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a Period Domain?
James Carlson and Phillip Griffiths

The notion of period domain goes back to the very
beginnings of algebraic geometry, to the study of el-
liptic curves. These are compact Riemann surfaces
of genus one, defined as the complex solutions of

y2 = x3 + ax + b, plus one point at infinity. Such a
surface E is a compact torus and so has a homol-
ogy basis {δ,γ}, where the intersection number of
the two cycles is δ ·γ = 1. Consider the differential

one-form ω = dx/y , which is holomorphic in local
coordinates on E. The period matrix of E is given by
the integrals

(1) (A, B) =
(∫

δ
ω,

∫

γ
ω

)
.

Multiplyingω by a suitable nonzero scalar, we may
assume that its A period is one. Then a calculation,
based on the fact that

(2)
√
−1

∫

S
ω∧ ω̄ > 0,

shows that its B period has positive imaginary part.
Consequently, the upper half plane H = { z = x +
iy ∈ C |y > 0 } parametrizes the set of so-called
normalized B periods. The upper half plane is the

first example of a period domain.
An elliptic curve plus a homology marking,

i.e., a choice of integer homology basis such that
δ · γ = 1, determines a point in the period domain

H . Two normalized homology bases are related by
an element of the group Γ of unimodular matrices
with integer entries, and the two normalized B
periods are related by the corresponding fractional

linear transformation. If one has a family of elliptic
curves Et that depends holomorphically on t , then
B(t) is locally defined and varies holomorphically.
The map t ֏ B(t) is the period map. Since H is

biholomorphic to the unit disk, one finds, as a con-
sequence of the uniformization theorem, that any
nonconstant family of elliptic curves parametrized
by the Riemann sphere must have at least three
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singular fibers. The equivalence class of the nor-
malized period modulo the action of the group Γ is
intrinsically defined and lies in the quotient Γ\H .
Thus, if Et is a family of elliptic curves parametrized

by a base S, one has a globally defined period map
S → Γ\H .

The notion of period domain is easily generalized
to Riemann surfaces of higher genus, in which case

the period matrix (A, B) has size g by 2g. The role
of the upper half plane is played by the Hermitian
symmetric space of Sp(2g,R): the Siegel upper half
space of genus g, given by g×g complex symmetric

matrices with positive definite imaginary part. Writ-
ten Hg , this is the space of normalized B periods.
The group acting on it is Γ = Sp(2g,Z).

To make the transition to algebraic manifolds of

higher dimension, we think in terms of Hodge struc-
tures: the decomposition of the complex cohomol-
ogy into the spaces Hp,q spanned by closed differ-
ential forms expressible locally as a sum of terms

fdzi1∧·· ·∧dzip∧dz̄j1∧·· ·∧dz̄jq , where z1, · · · , zn
are holomorphic local coordinates. For a projective
algebraic manifold one has Hk(X,C) = ⊕p+q=kHp,q
where Hp,q = Hq,p. Such a decomposition, togeth-
er with the lattice given by the integer cohomology

modulo torsion, is a Hodge structure of weight k. For
a Riemann surface the Hodge structure H1(X,C) =
H1,0 ⊕ H0,1 is of weight one, and H1,0 is identified
with the row space of the period matrix. This space

is subject to two important relations. One comes
from the fact that for holomorphic differentialsφ =
fdz and ψ = gdz, the product φ∧ψ vanishes. The

other comes from the fact that iφ∧ φ̄ is a positive

multiple of the volume form. These are the first and
second Riemann bilinear relations. A Hodge struc-
ture satisfying these relations is polarized (by cup
product). In terms of normalized B periods, (1) B

is symmetric, and (2) B has positive definite imagi-
nary part. The Siegel upper half space parametrizes
polarized Hodge structures of weight one.

General period domains are parameter spaces

for polarized Hodge structures of weight k. The
model is the subspace of the k-th cohomology of
a complex projective algebraic manifold of dimen-
sion k which is annihilated by cup-product with the

hyperplane class. Polarization is the generalization
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of the first and second Riemann bilinear relations.

The resulting parameter space D can be represent-
ed, just as in the case of Hg = Sp(2g,R)/U(g), as
a complex homogeneous space G/V , where G is a
Lie group and V is a compact subgroup. However,

V is rarely a maximal compact subgroup, and so
D is rarely hermitian symmetric. Important special
cases in which D is of weight k > 1 but is nonethe-
less hermitian symmetric are the period domains

of K3 surfaces and of the cyclic cubic threefolds
associated to cubic surfaces.

For period domains of weight k > 1, there is a dif-
ferential relation not seen in the weight one case.

To explain it, consider the subspaces Fp = Hk,0 ⊕
·· · ⊕Hp,k−p. They define the Hodge filtration Fk ⊂
Fk−1 ⊂ ·· · , denoted by F•. To give a Hodge decom-
position is to give a Hodge filtration and vice versa.

The Hodge filtration of a family of algebraic vari-
eties that varies holomorphically with parameters
also varies holomorphically. However, more is true.
If t is a parameter on which Fp(t) depends holomor-

phically, then the derivative satisfies

(3) Ḟp(t) ⊂ Fp−1(t).

This relation is now known as Griffiths transversal-
ity.

More formally, let TD be the holomorphic

tangent bundle of D. The relation (3) defines
a holomorphic subbundle I to which period map-
pings coming from geometry are tangent. Mappings
satisfying this differential relation are called hor-

izontal. A general period map is just a horizontal
holomorphic map. An immediate consequence of
horizontality is that most Hodge structures do not
come from geometry.

Curvature computations along the horizontal
distribution imply that period maps defined on the
unit disk are distance decreasing with respect to
the Poincaré metric on the disk and the G-invariant

metric on D. The distance-decreasing property
of period maps from the punctured disk ∆∗ to
D forces them to extend across the origin. Thus
a version of the Riemann removable singularity

theorem holds. Period domains act, with respect to
horizontal holomorphic mappings, as if they were
bounded domains.

On the n-th cohomology of a family of non-

singular algebraic varieties over ∆∗ is defined a
monodromy transformation T . It controls the ana-
lytic continuation of the period map along a loop
around the origin. The period mapping associated

to the family over the punctured disk takes the
form τ : ∆∗ → {T i }\D. Using the fact that T is an
integral matrix and τ is distance-decreasing, one
finds that the eigenvalues of T are m-th roots of

unity. Passing to a finite covering of ∆∗ we may
assume that T is unipotent with logarithm N.

The distance decreasing properties of maps tan-
gent to I make it possible to take limits of Hodge

structures, just as one takes limits in calculus. The
starting point is the asymptotic formula for a period

map on the punctured disk,

(4) φ(t) ∼ exp

((
log t

2π
√−1

)
N

)
F•0 ,

where the “limit filtration” F•0 , which lies in Ď, de-

fines a so-called mixed Hodge structure. The previ-
ous relation, due to Schmid, is the starting point for
the result that the index of unipotency of Tm is n+1,
i.e., (Tm − I)n+1 = 0.

The boundary points for the limit Hodge filtra-

tion lie in the compact dual D̂ of D, obtained by
ignoring the positivity condition in the definition of

polarization. For elliptic curves, D̂ is justP1, and the
limiting mixed Hodge structures added to compact-

ify Γ\H correspond to cusps of the fundamental
domain of SL2(Z). It is a remarkable fact, encoded
in the Clemens-Schmid exact sequence, that the lim-
it mixed Hodge structure can largely be read from

the geometry of the singular fiber.
The subbundle I usually generates TD under Lie

bracket, as in the case of the contact distribution on
the three-sphere or its holomorphic analogue, given

in local coordinates by the null space of ω = dz −
xdy . As with the contact distribution, the dimension
of integral submanifolds of I is smaller than the di-
mension of I, indeed, often much smaller. One may

suspect that a nontrivial period mapping defined on
a quasi-projective variety “comes from geometry”.
However, with the exception of weight one (abelian
varieties) and K3 surfaces, almost nothing is known

about this question.
We close with some observations of a more

arithmetic character. First, the projective variety D̂
is defined over Q. Thus it makes sense to ask for

the field of definition of F•(t). If F• is simple, then
End(F•)⊗Q is a division algebra whose center is a
field k with [k : Q] ≤ dimH. We say that the Hodge
structure has CM type when the division algebra is

commutative and equality holds. Equivalently, the
Mumford-Tate group M(F•) is an algebraic torus.
The Mumford-Tate group is the Q-subgroup of
Aut(H,Q) that fixes all the rational (p, p) classes

(“Hodge classes”) in the tensor algebra on H and its
dual. The nature of Hodge structures of CM type,
which have played an essential role in the weight
one case, is just beginning to be explored in higher

weight. The interface between Hodge theory, period
domains, and arithmetic is one of the deepest and
most promising areas for future work.

Further reading. Some foundational articles

are those by P. A. Griffiths and W. Schmid in Ac-
ta Math. (1968), by P. Deligne in Pub. Math. IHES
(1971), and the article on the singularities of the pe-
riod mapping by W. Schmid in Invent. Math. (1973).

Recent expository works include Hodge Theory and
Complex Algebraic Geometry I and II, by C. Voisin,
and Period Domains and Period Mappings, by
J. Carlson, C. Peters, and S. Müller-Stach. The notes
by B. Moonen on Mumford-Tate groups (1999)

illuminate the material of the last paragraph.
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