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Visualizing the Sieve of 
Eratosthenes

David N. Cox

Every so often new technology is applied to an age-
old problem to produce unexpected results. This 
article re-examines the Sieve of Eratosthenes. The 
Sieve is a one-dimensional device for finding prime 
numbers. The numbers from 2 to n​ are written as 
a single, long sequence. Then the multiples of 2 
are crossed out but leaving 2. Then the multiples 
of 3 are crossed out but leaving 3. And so on until 
the only numbers remaining are the primes. This 
paper explores what happens if the procedure is 
converted from one dimension to two. Rather than 
a single sequence, a matrix is constructed such that 
in the first row every column is marked with a dot. 
In the second row, every other column is marked 
with a dot. In the third row, every third column is 
marked with a dot. In general, in the n​t​h​ row, every 
nt​h​ column is marked with a dot. In this fashion a 
two-dimensional image is built for all n​2​ cells. Re-
sults of this procedure as generated by computer 
software are presented in this article. Despite the 
simplicity of this method, when enough dots are 
generated, the resulting image turns out to be 
stunning. This article demonstrates well that com-
puterized visualization can shed new light on old 
subjects—even those more than 2,000 years old.

According to [1] Eratosthenes lived from 276 to 
194 BC. Only fragments of Eratosthenes’s original 
documents have survived. However, a description 
of his sieve method for finding prime numbers 
was described in “Introduction to Arithmetic” by 
Nicomedes written sometime prior to 210 BC [2].

To use the method imagine a written sequence 
of numbers from 2 to n​. Starting at 2 cross off 
every other number in the sequence except for 
2 itself. When done, repeat for 3 (which will be 

the next remaining number in the sequence) by 
crossing off every third number. When done, the 
next number remaining in the sequence will be 5. 
Repeat the process for every fifth number in the 
sequence. Continue with this process until you 
reach the end of the sequence. At the end of the 
process the numbers remaining in the sequence 
will be the primes.

This simple technique has been used for more 
than 2,000 years to find prime numbers. One 
would think that everything there is to know 
about the method has long since been discov-
ered. Indeed, there are advanced sieve methods 
and optimization methods. However, these are 
significant variations of the original method and 
do not provide any additional characterization of 
the original method itself. After 2,000 years what 
more could be said?

This article explores the use of computerized 
visualization to further characterize the Sieve of 
Eratosthenes. After all, Eratosthenes didn’t have a 
computer and computer graphics and visualization 
have only been widely available for the past 20 of 
those 2,000 years. With a simple extension of the 
Sieve we arrive at a novel result.

The Method
The method extends the Sieve of Eratosthenes 
from a one-dimensional sequence to a two- 
dimensional matrix. The method constructs a ma-
trix of dots that can be easily viewed on a computer 
screen. The method is as follows. In the first row 
of the matrix every column contains a dot. This 
would correspond to crossing off every number 
in Eratosthenes’s original sequence. In the original 
method this is not done. However, in two dimen-
sions it proves useful.

In the second row of the matrix, every other 
column contains a dot starting with the second col-
umn. This corresponds to crossing off every other 
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number in the original sequence. In the third row, 
every third column contains a dot starting with the 
third column. Again, this corresponds to crossing 
off every third number in the original sequence. In 
general, in the n​t​h​ row, every n​t​h​ column contains 
a dot starting with the n​t​h column.

Aside from extending the one-dimensional 
sequence of length n to a two-dimensional matrix 
of size n​×​n​, the process of crossing off numbers 
(using dots) remains faithful to the original method 
with two differences. In the first row every number 
is marked with a dot. In the remaining rows every 
n​t​h number is marked with a dot including n itself. 
Consequently, even though 2 is not crossed off in 
Eratosthenes’s original sequence, it is marked with 
a dot in row 2. The same holds for rows 3, 5, 7, 
etc. The implication of this is that a prime number 
corresponds to a column containing two dots—one 
in the first row (division by 1) and one in the n​t​h 
row (division by the number itself).

Using this method a computer program was 
created to generate a matrix containing 1 million 
columns and the first 1,000 rows. The matrix is 
easily converted into a binary bitmap for viewing. 
Because it is not possible to view the entire matrix 
on a computer screen, a scrolling facility was pro-
vided to traverse through the columns and rows.

The computer algorithm builds the image of the 
matrix with the first row at the top of the screen 
and the first column at the left. The only reason 
for doing this is because most computers address 
pixels beginning with (0,0) at the top left. Other 
orientations would also work. As will be shown, the 
resulting image has several interesting features.

Results
Figure 1 shows several hundred columns and 
rows beginning with column 1 on the left. The 
most striking feature is the set of diagonals. Close 
inspection of these diagonals reveals a pattern. 
The main diagonal has a slope of 1 and consists 
of contiguous dots. The adjacent diagonal has a 
slope of 2 and has a dot in every other column. 
The third diagonal has a slope of 3 and has a dot 
in every third column. And so on. Remarkably, 
these diagonals are constructed in exactly the 
same manner as the rows from which the image 
was constructed.

Figure 2 shows a portion of the matrix begin-
ning at number 17918. Diagonals are apparent 
at the bottom of the image. Towards the top the 
dots merge into other patterns. From row 1 there 
are smaller diagonals radiating out from the top 
row. Several rows below appear parabolic-like 
structures.

Some of the diagonals radiating out from the 
first row will be very prominent. An example is 
327600 as shown in Figure 3. This prominence 
is related to the number of dots in the central 
column. The more dots, the more prominent the 
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diagonals. This is easy to understand by consider-
ing that a dot represents that column c​ is evenly 
divisible by row r​. Consider two rows, r​1 and r​2, 
that both evenly divide column c​. Clearly, if c​ is 
divisible by r​1, then so is c ​+​r​1. Similarly, c ​+​r​2 is 
divisible by r​2. Consequently a dot will be plotted 
at (r​1,​c ​+​r​1) and another dot will be plotted at 
(r​2,​c ​+​r​2). These points lie on a line with a slope 
of 1. The same reasoning can be extended to a dot 
at (r​1,​c ​+​2r​1) and another at (r​2,​c ​+​2r​2) which 
both lie on a line with a slope of 2.

Thus, while it is not immediately obvious, every 
column of points will have corresponding diago-
nals. What about the diagonals in Figure 1? What 
central column of points do they correspond to? 
If the procedure used to construct the matrix is 
extended to the left, we arrive at a result that is 
illustrated in Figure 4. There is a central column 
where every row contains a dot. The image to the 
left of this column is the mirror image of that to 
the right. Furthermore, the central column corre-
sponds to the number 0.

Any binary image is easily represented numeri-
cally using 1’s and 0’s. Consequently, Figure 1 can 
be represented as in Figure 5.

Carrying this idea further, these numbers can be 
replaced by remainders. In other words, each cell 
will contain the value c​ mod r​ where c​ and r​ are 
the column and row respectively. Doing so gives 
the result in Figure 6.

The central column of red numbers are the re-
mainders of 15 divided by 1,​2,​3,​.​.​.​,​15. Notice that 
these same remainders appear in the diagonals that 
are highlighted in red, yellow, and blue for easier 
reading. What is interesting is that every number 
will have a column of divisors that will be repeated 
in corresponding diagonals radiating out from the 
first row.

This simple method for visualizing the Sieve of 
Eratosthenes has resulted in surprisingly complex 
patterns. The set of dots in each column represents 
a set of divisors for that column. Extending out 
from each column is a set of diagonals with slopes 
of 1, 2, 3, etc. containing sets of dots that map 
1-to-1 to the divisors in the corresponding column. 
This is true for every column.

Every column except for column 0 has a finite 
set of dots. Clearly every integer has a finite set of 
divisors while 0 is divisible by everything. Hence, 
column 0 contains an infinite set of dots.

The original Sieve is used to find prime num-
bers. In this method, the prime numbers are 
represented in the image as columns containing 
exactly two dots. Column c​ corresponds to a prime 
number if it contains a dot in row 1 and row c and 
nowhere else.

Alternatively, these images can be represented 
numerically using a matrix whose cells are filled 
with 1’s and 0’s. However, it is not necessary to 
limit the numerical representation to 1’s and 0’s. 

The cells of the matrix can also be filled with re-
mainders found by dividing each column by each 
row. Doing so reveals copies of each number’s divi-
sors along diagonals extending out from the first 
row. These diagonals have slopes of 1, 2, 3, etc.

These images are instructive in that they reveal 
that the divisors are not distributed randomly. 
There is repetition of each number’s divisors along 
the diagonals that radiate from each number. Al-
though a number’s divisors radiate diagonally and 
are intertwined with those of other numbers, they 
do not interfere with another number’s divisors. 
Interestingly, the spacing of the divisors along 
these diagonals mirrors the spacing of dots used 
to create the initial images.

Finally, there are other parabolic-like patterns 
that emerge in these images. The points of several 
of these patterns have been checked and verified 
that they do indeed lie on a true parabola. For ex-
ample, the point corresponding to column 17956 
and row 134 is a vertex of a left-opening parabola. 
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The vertex of another left-opening parabola is 
nearby at column 18050 and row 95. In all cases 
up to number 1,000,000 the observed parabolas 
have all been left-opening. It remains to be proven 
that the points on all of these parabolic-like pat-
terns do, in fact, lie on true parabolas and why. 
Furthermore, it remains to be proven if all such 
parabolas are left-opening and why.

Clearly, these images illustrate the wonderful 
nature of the integers. Moreover, these images il-
lustrate that even with a method more than 2,000 
years old, a surprising new way of viewing the 
results can be found through the use of computer-
ized visualization.
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