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One of the most celebrated invariants in alge-
braic topology is the fundamental group : given
a topological space X with a base point x, the
fundamental group π1(X, x) is defined to be the
set of paths in X from x to itself, taken modulo
homotopy. If we do not want to choose a base point
x ∈ X, we can consider instead the fundamental
groupoid π≤1X: this is a category whose objects
are the points of X, in which morphisms are given
by paths between points (again taken modulo ho-
motopy). The fundamental groupoid ofX contains
slightly more information than the fundamental
group of X: it determines the set of path com-
ponents π0X (these are the isomorphism classes
of objects in π≤1X) and also the fundamental
group of each component (the fundamental group
π1(X, x) is the automorphism group of x in the
category π≤1X). The language of category theory
allows us to package this information together in
a very convenient form.

The fundamental groupoid π≤1X does not con-
tain any information about the higher homotopy
groups {πn(X, x)}n≥2. In order to recover infor-
mation of this sort, it is useful to consider not
only points and paths in X, but also the set of
continuous maps Singn X = Hom(∆n, X) for ev-
ery nonnegative integer n; here ∆n denotes the
topological n-simplex. This raises three questions:

(A) What kind of a mathematical object is the
collection of sets {Singn X}n≥0?

(B) How much does this object know about X?
(C) To what extent does this object behave

like a category?

To address question (A), we note that SingX =

{Singn X}n≥0 has the structure of a simplicial set.
That is, for every nondecreasing function f :
{0,1, . . . ,m} → {0,1, . . . , n}, there is an induced
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map f∗ : Singn X → SingmX, given by composition

with a linear map of simplices∆m → ∆
n. For exam-

ple, if we take f : {0,1, . . . , n − 1} → {0,1, . . . , n}

to be the injective map that omits the value i,

then we obtain a map di : Singn X → Singn−1X,

which carries an n-simplex of X to its ith face.

The simplicial set SingX is sometimes called the

singular complex of the topological space X.

It turns out that the answer to question (B) is

“essentially everything”, at least to an algebraic

topologist. More precisely, we can use the singular

complex SingX to construct a topological space

that is (weakly) homotopy equivalent to the origi-

nal space X. Consequently, no information is lost

by discarding the original space X and working

directly with the simplicial set SingX. In fact, it is

possible to develop the theory of algebraic topolo-

gy in entirely combinatorial terms, using simplicial

sets as surrogates for topological spaces. However,

not every simplicial set S behaves like the singular

complex of a space; it is therefore necessary to

single out a class of “good” simplicial sets to

work with. For this, we need to introduce a bit of

terminology.

Let S = {Sn}n≥0 be a simplicial set. Here we

imagine that Sn denotes the set of all continuous

maps from an n-simplex ∆
n into a topological

space X, although such a space need not exist. For

0 ≤ i ≤ n, we define another set Λni (S), which we

think of as a set of partially defined maps from ∆
n

intoX: namely, maps whose domain consists of all

faces of ∆n that contain the ith vertex (this subset

of ∆n is sometimes called an i-horn). Formally, we

define Λni (S) to be the collection of all sequences

{σj}0≤j≤n,j≠i of elements of Sn−1, which “fit togeth-

er” in the following sense: if 0 ≤ j < k ≤ n and

j ≠ i ≠ k, then djσk = dk−1σj ∈ Sn−2. There is a

restriction map Sn → Λ
n
i (S), given by the formula

τ ֏ (d0τ,d1τ, . . . , di−1τ,di+1τ, . . . dnτ).
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Definition 1. A simplicial set S = {Sn}n≥0 is a Kan
complex if the map Sn → Λ

n
i (S) is surjective for all

0 ≤ i ≤ n.

In other words, S is a Kan complex if every horn
σ ∈ Λni (S) can be “filled” to an n-simplex of S.
Roughly speaking, a Kan complex is a simplicial
set that resembles the singular complex of a topo-
logical space. In particular, the singular complex
SingX of a topological space X is always a Kan
complex.

We now address question (C): in what sense
does the singular complex SingX behave like a
category? To answer this, we observe that there is
a close connection between categories and simpli-
cial sets. For every category C and every integer
n ≥ 0, let Cn denote the set of all composable
chains of morphisms

C0 → C1 → . . .→ Cn

of length n. The collection of sets {Cn}n≥0 has the
structure of a simplicial set, which is called the
nerve of the category C, and it determines C up
to isomorphism. For example, the objects of C are
simply the elements of C0, and the morphisms in
C are the elements of C1.

We may therefore view the notion of a simplicial
set as a generalization of the notion of a category.
How drastic is this generalization? In other words,
how can we tell if a simplicial set arises as the
nerve of a category? The following result provides
an answer:

Proposition 2. Let S = {Sn}n≥0 be a simplicial set.
Then S is isomorphic to the nerve of a category C if
and only if, for each 0 < i < n, the map Sn → Λ

n
i (S)

bijective.

The hypothesis of Proposition 2 resembles the
definition of a Kan complex but is different in
two important respects. Definition 1 requires that
every horn σ ∈ Λni (S) can be filled to an n-simplex
of S. Proposition 2 requires this condition only in
the case 0 < i < n but demands that the n-simplex
be unique. Neither condition implies the other, but
they admit a common generalization:

Definition 3. A simplicial set S is an ∞-category
if, for each 0 < i < n, the map Sn → Λ

n
i (S) is

surjective.

The notion of an ∞-category was originally
introduced (under the name weak Kan complex)
by Boardman and Vogt, in their work on homo-
topy invariant algebraic structures (see [1]). The
theory has subsequently been developed more ex-
tensively by Joyal (who refers to ∞-categories as
quasicategories); a good reference is [2].

Example 4. Let C be a category. Then the nerve
{Cn}n≥0 is an ∞-category, which determines C up
to isomorphism. Consequently, we can think of an
∞-category S = {Sn}n≥0 as a kind of generalized

category. The objects of S are the elements of S0,
and the morphisms of S are the elements of S1.
Suppose we are given two morphisms f , g ∈ S1

that are “composable” (that is, the source of g co-
incides with the target of f ), as depicted in the fol-
lowing diagram

x z.

y

f

h

g

The morphisms f and g determine a horn σ0 ∈

Λ
2
1(S). If S is an ∞-category, then this horn can be

filled to obtain a 2-simplex σ ∈ S2. We can then
define a new morphism h : x → z by passing to a
face of σ ; this morphism can be viewed as a com-
position of g and f . The 2-simplex σ is generally
not unique, so that the composition h = g◦f is not
unambigiously defined. However, one can use the
horn-filling conditions of Definition 3 (for n > 2)
to show that h is well-defined “up to homotopy”.
This turns out to be good enough: there is a robust
theory of∞-categories, which contains generaliza-
tions of most of the basic ideas of category theory
(limits and colimits, adjoint functors, . . .).

Definition 3 is really only a first step towards a
much more ambitious generalization of classical
category theory: the theory of higher categories.
One can think of∞-categories as higher categories
in which every k-morphism is required to be in-
vertible for k > 1.

Example 5. For every topological space X, the
singular complex SingX is an ∞-category. Since
SingX determines the space X up to (weak)
homotopy equivalence, we can view the theory
of ∞-categories as a generalization of classical
homotopy theory.

Examples 4 and 5 together convey the spirit
of the subject: the theory of ∞-categories can
be viewed as a combination of category theo-
ry and homotopy theory and has the flavor of
both. Where classical category theory provides
a language for the study of algebraic structures
(groups, rings, vector spaces, . . .), the theory of
∞-categories provides an analogous language for
describing their homotopy-theoretic counterparts
(loop spaces, ring spectra, chain complexes, . . .).
The power of this language is only beginning to
be exploited.
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