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Stable Commutator
Length?

Danny Calegari

Kronecker allegedly once said, “God created the

natural numbers; all the rest is the work of man.”

But to a topologist, the natural numbers are just a

tool for classifyingorientable surfaces, bycounting

the number of handles (or genus).

Commutator length is the algebraic analogue

of “number of handles” in group theory. If G is

a group, and a, b ∈ G, the commutator of a and

b is the element aba−1b−1
∈ G. The commutator

subgroup, denoted [G,G], is the group generated

by all commutators, and for g ∈ [G,G], the com-

mutator length of g, denoted cl(g), is the smallest

number of commutators in G whose product is

equal to g. The size of [G,G] is one way of mea-

suring the extent to which the group G fails to

obey the commutative law ab = ba. If G is the

fundamental group of a space X, and g ∈ G is

represented by a homologically trivial loop γ ⊂ X,

the commutator length of g is the smallest genus

of a surface that admits a map to X in such a way

that the boundary of the surface maps to γ.

Estimating minimal genus is important in many

areas of low-dimensional topology. A knotK in the

3-sphere bounds an orientable surface (in its com-

plement) of some genus, called a Seifert surface.

The least such genus is equal to the commutator

length of the longitude of the knot, a certain distin-

guished conjugacy class in the group π1(S
3
−K).

As another example, given a 3-manifold M , one

can try to find the “simplest” 4-manifold W that

bounds it. IfM is a certain kind of 3-manifold—for

instance, a surface bundle over a circle—one can

ask forW to be a surface bundle over a surface, and

try to estimate (from below) the genus of the base.

This is tantamount to calculating the commutator

length of an element in the mapping class group of
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a surface (i.e., the group of self-homeomorphisms
of a surface, up to isotopy).

Calculating commutator length (even in finite
groups!) is notoriously difficult. A famous conjec-
ture of Ore from 1951, whose proof was announced
only very recently, says that in a finite, non-cyclic
simple group, cl = 1 for all nonzero elements. So
instead, one can stabilize the problem. The stable
commutator length of g, denoted scl(g), is the
limit

scl(g) = lim
n→∞

cl(gn)

n
Commutator length is subadditive in [G,G], so
this limit exists.

Computing stable commutator length is still
difficult, but feasible in many cases. For instance,
there now exist fast algorithms to compute scl in
free groups. Since every group is a quotient of a
free group, calculating scl on elements in a free
group gives universal upper bounds on scl.

Figure 1 plots values of scl by frequency on
64,010 random elements of word length 32 in
a free group on two generators. For simplicity,
we restrict attention to a subclass of elements
for which computation is particularly tractable,
namely those represented by alternating words.

Some conspicuous features of this plot include
the following:
(1) the existence of a spectral gap between 0 and

0.5, and another gap immediately above 0.5
(2) the non-discrete nature of the set of values

attained
(3) the relative abundance of elements for which

scl ∈
1

2
Z, and (to a lesser extent) ∈

1

6
Z and so

on to other denominators, revealing a “self-
similarity” in the histogram, and a power
law for the size of the “spikes” of the form
freq(p/q) ∼ q−δ, reminiscent of similar power
laws that arise in 1-dimensional dynamics (e.g.
the phenomenon of Arnol’d tongues)
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Figure 1. Values of scl on 64,010 alternating words of length 32. The horizontal axis is scl and the
vertical axis is frequency.

See [2] for a theoretical explanation of some of

these features; also see the references of [2] and

[1] for further reading.

A fact hinted at in this figure is that the values

of scl attained in a free group are all rational. This

is not a universal phenomenon: there are examples

of finitely presented groups with irrational scl, but

interestingly enough, no known examples where

scl is irrational and algebraic. This rationality (or

otherwise) has consequences in dynamics. For cer-

tain groups G of homeomorphisms of the circle,

there is a natural central extension Ĝ of G with

the property that rationality of stable commutator

length in Ĝ is directly related to the existence of

periodic orbits in S1 for elements g ∈ G. A simi-

lar relationship between rationality and dynamics

exists for certain groups of symplectic matrices.

One can learn a lot about an invariant by study-

ing when it vanishes. There are many important

classes of groups G for which scl is identically

zero on [G,G], including

(1) torsion groups

(2) solvable groups, and more generally, amenable

groups

(3) SL(n,Z) for n ≥ 3, and many other lattices

(uniform and nonuniform) in higher rank Lie

groups

(4) groups of piecewise-linear homeomorphismsof

[0,1]; Thompson’s group of piecewise dyadic

rational linear homeomorphisms of the circle

On the other hand, there are many other class-

es of groups for which scl is nonzero on typical

elements, including

(1) free groups, hyperbolic groups

(2) mapping class groups

(3) groups of area-preserving diffeomorphisms of

surfaces

The problem of computing scl can be recast

in homological terms, by counting triangles (or,

formally, 2-chains) instead of genus. The (real)

singular chain groups of a space, and the terms
in the bar resolution of a group, are vector spaces
with canonical bases, and one can use these
bases to make these vector spaces into normed
spaces. Bounded (co)-homology, introduced by
Gromov [3], arises when one studies the natural
L1 and L∞ norms on these vector spaces using the
tools of homological algebra. One can interpret
stable commutator length as the infimum of
the L1 norm (suitably normalized) on chains
representing a certain (relative) class in group
homology.

The unit balls in the L1 and L∞ norms on
finite-dimensional vector spaces are rational poly-
hedra. Computing the L1 norm of a homology
class is a kind of linear programming problem. In
certain groups, computing scl reduces to a finite-
dimensional linear programming problem, which
explains the rationality of scl in some cases. The
polyhedral nature of L1 norms is manifest in sever-
al closely related contexts. Most well-known is the
Thurston norm on the homology of a 3-manifold,
which turns up again and again throughout low-
dimensional topology, in the theories of taut
foliations, symplectic 4-manifolds, quasigeodesic
flows, Heegaard Floer homology, and so on.

Thus stable commutator length gives insight in-
to bounded (co-)homology of groups and spaces,
and conversely.
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