putnam had a cute trick that turns any 
Diophantine set into the positive part of the range 
of a polynomial. When I was talking to number 
theorists before Yuri’s work, I would say, “Do you 
think the prime numbers could be the positive part 
of the range of a polynomial?” And often I would 
get the following answer: “No, that couldn’t be. 
Give me a half hour and I’ll prove it.”

Notices: A half hour! That’s all they required?
Davis: Yeah!

Notices: But it is counterintuitive, isn’t it?
Davis: Yes, sure it is!

Notices: What gives Diophantine equations this 
power? What is the richness there?

What I proposed in my 
dissertation, and went a 
small way towards prov-
ing, was a much stronger 
statement from which 
the unsolvability would 
follow: That anything 
that can be done by an al-
gorithmic process could 
also be defined by a spe-
cific Diophantine equa-
tion. Yuri Matiyasevich 
later referred to this as 
“Davis’s daring hypoth-
esis”. I had a reason for 
thinking this might be 
true, even though the 
general opinion for years 
was that it wasn’t, until 
it was proved finally by 
Yuri giving the last step. 
The experts all thought 
it was false. It has to do 
with recursively enumer-
able sets, which are sets 
that can be listed by an 
algorithm. The basic re-
sult from which unsolv-
ability results follow is that there are recursively 
enumerable sets that are not computable—for 
which there is no deciding algorithm. My conjec-
ture was that every recursively enumerable set has 
a Diophantine definition. The class of recursively 
enumerable sets has the key property that while 
it is closed under union and intersection, it is not 
closed under complementation: There is a recur-
sively enumerable set whose complement is not 
recursively enumerable. I could prove in a noncon-
structive way, and it was easy, that the Diophantine 
sets, the sets definable by Diophantine equations, 
have the same properties: They are closed under 
union and intersection but not under complemen-
tation. That made me think that they might be the 
very same class—which turned out to be true.

Notices: But there was skepticism that this was 
true. What was the reason for the skepticism?

Davis: It seemed like a stretch that something 
as simple as polynomial equations could capture 
the full gamut of things that are algorithmic. Ten 
years after my dissertation there was a theorem of 
me and Hilary Putnam and Julia Robinson [1] that 
proved the analogue of that conjecture for expo-
nential Diophantine equations—that is, we proved 
the conjecture under the assumption that you 
allow the equations to have variable exponents. 
It followed from earlier work of Julia Robinson 
that the full conjecture would be a consequence 
of what Hilary and I called “Julia Robinson’s Hy-
pothesis”, that there is a polynomial Diophantine 
equation whose solutions grow exponentially as 
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Davis: There are two pieces of richness. There 
is the richness that reaches to exponentiation, that 
the set of triples a​, b​, and c​, such that a ​= ​b​c​, has 
a Diophantine definition. Logically speaking, that 
should have been the first thing proved, but it was 
the last. Way back in the 1950s, Julia started work-
ing on this and showed it would follow from what 
Hilary Putnam and I later called the Julia Robinson 
Hypothesis, which as I said wasn’t proved until 
Yuri did it in 1970. The second piece of richness 
is, once you have exponentiation, going all the way. 
In the case of that first result, the richness comes 
from the power of second-degree Diophantine 
equations—Pell equations, or Fibonacci numbers. 
They have the power to move up to exponentia-
tion.

The proof in the paper the three of us wrote 
[1] goes back to the Chinese remainder theorem. 
It was Gödel who first used the Chinese remain-
der theorem as a device to code finite sequences. 
That’s what I used in my dissertation result, but it 
didn’t go all the way. Technically, a bounded uni-
versal quantifier stood in the way of the definition 
that one wanted to be entirely existential. Using 
the Chinese remainder theorem to code the effect 
of the bounded universal quantifier needed some 
clever tricks, and that’s what the three of us devel-
oped. When Hilary and I first tried to prove this, 
our proof had the major flaw that we needed to 
assume that there are arbitrarily long progressions 
consisting entirely of prime numbers—something 
that was only proved two years ago by Ben Green 
and Terence Tao. If we had had that theorem, our 
proof would have been a perfectly good proof. 
But at the time it was Julia who showed how to do 
without that then unproved assumption.

Notices: So ultimately Hilbert’s Tenth Problem 
was resolved by work of you, Hilary Putnam, 
Julia Robinson, and Yuri Matiyasevich, and your 
conjecture became the DPRM theorem. So often in 
mathematics there are priority disputes. But that 
did not happen with you four.

Davis: It’s just the opposite. We all like and 
respect one another. I guess we are nice people! 
Some people want to call the result Matiyasevich’s 
Theorem, and Yuri insists no, it’s DPRM. Other 
people say MRDP. A story I like to tell is about the 
later collaboration of Julia and Yuri, in which the 
number of unknowns was knocked down to nine. 
As I said, once you had the main result, it was 
clear that there was a bound. If you just took the 
crude proof, you would get an estimate of forty or 
so unknowns. Julia and Yuri took on the task of 
trying to get a better bound. They published a very 
nice paper in which they got it down to thirteen. 
Then Yuri, basically using the same methods that 
they had developed but refining them, managed to 
get it down from thirteen to nine and proposed to 
Julia that they publish a joint paper. She said, “No, 
I didn’t have anything to do with getting it down 

to nine, that’s your result, you publish it.” He said, 
“No, it uses our methods, I’m not going to publish 
it unless you will be a joint author.” What finally 
happened is James Jones got permission from Yuri 
to include the proof in a paper that he wrote, and 
that’s how the proof was finally published [2].

Notices: Can you tell me your memories of Julia 
Robinson, what she was like as a person?

Davis: Very nice, very straightforward. Broad 
in her interests, mathematical and otherwise. And 
great power—there is no question in my mind 
that she was a much more powerful mathemati-
cian than I. We worked together on a problem on 
which we didn’t get anywhere. We were trying to 
prove the unsolvability of the decision problem 
for word equations. It turned out that we wouldn’t 
have been able to do that because the problem is 
solvable. Makanin solved it positively. That had a 
curious relationship to Hilbert’s Tenth Problem, 
because some of the Russians were interested in 
proving it unsolvable because its unsolvability 
would have been a way to get the unsolvability 
of Hilbert’s Tenth Problem, without proving my 
conjecture, which they thought was likely false. 
But in fact, it turned out to be on the other side 
of the line.

Notices: What made you think that it was un-
solvable?

Davis: I don’t know that we thought it was 
unsolvable. We thought it might be unsolvable. 
When we were working on the problem, Julia and 
I would stand at a blackboard on the campus here 
in Berkeley, and you could just feel the power. You 
could feel the power in her papers too, particularly 
her dissertation on the definition of the integers 
in the theory of the rational numbers—it’s really 
a powerful piece of number theory. It was also 
uncharted territory. It was the kind of number 
theory nobody was doing.

Notices: Do you have a sense that any outstand-
ing mathematical problems out there nowadays 
might be unsolvable?

Davis: In the sense of nonexistence of an al-
gorithm? Not really. The easy stuff has all been 
scooped up, I would say. One thing that is clear 
from many cases is that the boundary is tricky, as 
is often the case with sharp mathematical bound-
aries. Particularly in the case of Hilbert’s Entsche-
idungsproblem, the boundary between cases that 
are solvable and the ones that are unsolvable boils 
down to the question, Are there two quantifiers, 
or three? I don’t think anyone would have guessed 
to start with that three is unsolvable and two is 
solvable, but that’s how it turned out.

Programming the ORDVAC
Notices: After Princeton, in 1950, you got a job at 
Illinois, and that was when you started program-
ming. You were one of the world’s first program-
mers, weren’t you?



566   	 Notices of the AMS	 Volume 55, Number 5

become unreliable. We had to avoid tight inductive 
loops in our code.

Notices: Did working with computers at this time 
affect your thinking about the purely mathematical 
problems you were working on?

Davis: It affected the way I thought about com-
putability. It certainly affected my book Comput-
ability and Unsolvability [4]. A number of people 
who became computer scientists at a time when 
there was no computer science told me that they 
learned programming from that book, even though 
it’s not a practical book at all, but a theoretical 
one.

The Mind and the Brain
Notices: In 1951 you went to a lecture by Gödel in 
Providence. Can you tell me about this lecture, and 
how it influenced you?

Davis: You are not getting my pure memory of 
the lecture, because I have since read the text sev-
eral times, after it was published in his collected 
works. The lecture was altogether remarkable. It 
was the Gibbs Lecture. Gibbs of course was an ap-
plied mathematician par excellence, and here was 
Gödel, coming to lecture the mathematicians on 
philosophy! He said that, if you look at his incom-
pleteness theorem and what it implies about math-
ematics and about the human mind, you are faced 
with a pair of alternatives. One is that thinking is 
entirely mechanistic, and it’s all done by the brain, 
in which case you have to think that the brain is 
just a Turing machine. Then our mathematical 
doings would be subject to the incompleteness 
theorem, and there would be number-theoretic 
truths that we will never be able to prove. The 
other alternative is that the human mind surpasses 
any mechanism, and that’s of course what Gödel 
really believed. He was a Cartesian dualist. He 
really thought the mind has an existence quite 
separate from the physical brain. Those were the 
two alternatives he provided. I came out with my 
head spinning.

Notices: Which alternative do you think is 
true?

Davis: Oh, the first one. I’m a mechanist.

Notices: Why is that so clear to you?
Davis: I think the more research is done about 

the human brain, particularly about people who 
suffer brain damage of one kind or another, the 
more we see that various aspects of what we think 
of as mind really sit in the brain. I recently read an 
article in the New Yorker by Oliver Sacks, about a 
man who had total amnesia. He simply could not 
form a memory of anything happening to him but 
still was perfectly capable of sitting down at the 
piano and playing at a high professional level of 
skill. People in whom the corpus calossum, the 
connection between the two halves of the brain, 
has been severed, behave as though there were two 
separate people inhabiting their skull. Also, there 

Davis: Well, let’s say an early one, anyway. I had 
a research instructorship at Urbana-Champaign, 
which was basically a kind of postdoc. I taught a 
logic course, and the second semester was about 
computability. I wrote a book that was published 
years later, in 1958, called Computability and 
Unsolvability, and the second semester was sort 
of a first draft of that book. Part of what I was 
doing was writing Turing machine programs on 
the blackboard. Edward Moore, later known for 
his work on sequential machines, was an auditor 
of the course. He had just finished a Ph.D. and had 
joined the computer project at Urbana-Champaign. 
They were building an early computer, called the 
ORDVAC, one of a family of early computers called 
“johniacs” after John von Neumann. Moore came 
up after one of the classes to tell me that a program 
I had written on the board could be improved and 
showed me how to do it better. He said, “You really 
ought to come across the street, we’ve got one of 
those there!”

Notices: Did you know of the existence of the 
computer there?

Davis: No, I was not aware of it. I should have 
followed it up, but I didn’t. What happened instead 
was that, as a result of the Korean War, I was in 
danger of being drafted. A military project started 
up, the Control Systems Lab, and I was given the 
opportunity to join it, which seemed like a good 
way to avoid being in the army. What they set me 
doing was writing programs for the ORDVAC. In 
fact, I wrote a program that was supposed to navi-
gate 100 airplanes in real time! Of course it was a 
preposterous thing with the technology available. 
But I did produce the program. My course in com-
puter science consisted of a five-minute lecture by 
Abe Taub, who said, “This is how you program.” 
I was given the von Neumann-Goldstine reports, 
which had a lot of sample programs.

Notices: What was it like to program on this 
computer? What did you have to do?

Davis: What I had to do was to write code on 
a piece of paper with a pencil. A secretary would 
type it on a teletype machine, which would produce 
a piece of punched paper tape that would have 
the code on it, and that was what was fed into the 
computer.

The memory consisted of forty cathode ray 
tubes, little TV screens. On each one, there would 
be a grid of 32 by 32 bits. A 0 was two dots, and a 
1 was one dot. So the data was stored as electro-
static charge on the surface of the tube. This had 
the serious defect that charge doesn’t stay put, it 
decays. So they had what was called “read-around”, 
a process by which the memory was constantly 
being read and rewritten. The programmers had to 
be aware of this, because if they wrote a program 
in such a way that the read-around didn’t get a 
chance to correct the memory, the data would 
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is just the general historical fact that vitalism as a 
philosophy has been in retreat.

When I was at City College, a biology professor 
said that he didn’t think biology would at bottom 
end up being physics and chemistry. But now we 
know about DNA and genes. And if you think the 
human mind is separate from the brain, what 
about the mind of a chimpanzee? Is that really 
qualitatively different? Or is it just that there are 
some extra little subroutines that enable us to use 
language?

One of the strange things about this argument 
about mechanism and mind is that people on one 
side of the divide don’t even seem to be able to 
understand what it is that people on the other side 
could be thinking. My good old friend Raymond 
Smullyan can’t understand how a sensible person 
can believe what I believe! And I find it hard to 
imagine what he thinks.

Notices: There have been books looking into this 
question in recent years, for example, the book by 
Roger Penrose [8].

Davis: I was involved in a polemic with him 
in print, in the publication Behavioral and Brain 
Science.

Notices: I see. Penrose used Gödel’s ideas to argue 
that the mind must be more than the brain.

Davis: Yes. He went a lot further than Gödel 
would have been willing to go. Gödel at least had an 
alternative. Penrose is a remarkable mathematician 
and physicist, but on this subject he is simply fool-
ish. He won’t listen to what we logicians tell him. 
It’s simply not true, as he asserts, that we can see 
a truth that no machine can see. All we ever see is 
that, if a particular system is consistent, then that 
statement is true. But your favorite machine can 
see the very same implication. The tricky part is 
knowing which formal systems are consistent. You 
can find by the wayside formal systems proposed 
by first-rate logicians that have turned out to be 
inconsistent, starting with Frege and continuing 
with Church, Quine, Rosser, and others. So the as-
sumption that we can somehow really tell whether 
a formal system is consistent is unjustified. Tur-
ing wondered about this way back, in his famous 
article on whether computers can think [11]. The 
way he put it is that a machine has to be allowed 
to make mistakes just as human mathematicians 
make mistakes. That was his way of saying that a 
formal system might be inconsistent, and he asked 
for “fair play” for computers!

Notices: You spent 1952–1954 at the Institute for 
Advanced Study in Princeton. Did you have much 
contact with Gödel during that time?

Davis: I spoke to him twice. Once by myself, 
to tell him about something I was working on, in 
which he showed not the least interest. The sec-
ond time was with John Shepherdson, an English 

logician who was at the Institute at that time as 
well. We had heard a rumor that Gödel had a proof 
of the independence of the axiom of choice from 
the axioms of set theory and decided we should 
make an appointment to ask him about that. I 
can’t remember the details of the meeting, but 
it was awkward, and we came away without any 
information.

One person we were very friendly with at the 
Institute was Julian Bigelow, the engineer who, 
one could almost say, built the Institute johniac 
computer with his own soldering iron. He was 
a very interesting person. He wanted to move a 
house from point A to point B in Princeton. Some 
utility poles with wires were in the way. When he 
contacted the utility company about temporarily 
moving the poles so he could move the house, the 
cost was prohibitive. So what he did was take a 
hand-saw and horizontally saw the house in half, 
move the two pieces separately, and then screw 
them together with great big flat brackets!

Notices: Didn’t that just ruin the house?
Davis: Apparently not!

Notices: Did you get to know von Neumann?
Davis: I met von Neumann back in Urbana, and 

that was the only time I had a conversation with 
him. I attended the inauguration of the Control 
Systems Laboratory, and there were many guests, 
and von Neumann was one of them. I wanted to 
meet him, but I was much too shy to walk up to 
him. My wife Virginia was there—we weren’t mar-
ried yet—and took care of the problem. She made 
me a scotch and soda that was more scotch than 
soda, and after that von Neumann and I had a 
wonderful chat about sun spots and ice ages and 
heaven knows what! But I never talked to him at 
the Institute.

Computer Science Culture
Notices: After the Institute you went to the Univer-
sity of California at Davis. You had various jobs 

Martin Davis and his wife Virginia.



568   	 Notices of the AMS	 Volume 55, Number 5

for a while and then eventually you ended up at 
New York University, where the computer science 
department was just getting started.

Davis: Well, I came to NYU in 1965, and the 
Computer Science Department was started in 1969, 
and I was there to join it at that time.

Notices: I’ve heard people say it’s unfortunate 
that computer science departments split off from 
math departments at this time. You witnessed this 
happening at NYU. Do you think they should have 
stayed together?

Davis: No, it wouldn’t have worked. It’s really 
a different culture. There are things about the 
culture I don’t like, but it is different. The way the 
theoretical and the pragmatic parts of the subject 
interact is very different from how applied math-

ematics of the classical sort interacts with pure 
mathematics. At NYU, we were involved in finding 
our way as a separate department. Of course we 
knew very well that the mathematical power of 
the people at the Courant Institute—people like 
Nirenberg and Lax and Varadhan and so on—was 
of a very different caliber than the mostly young 
people who we had in the computer science de-
partment. But still, we had our own culture and 
needs, and we had to convince them, for example, 
that it wasn’t appropriate that a Ph.D. student in 
computer science be required to pass an exam in 
complex variable theory.

Notices: What are the aspects of the computer 
science culture that you don’t like?

Davis: I am thinking of theoretical computer 
science particularly, where the field moves very 
fast, leaving unsolved problems behind, under the 
assumption that, because they haven’t been able to 
deal with the problems in a year or two, the prob-
lems are intractable. And they go on to another 
subject. Following the habits in the more applied 
parts of computer science, the intellectual center is 
not finished public articles, but rather conferences. 
A conference program committee—I have been on 
one of them—gets extended abstracts in which 

theorems are stated but rarely proved, and some-
how judgments are made. But the things that are 
claimed to be proved are not always in fact proved. 
And the stakes are high. People’s subsequent ca-
reers could depend on getting papers accepted in 
these conferences. That’s what I didn’t like.

Notices: The outstanding problem in computer 
science now seems to be the P versus NP problem. 
Do you care to speculate on whether or how that 
will be resolved?

Davis: I have very unconventional views about 
that. It is taken for granted in the field that P and 
NP are different but that it’s just much too hard 
for people to prove it. I think it’s 50–50! I wouldn’t 
be in the least astonished to find that P equals NP. 
I think the heuristic evidence that is given, when 

you look at it carefully, is just 
circular. I certainly agree that it’s 
very unlikely that there are really 
good algorithms for NP-com-
plete problems like satisfiability. 
But the equating of “good” with 
polynomial-time computability 
seems to me to lack evidence. 
People say “polynomial”, but 
they mean with an exponent no 
higher than 3. I sort of see it as 
a reprise of the situation with 
Hilbert’s Tenth Problem, where 
people didn’t have any real imag-
ination about what a polynomial 
with high degree could do. I was 
an invited speaker last summer 
at a meeting in Lisbon devoted 

to the satisfiability problem. In my talk I said that if 
I were a young person I would try to find a polyno-
mial-time algorithm for satisfiability, not expecting 
it to be a particularly good algorithm!

Notices: Really!
Davis: Why not? I don’t see any compelling 

reason there shouldn’t be one.

Notices: But people aren’t working on it from 
that point of view. People seem to think that P and 
NP are different.

Davis: Well, there is a million-dollar prize!

Notices: Is the question of whether there is a 
polynomial-time algorithm the correct way of mea-
suring the difficulty of solving problems?

Davis: Well, that’s really the question. Certainly 
theoretically the class of things for which there 
are polynomial-time algorithms has nice closure 
properties. So it’s a mathematically attractive class. 
But the idea of identifying them with what’s com-
putationally feasible is I think the result of looking 
at an analogy with Church-Turing computability, 
which is a very successful formalization of the 
intuitive notion of what is calculable in principle 
when you don’t think about resources. But it’s just 
not a compelling analogy in my opinion.
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At the January meeting [New Orleans Joint Math-
ematics Meetings, January 2007] Margaret Wright 
gave a talk about linear programming. Linear pro-
gramming was also thought to be an intractable 
problem for which there were no polynomial-time 
algorithms—until the polynomial-time algorithms 
popped up. First there was the ellipsoid method 
found by the mathematician Karmarkar, then the 
interior-point method. Also, one of the things 
Margaret Wright showed was that, in very specific 
cases where you’re doing serious computation 
and trying to deal with hundreds of thousands 
of linear constraints, the old exponential-time 
algorithm of Dantzig often does better than the 
polynomial-time algorithms! So I just don’t see on 
what basis people measure feasibility in this way. 
It’s not that I bet that P equals NP. I just can’t see 
any compelling evidence either way.

Steve Cook once pointed out to me that the 
one separation in the field is between log-space at 
the bottom end and polynomial-space at the top 
end. In between there are classes that theoreti-
cal computer scientists study: P and NP, and the 
whole polynomial-time hierarchy, and then PSPACE 
sits on top of all of that. But the only separation 
theorem that has been proved is between the very 
bottom and the very top. All the other layers could 
collapse, for all anybody knows. But people will 
publish papers that say, “If such and such is so, 
then the polynomial-time hierarchy will collapse 
at level 2” and think that, since that’s not going to 
happen, they have essentially proved their result.

Notices: Do you think that maybe the problem 
is just not cast in the correct way, with the right 
viewpoint?

Davis: I’ve thought about that and tried to think 
what the right viewpoint might be, but I haven’t 
come up with anything! Maybe there is no real no-
tion of feasibility, or maybe there is a notion, and 
it hasn’t been found yet.

A Continuing Mystery: The Continuum 
Hypothesis
Notices: Do you think the Continuum Hypothesis 
will ever be resolved?

Davis: I think it has a truth value, meaning that 
it’s a coherent statement that is either true or false. 
Whether the human race will ever be able to resolve 
it or not, I have no idea. I don’t think we can do 
everything. But I don’t think it’s ill-posed, in the 
way Sol Feferman does. He wrote an article “Does 
mathematics need new axioms?” [9], in which he 
suggested that the final fate of the continuum 
problem will be that it’s just regarded as incoher-
ent and ill-posed. If you think that the universe of 
sets is a human creation and that there is no objec-
tive truth about it, then the way Sol thinks makes 
sense. If the world of sets is a human creation 
in the way the play Hamlet is, then the question, 
“Was Hamlet a virgin?” might not have any answer! 

But if you think that there is something objective 
about the universe of sets, then in that universe, 
regardless of what we are able to do, it will have 
a definite answer.

Notices: Do you think that the work of people like 
Hugh Woodin and John Steel might eventually bring 
a decision about the Continuum Hypothesis?

Davis: Yes, I am hopeful. I have to say first of 
all that I can’t claim I really understand in any but 
the vaguest way what those people are doing. I 
admire it tremendously, but I find it very hard to 
follow in detail. But as an outsider, what comes to 
my mind is this. Before Paul Cohen, people thought 
of the Zermelo-Fraenkel axioms as pretty much de-
termining the world of sets. They knew about the 
Skolem-Löwenheim theorem, that there had to be 
countable models—but it seemed as though those 
would just be weird and peculiar things. Then 
Paul Cohen invented the method of forcing, and 
suddenly the Zermelo-Fraenkel axioms, instead of 
being like the axioms of, say, Euclidean geometry, 
became like the axioms of group theory. Suddenly 
you could make models of the Zermelo-Fraenkel 
axioms every which way, with whatever properties 
you want. It had tremendous flexibility, and that 
was a big obstacle in trying to settle a problem like 
the continuum problem, because you can force the 
continuum to be ℵ17​ or whatever you want. But 
even before Woodin’s work, there was the so-called 
Martin’s Maximum, which is a certain axiom added 
to the axioms of set theory that in effect prevents 
forcing from working. When Martin’s Maximum 
is added to the Zermelo Fraenkel axioms, it turns 
out that the cardinality of the continuum is ℵ2​. I 
wouldn’t be a bit surprised if the true value really 
turns out to be ℵ2​. That’s certainly what some 
of Woodin’s work suggests, and I can be rash 
enough to say it, because, as a bystander trying 
to understand what’s going on, my opinion isn’t 
worth much!

One thing you have not asked me about but that 
I think is very important is the following. We know 
as a theoretical matter that there are mathematical 
propositions that, formally speaking, have a very 
simple form involving solvability of specific Dio-
phantine equations and that require set-theoretic 
methods for their resolution. Harvey Friedman has 
found examples of this kind with a combinatorial 
flavor. To me a really interesting question is: Do 
any important unsolved problems that are really 
significant to mathematicians fall into that cat-
egory? One of the things Gödel himself conjectured 
in that remarkable Gibbs Lecture was that the Rie-
mann Hypothesis might be of that character. And 
that wouldn’t surprise me in the least.

Notices: So you are saying the Riemann Hypoth-
esis can be reduced to a question about solvability 
of a specific Diophantine equation?
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Davis: Yes. The technical notion is what 
logicians call a Π​0​1​ proposition. These are 
statements that a certain decidable prop-
erty of natural numbers is true of all natural 
numbers. Decidable, in the sense that there 
is an algorithm to tell whether a given num-
ber has the property or not. By using the 
MRDP theorem, one easily shows that every 
Π​0​1​ proposition is equivalent to a statement 
asserting about a particular polynomial 
equation with integer coefficients that 
that equation has no natural number solu-
tions. That’s entirely equivalent to the first 

Text of letter from Paul Cohen to Martin 
Davis (shown at left), dated November 
27, 1963:

Dear Martin, 

I have thought about writing you for 
some time, but never quite got around 
to it. First, I hope you received a preprint 
of my work. Gödel has now submitted 
the paper to the PNAS [Proceedings of 
the National Academy of Sciences] and it 
comes out in Dec. and Jan. issues.

I really should thank you for the 
encouragement you gave me in 
Stockholm. You were directly 
responsible for my looking once more 
at set theory. Previously I had felt rather 
outplayed & even humiliated by the 
logicians I had spoken to. Of course, 
the problem I solved had little to do 
with my original intent. In retrospect, 
though, the basic ideas I developed 
previously played a big role when I tried 
to think of throwing back a proof [of] 
the Axiom of Choice, as I had previously 
thought about throwing back a proof of 
a contradiction.

I have received 2 letters from A. Edelson 
of Technical Publishing Co. I have not 
decided what to do about a book and so 
I cannot say much at this point. What do 
you think I should attempt to cover in a 
book?

How is Newman? I will be in Miami in 
January & then in N.Y. so I will certainly 
see you then.

Regards to all.

Sincerely,

Paul Cohen



May 2008	  Notices of the AMS	   571

version that I stated. And the Riemann Hypothesis 
certainly is of that character. We worked it out in 
our paper [10] quite explicitly. I had the help of 
a number theorist at NYU, Harold Shapiro, who 
pointed me in the right direction. But it was clear to 
everybody who thought about it that the Riemann 
Hypothesis had the character of being a Π​0​1​ propo-
sition, by thinking about the behavior of a Cauchy 
integral on a path around zeros and approximating 
the integral in some way or other.

I am certainly no analyst, but the reason I think 
the Riemann Hypothesis is a good candidate for 
undecidability by elementary methods is that it 
is sitting right in the middle of classical analysis, 
and it has been attacked by brilliant mathemati-
cians—Paul Cohen spent a lot of time on it—and 
the existing methods just don’t seem to resolve it. 
It’s hard to believe it isn’t true. And why shouldn’t 
it be one of those propositions that require set-
theoretic methods? That would be great!

Suppose someone proves that the existence 
of a measurable cardinal implies the Riemann 
Hypothesis. Would mathematicians accept that 
as a proof of the Riemann Hypothesis? Whether 
there exist measurable cardinals is something that 
can’t be proved from the Zermelo-Fraenkel axioms. 
Evidence for it is like the kind of evidence that 
physicists come up with, not the kind of evidence 
that mathematicians typically want. I hope it’s clear 
I am presenting all of this as a wild speculation, 
not something that I believe is true.

Notices: The Diophantine equation that you can 
reduce the Riemann Hypothesis to—what does that 
thing look like? Is it horribly complicated?

Davis: Sure.

Notices: So you can’t just look at it and get any 
information.

Davis: No. What I say is, This is an equation that 
only its mother could love.
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