

of the American Mathematical Society

January 2009
Volume 56, Number 1

Mathematical Models in Science and Engineering
page 10

Is the Sky
Still Falling?
page 20

Raleigh Meeting

Scientific WorkPlace

 ScientificWord: $=$

Visit us at the 2009 Joint

14. DISCRETE MODELS

The Gold Standard for Mathematical Publishing

Scientific WorkPlace and Scientific Word Version 5.5 make writing, sharing, and doing mathematics easier. You compose and edit your documents directly on the screen, without having to think in a programming language. A click of a button allows you to typeset your documents in $L^{A} T_{E} X$. You choose to print with or without $L^{A} T_{E} X$ typesetting, or publish on the web. Scientific WorkPlace and Scientific Word enable both professionals and support staff to produce stunning books and articles. Also, the integrated computer algebra system in Scientific WorkPlace enables you to solve and plot equations, animate 2D and 3D plots, rotate, move, and fly through 3D plots, create 3D implicit plots, and more.

Visit our website for free trial versions of all our products. www.mackichan.com/notices•Email: info@mackichan.com• Toll free: 877-724-9673
Suppose that a time series of $q+1$ data points
$\mathrm{H}_{1} \mathrm{H}_{1}+y_{2} \ldots \ldots \mathrm{~B}_{4}$
is given. A tiketihood function L. gives the prohability that the observed data
would result from the proposed stochastic mechanism relative to all other pos-
sible outconse [132]. The data y_{1} is a realization of the nandom variable $x(t)$.
On the \log sende, why $=\ln y_{i}$ is a realization of the randion variable $\ln x(t)$. The
likerilibod function L is
$L\left(\theta_{1}, \ldots, \theta_{p}, v\right)=\prod_{t=1}^{y} p\left(\omega_{v} \mid \omega_{t-1}\right)$.
where $p\left(w_{q} \mid w_{\gamma_{-1}}\right)$ is the joint probability distribution function (pdf) that $w_{q} 00$

$$
\begin{aligned}
& \begin{array}{l}
\text { curs given that tet-1 Oc } \\
\text { and variance } v \text {. Thus, }
\end{array} \\
& p\left(\omega_{i} \mid \omega_{i-1}\right)=\frac{1}{\sqrt{2 \pi v}} \exp \left(-\frac{1}{2 v}\left(\omega_{z}-\ln f\left(y_{t-1}, \theta_{1}, \ldots, \theta_{p}\right)\right)^{2}\right) \\
& \text { and } \\
& L\left(\theta_{1}, \ldots, \theta_{p}, v\right)=\prod_{i=1}^{u} \frac{1}{\sqrt{2 \pi v}} \exp \left(-\frac{1}{2 v}\left(\omega_{r}-\ln f\left(\eta_{n-1}, \theta_{1}, \ldots, \theta_{p}\right)\right)^{2}\right) . \\
& \text { The marrimum hilclitheod parameter estimates are those values of the parame- } \\
& \text { ters } \theta_{1}, \ldots, \theta_{p}, v \text { that maximize } L\left(\theta_{1}, \ldots, \theta_{p}, v\right) \text {, or equivalently that maximize } \\
& I\left(\theta_{1}, \ldots, \theta_{p}, v\right)=\ln \left(t\left(\theta_{i+\ldots, \theta_{p}}, v\right)\right) \text {. A calculatian slows } \\
& \text { (1.1) } \quad t\left(\theta_{1}, \ldots, \theta_{p}, n\right)=-\frac{q}{2} \ln (2 \pi)-\frac{\eta}{2} \ln v-\frac{1}{2 v} \sum_{t=1}^{q} r_{i}^{2}\left(\theta_{1}, \ldots, \theta_{p}\right) \text {, } \\
& \text { where } \\
& r_{1}\left(\theta_{1}, \ldots, \theta_{p}\right)=\ln p_{p_{1}}-\ln f\left(y_{i-1}, \theta_{1}, \ldots, \theta_{p}\right)=\ln \left(\frac{v_{i}}{f\left(y_{i-1}, \theta_{1}, \ldots, \theta_{p}\right)}\right)
\end{aligned}
$$

ditrintione

New and Forthcoming

Integration and Modern Analysis

John J. Benedetto; Wojciech Czaja, both University of Maryland, College Park, USA

This textbook begins with the fundamentals of classical real variables and leads to Lebesgue's definition of the integral, the theory of integration and the structure of measures in a measure theoretical format. The core chapters are followed by chapters of a topical nature, which illuminate the authors' intellectual vision of modern real analysis. These topics include weak convergence, the Riesz representation theorem, the Lebesgue differential theorem, and selfsimilar sets and fractals. Historical remarks, illuminating problems and examples, and appendices on functional analysis and Fourier analysis provide insight into the theory and its applications.
2009. APPROX. 565 P. 21 ILLUS. HARDCOVER ISBN 978-0-8176-4306-5 CA. \$79.95 BIRKHÄUSER ADVANCED TEXTS

Explorations in Harmonic Analysis

with Applications to Complex Function Theory and the Heisenberg Group
Steven G. Krantz, Washington University, St. Louis, MO, USA

This text on modern harmonic analysis provides an introduction to the subject in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. The exposition begins with the fundamentals of Fourier analysis, complex function theory, and integral operators and further introduces students to cutting edge ideas about the Heisenberg group.
This self-contained text serves as an introduction to analysis on the Heisenberg group. It is an ideal text for advanced undergraduate and graduate students and will aid them in forging new paths of research.
2009. APPROX. 350 P. HARDCOVER

ISBN 978-0-8176-4668-4 \$69.95 APPLIED AND NUMERICAL HARMONIC ANALYSIS

Journal Special Issue

Transformation Groups

Dedicated to Bertram Kostant on the Occasion of his 80th Birthday

Contributors

W. Baldoni, M. Brion, J. B. Carrell, C. De Concini, P. Etingof, V. Ginzburg, V. Guillemin, T. S. Holm, R. Howe,
A. Joseph, R. Joshua, V. G. Kac, K. Kaveh, D. Kazhdan, A. Knutson, Y. KosmannSchwarzbach, S. Kumar, C. LaurentGengoux, S. Loktev, G. Lusztig,
A. Oblomkov, I. Penkov, V. L. Popov,
C. Procesi, K. Rietsch, L. Rybnikov,
R. Sjamaar, E.-C. Tan, M. Vergne,
M. Wakimoto, Z. Wang, A. Weinstein,
J. F. Willenbring, L. Williams, S.-W. Yang,
A. Zelevinsky, G. Zuckerman

For a full table of contents please visit www.SpringerLink.com
VOLUME 13, NUMBERS 3-4, DECEMBER 2008 ISSN 1083-4362 (PRINT) 1531-586X (ONLINE)

Basic Algebra \&
 Advanced Algebra

Anthony W. Knapp, State University of New York, Stony Brook, NY, USA
"Finally, the author's notorious masterly style of writing, which stands out by its high degree of clarity, elegance, refinement, and accuracy, also rules over this newest textbook of his, which is very likely to become one of the great standard texts in algebra for generations."
-Zentralblatt Math

Basic Algebra

2006. XXII, 717 P. 42 ILLUS. HARDCOVER

ISBN 978-0-8176-3248-9 \$69.95
Advanced Algebra
2008. XXIV, 730 P. 10 ILLUS. HARDCOVER

ISBN 978-0-8176-4522-9 \$69.95
Basic Algebra and
Advanced Algebra (SET)
ISBN 978-0-8176-4533-5 \$89.95
CORNERSTONES

Elliptic Equations:
 An Introductory Course

Michel Chipot, University of Zürich, Switzerland

The aim of this book is to introduce the reader to elliptic partial differential equations by avoiding technicalities and refinements. Apart from the basic theory of equations in divergence form, it includes topics such as singular perturbation problems, homogenization, computations, asymptotic behaviour of problems in cylinders, elliptic systems, nonlinear problems, regularity theory, Navier-Stokes system, p-Laplace equation. A minimal portion on Sobolev spaces is presented, while work or integration on the boundary has been carefully avoided. Numerous results presented are original and have not been published elsewhere.
2009. APPROX. 300 P. HARDCOVER

ISBN 978-3-7643-9981-8 \$69.95
BIRKHÄUSER ADVANCED TEXTS

Dynamical Systems with Applications using MAPLE

Second Edition
Stephen Lynch, Manchester Metropolitan University, UK
"The book will be useful for all kinds of dynamical systems courses.... [It] shows the power of using a computer algebra program to study dynamical systems, and, by giving so many worked examples, provides ample opportunity for experiments. ... [It] is well written and a pleasure to read, which is helped by its attention to historical background."
-Mathematical Reviews (Review of First Edition)

This new edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions; two new chapters on neural networks and Maplets have also been added. A supplementary e-book with interactive exercises, examples, and solutions will also be published.
2009. 2ND ED. APPROX. 500 P. 350 ILLUS. SOFTCOVER
ISBN 978-0-8176-4389-8 CA. \$59.95

Communications

34 WHAT IS...the Schwarzian Derivative? Valentin Ovsienko and Sergei Tabachnikov

38 Hans Grauert: Mathematiker Pur Alan Huckleberry

42 A Celebration of Women in Mathematics at MIT Margaret A. M. Murray

48 John Ewing Retires from the AMS
Allyn Jackson
52 What Is New in LATEX?
I. Breaking Free
G. Grätzer

Commentary

7 Opinion: Preserving Our History
Michael Doob
8 Letters to the Editor
27 Pythagorean Crimes-A
Book Review
Reviewed by Alex Kasman
31 The Cat in Numberland-A Book Review
Reviewed by James Propp

Features

10 Mathematical Models in Science and Engineering

Alfio Quarteroni

Mathematical models, along with scientific theory and practical experiments, are a crucial part of modern engineering and science. The author takes a look at the role mathematical models play in topics ranging from vascular simulation to weather forecasting to designing America's Cup sailboats.
20 Is the Sky Still Falling?
David M. Bressoud
Over the past decade mathematicians have been increasingly concerned about the number of undergraduate students studying mathematics and the consequences thereof, an important one being a possible decreasing need for mathematics faculties to teach them. The author reviews current data, finding cause for both optimism, in increasing numbers, and pessimism, in declining percentages.
of the American Mathematical Society

EDITOR: Andy Magid

ASSOCIATE EDITORS:

Daniel Biss, Susanne C. Brenner, Bill Casselman (Graphics Editor), Robert J. Daverman, Susan Friedlander, Robion Kirby, Steven G. Krantz, Lisette de Pillis, Peter Sarnak, Mark Saul, John Swallow, Lisa Traynor
SENIOR WRITER and DEPUTY EDITOR:
Allyn Jackson
MANAGING EDITOR: Sandra Frost
CONTRIBUTING WRITER: Elaine Kehoe PRODUCTION ASSISTANT: Muriel Toupin
PRODUCTION: Kyle Antonevich, Stephen Moye, Erin Murphy, Lori Nero, Karen Ouellette, Donna Salter, Deborah Smith, Peter Sykes, Patricia Zinni
ADVERTISING SALES: Anne Newcomb

SUBSCRIPTION INFORMATION: Subscription prices for Volume 56 (2009) are US\$488 list; US\$390 institutional member; US\$293 individual member. (The subscription price for members is included in the annual dues.) A late charge of 10% of the subscription price will be imposed upon orders received from nonmembers after January 1 of the subscription year. Add for postage: Surface delivery outside the United States and India-US\$27; in India-US\$40; expedited delivery to destinations in North America-US\$35; elsewhere-US\$88. Subscriptions and orders for AMS publications should be addressed to the American Mathematical Society, P.O. Box 845904 , Boston, MA 02284-5904 USA. All orders must be prepaid.
ADVERTISING: Notices publishes situations wanted and classified advertising, and display advertising for publishers and academic or scientific organizations. Advertising material or questions may be sent to classads@ams.org (classified ads) or notices-ads@ ams.org (display ads).
SUBMISSIONS: Articles and letters may be sent to the editor by email at notices@math.ou.edu, by fax at 405-325-5765, or by postal mail at Department of Mathematics, 601 Elm, PHSC 423, University of Oklahoma, Norman, OK 73019-0001. Email is preferred. Correspondence with the managing editor may be sent to notices@ams.org. For more information, see the section "Reference and Book List".
NOTICES ON THE AMS WEBSITE: Supported by the AMS membership, most of this publication is freely available electronically through the AMS website, the Society's resource for delivering electronic products and services. Use the URL http://www.ams. org/notices/ to access the Notices on the website.
[Notices of the American Mathematical Society (ISSN 00029920) is published monthly except bimonthly in June/July by the American Mathematical Society at 201 Charles Street, Providence, RI02904-2294USA, GSTNo. 121892046 RT****. Periodicals postage paid at Providence, RI, and additional mailing offices. POSTMASTER: Send address change notices to Notices of the American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248USA.]Publicationhere of the Society's street address and the other information in brackets above is a technical requirement of the U.S. Postal Service. Tel: 401-455-4000, email: notices@ams.org.
© Copyright 2009 by the
American Mathematical Society.
All rights reserved.
Printed in the United States of America.The paper used in this journal is acid-free and falls within the guidelines established to ensure permanence and durability.
Opinions expressed in signed Notices articles are those of the authors and do not necessarily reflect opinions of the editors or policies of the American Mathematical Society.

Departments

About the Cover 88
Mathematics People 56
Venkatesh Awarded 2008 SASTRA Ramanujan Prize, Hansen Awarded 2008 CME/MSRI Prize, Faltings Receives von Staudt Prize, Burban and Opperman Receive ICRA Awards, NDSEG Fellowships Awarded, Masayoshi Nagata (1927-2008).
Mathematics Opportunities 59
Proposal Due Dates at the DMS, AMS-AAAS Mass Media Summer Fellowships, DARPA Mathematical Challenges, NDSEG Fellowships, National Academies Research Associateship Programs, Noether Lecture at ICM 2010, 2009 Fermat Prize for Mathematics Research, Plus Magazine New Writers Award, Departments Again Coordinate Job Offer Deadlines, News from the Fields Institute, Clay Mathematics Institute 2009 Summer School, News from the Mathematical Biosciences Institute.
Inside the AMS 63
AMS Current Events Bulletin, Erdós Memorial Lecture, From the AMS Public Awareness Office, AMS Hosts Congressional Briefing: Can Mathematics Cure Leukemia?, Deaths of AMS Members.
Reference and Book List. 65
Mathematics Calendar 70
New Publications Offered by the AMS 75
Classified Advertisements 82
AAAS Meeting in Chicago, IL 86
Call for Organizers: 2010 MRC Conferences 87
General Information Regarding Meetings \& Conferences of the AMS. 89
Meetings and Conferences of the AMS 90
Presenters of Papers, Washington, DC Meeting 105
Program of the Sessions, Washington, DC Meeting 113
Meetings and Conferences Table of Contents 199

American Mathematical Society

Mathematics Genealogy Project

Mathematics Genealogy Project

Quick Search
Search

Advanced Search

127979 records as of 17 November 2008

View the growth of the genealogy project back.

Opinion

Preserving Our History

The use of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ over the last decade and a half to write papers, lecture notes, and even ephemera has moved from the unusual to the commonplace. Indeed, some of my younger colleagues can't remember using anything else but $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to write mathematics. For those of us somewhat longer in the tooth, we remember using other software, which was preceded by the little golf balls that allowed typing of mathematical symbols, which in turn was preceded by writing in the mathematics by hand (with the hope that the typesetting would introduce only a few errors).

The utility of this wonderful piece of software has been greatly enhanced by the continuing and massive growth in the capability of the accompanying hardware. Indeed, in the early 1990s when the first implementations of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ appeared on desktop machines, I wrote a review for the Notices with some comparative timings. ${ }^{1}$ I had a test document of about 100 pages that contained an appropriate mixture of ordinary (for that time, English, without accents) text and mathematics. It could be run though $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ in times varying between one and five minutes. When I try the same thing on my newest desktop machine, the job takes 0.004 seconds. Viewing it another way, three such jobs can be run in the time it takes to refresh the screen once.

One of the happier results of this migration to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and the improvement in hardware has been the ability to put our papers on personal webpages so that anyone with a standard computer configuration can acquire them. This usually means making a PDF or a PostScript file available for download. The infrastructure of the Internet makes this transfer of files easy and transparent, and, as a result, the little postcards that were mailed to request reprints has joined those little golf balls as historical curiosities.

Improvements in hardware have another happy consequence: papers written in the predigital era and consequently not available on the Internet are not beyond redemption. They, too, may be made available for download. Over the past few years there have been significant advances in the hardware and software used to scan paper documents. With the right equipment, scanning several hundred or even a thousand pages is not difficult.

There are two approaches, both of which work well. The first is to use a standalone scanner. Robust models with document sheet feeders are available for under US $\$ 1,000$. These usually include the software for doing the scanning, and sometimes OCR (optical character recognition) software is also included. There are lots of options when using such software, so here are some suggestions.

When scanning the pages, the software can produce color, grayscale, or black and white files. Unless there is a compelling reason, black and white is usually the best choice for older documents. There is also a choice of
resolution: 200, 300, 600, or 1200 dpi (dots per inch). Usually the 600 dpi is the best choice.

There are also several different types of files that can be produced by the scanning software. All of them have some compression: these come in two types: lossless (no data lost during the compression) and lossy (some data irretrievable). A lossless compression is the best. There are also different file formats, the most common being PDF and TIFF. The PDF files are the ones to put on your webpage; they can be read on any modern computer with readily available software. Note that there are two different types of PDF files: ones that are image only and those that are also text searchable. The latter type is preferable, and most scanners can produce them.

There is also a compelling reason to keep lossless TIFF files. Newer and smarter software will emerge that will do things we can't do today. If you keep the TIFF files, there will be no need to rescan since the information is already in an industry-standard format.

There are frequently other options to consider. For example, many scanners allow the page to be autostraightened, that is, pages that are tilted because of inaccurate feeding or printing will be rotated into horizontal and vertical alignment. This is, more often than not, useful. Another option is despeckling, that is, the removal of very small dots on the page on the assumption that they are either background to the page text or errors introduced while scanning. The despeckling may be set to be more or less aggressive. This choice depends on the quality of the material being scanned. If there are handwritten symbols, its probably best to leave the despeckling off. If the document being scanned is printed, despeckling may be useful. For those with an experimental bent, running a few sample pages with different settings can be very helpful.

A second approach is to use a photocopier. Many of them come with scanning software built in: you feed in the pages and the image files are emailed back to you. Usually there are fewer options than with a scanner. The default resolution is usually 200 dpi, so be sure to set it to 600 dpi. Most of the provisos given above for scanners are also valid for photocopiers.

I recently carried out a two-month project that involved scanning of some 53,000 pages. It really wasn't difficult. In fact the hardest part of preserving your mathematical history may be taking the staples out of those old pages.

Our mathematical history is important and worth preserving. A bit of effort by all of us can produce a significant body of mathematical literature. Let's get our history out
of the file cabinet and onto the Web!
-Michael Doob
University of Manitoba mdoob@ccu.umanitoba.ca

[^0]
More on Non-English Names

My letter "Non-English names of prominent mathematicians" appeared in the April 2008 issue of the Notices. Since then I have received numerous emails with additions and corrections. The original list of names has grown from two pages to five pages. The address of the updated PDF file is http://www2.onu.edu/ ~mcaragiu1/bonus_fi1es/Names. pdf. It can be found easily on the department page of the Department of Mathematics at Ohio Northern University. Many thanks to all contributors! Further additions and corrections are welcome.
-Khristo Boyadzhiev Ohio Northern University k-boyadzhiev@onu.edu
(Received September 3, 2008)

WHAT IS...a Mathematics Professor?

With much interest, I've been following the "What is...?" Communications column in the Notices. It seems to me that a valuable contribution to mathematics and mathematics education could be made by discussing, in detail, what it means to be a professor. However, with hundreds of disciplines in the larger universities, this might be much too broad a subject to treat easily. Hence, what does it mean to be a mathematics professor? Note that I am not asking the narrower question of what it means to be either a great or a good mathematics professor. Later on, one could discuss those special subclasses of mathematics professors or even generalize the discussions to professors in other disciplines. I conjecture that it would not be good for mathematics if no one can propose a satisfactory answer or most everyone ignores such simple questions. What is a mathematics professor? Surely a candidate for a degree or a position would have a suitable answer.
-Albert A. Mullin 1orrm@earth1ink.net
(Received October 4, 2008)

A Formula for Citations

The article "Citation statistics: An IMU report" (Notices, September 2008), summarizing the report http://www.mathunion.org/ pub1ications/report/ citationstatistics/b, makes it once again clear how flawed the impact factor is. However, as to the right way to count citations, I felt the issue of singleauthor versus co-author was neglected. Moreover, in order to not only discard self-citations but also citations from one's "circle of friends", I propose the following tough but fair (as much as a single number can possibly be) citation count $f(X)$ of an individual X.

Some fixed article A that cites some fixed article Y of X should be accounted for as follows. First, in order for A to have any effect at all,
the group of authors of A must not contain X, nor anybody who has ever been a co-author of X. That condition being satisfied, the contribution of A to Y 's count $g(Y)$ should be $1 / n$ where $n-1$ is the number of authors that X relied upon to produce Y. The fraction $1 / n$ is not a slighting of Y 's impact, it only takes into account that in the same time that a hypothetical single author X^{\prime} of X^{\prime} s caliber writes one article of Y 's quality, the coauthor X produces n such articles (assuming all co-authors contribute equally). By definition $f(X)$ is the sum of all $g(Y)$ where Y ranges over all articles of X.
-Marcel Wild
University of Stellenbosch
mwild@sun.ac.za
(Received October 9, 2008)

Correction

There was an error in the drawing that accompanied the article "WHAT IS... a Cross Ratio?" by François Labourie in the November 2008 issue of Notices (page 1234). The corrected drawing is shown below and the accompanying relevant text "...let finally z and t be the centres of two horospheres tangent to both C_{X} and C_{y} respectively. Then $\ldots x, y, z, t$." should instead read "... let finally z and t be the centres of two horospheres tangent to each other as well as to C_{x} and C_{y} respectively. Then $\ldots y, z, x, t$."
-Sandy Frost

Help bring THE WORLD of mathematics into the lives of young people.

©Whether they become scientists, engineers, or entrepreneurs, young people with mathematical talent need to be nurtured. Income from this fund supports the Young Scholars Program, which provides grants to summer programs for talented high school students.

Please give generously.

Learn about giving opportunities and estate planning
www.ams.org/giving-to-ams
Contact the AMS Development Office 1.800.321.4267
(U.S. and Canada) or
1.401.455.4000
(worldwide)
email: development@ams.org

American Mathematical Society

Mathematical Models in Science and Engineering

Mathematical modeling aims to describe the different aspects of the real world, their interaction, and their dynamics through mathematics. It constitutes the third pillar of science and engineering, achieving the fulfillment of the two more traditional disciplines, which are theoretical analysis and experimentation. Nowadays, mathematical modeling has a key role also in fields such as the environment and industry, while its potential contribution in many other areas is becoming more and more evident. One of the reasons for this growing success is definitely due to the impetuous progress of scientific computation; this discipline allows the translation of a mathematical model-which can be explicitly solved only occasionally-into algorithms that can be treated and solved by ever more powerful computers. See Figure 1 for a synthetic view of the whole process leading from a problem to its solution by scientific computation. Since 1960 numerical analysis-the discipline that allows mathematical equations (algebraic, functional, differential, and integrals) to be solved through algorithms-had a leading role in solving problems linked to mathematical modeling derived from engineering and applied sciences. Following this success, new disciplines started to use mathematical modeling, namely information and communication technology, bioengineering, financial engineering, and so on. As a matter of fact, mathematical models offer new possibilities to manage the increasing complexity of technology, which is at the basis of modern industrial

[^1]production. They can explore new solutions in a very short time period, thus allowing the speed of innovation cycles to be increased. This ensures a potential advantage to industries, which can save time and money in the development and validation phases. We can state therefore that mathematical modeling and scientific computation are gradually and relentlessly expanding in manifold fields, becoming a unique tool for qualitative and quantitative analysis. In the following paragraphs we will discuss the role of mathematical modeling and of scientific computation in applied sciences; their importance in simulating, analyzing, and decision making; and their contribution to technological progress. We will show some results and underline the perspectives in different fields such as industry, environment, life sciences, and sports.

Scientific Computation for Technological Innovation

Linked to the incredible increase of computer calculation speed, scientific computation may be decisive enough to define the border between complex problems that can be treated and those that, on the contrary, cannot. The aim of scientific computation is the development of versatile and reliable models, detailed in closed form, and tested on a wide range of test cases, either analogical or experimental, for which there are helpful reference solutions.

A mathematical model must be able to address universal concepts, such as, for instance, the conservation of mass or the momentum of a fluid, or the moment of inertia of a structure; moreover, in order to obtain a successful numerical simulation, it is necessary to define which level of detail must be introduced in the different parts of a model

Figure 1. Scientific computing at a glance.
and which simplifications must be carried out to facilitate its integration into different models. Models able to simulate very complex problems should take into account uncertainty due to the lack of data (or data affected by noise) that feed the model itself. These kinds of models will be used to foresee natural, biological, and environmental processes, in order to better understand how complex phenomena work, and also to contribute to the design of innovative products and technologies.

An important aspect of scientific computation is represented by computational fluid dynamics (CFD), a discipline that aims to solve by computers problems governed by fluids. In aerospace, for example, CFD can be applied in many ways. Numerical models based on potential flow equations or on the more sophisticated Euler or NavierStokes equations can be used, for example, in the aerodynamic analysis of wing tips or for the whole fuselage for performance optimization. See Figure 2 and Figure 3 for numerical simulations carried out on, respectively, a civil aircraft (the Falcon 50) and the X29 experimental aircraft using the Euler equations solved by a stabilized finite element approximation [1]. Simulation implies validation and optimization, with the aim of designing aircraft able to meet certain requirements: better structural reliability, better aerodynamic performance, lower environmental impact thanks to the reduction in noise emissions (in the case of commercial airplanes), speed optimization, and improvement of maneuverability (in the case of military aircraft). The solution to these problems requires multi-objective optimization algorithms: deterministic, stochastic, or genetic. Moreover, models of electromagnetic diffusion are used to simulate external electromagnetic fields in order to restrain them from interfering with those generated by the several electronic circuits that are
contained in the instrumentation on board. Models are used to simulate the stresses and the deformation of some parts of the aircraft (for the simulation of the analysis of materials strain), through algorithms for the interaction between fluid and structure with the aim of improving structural and dynamic stability. Similar analyses are studied in the car industry, where numerical simulation is used in virtually every aspect of design and car production. Models are used to simulate internal engine combustion in order to save fuel, improve the quality of emissions, and reduce noise. Moreover, to improve performance, security, and comfort, several kinds of equations must be solved, such as those modeling external and internal fluid dynamics, aero-elasticity, and aero-acoustic vibration dynamics, but also those governing thermal exchange, combustion processes, shock waves (occurring during the opening phase of an air bag), structural dynamics under large stresses, and large deformations to simulate the consequences of car crashes. The chemical industry uses mathematical models to simulate polymerization processes, pressing, or extrusion for complex rheologic materials, where the typical macro analysis of continuum mechanics must be connected to the micro one, the latter being more adequate to describe the complex rheology of materials with nanostructure. This requires the development of multiscale analysis techniques and algorithms, which are able to describe the exchange of mechanical, thermal, and chemical processes in heterogeneous spatial scales. In the electronics industry, the simulation of drift-diffusion, hydrodynamics, Boltzmann, or Schrödinger equations plays a key role in designing ever smaller and faster integrated circuits, with growing functionality and with dramatic waste reduction (which are fundamental, for example, in different applications of mobile phones). Efficient algorithms are

Figure 2. Mach number distribution and streamlines for a civil aircraft.

Figure 3. Mach number and streamlines on the X29 experimental aircraft.
useful also for coding and decoding multi-user messages.

Modeling the Weather

In the last few decades, the critical problem of predicting the weather in a short time (daily or weekly) has become more and more linked to longterm prediction (for a decade or even a century), to climatic evolution, and to atmospheric pollution problems. Luckily, there are natural climatic changes in a particular area that obey physical law, and can thus be simulated through mathematical models. Also, from a global point of view (over

Figure 4. Wind velocity simulation over the Mediterranean Sea.
either a continental or worldwide scale) there are changes due to deterministic phenomena, for example to variation in the inclination of the earth's axis, the eccentricity of the earth's orbit, the oceanic circulation, or intense geological phenomena like volcanic eruptions. The meteorological prediction problem was formulated as a mathematical issue only at the beginning of the twentieth century by the Norwegian mathematician Vilhelm Bjerkned, who described atmospheric motion using the Euler equations for perfect gas dynamics (well known at that time), suitably modified in order to take into account the action of the force of gravity and the earth's rotation. Unluckily, data regarding the atmosphere were available only in a few points, and they referred to heterogeneous variables and to different periods of time.

Moreover, Euler equations described an extremely wide range of atmospheric motions, which can take place on spatial and temporal scales that are very different from each other (feet instead of miles, seconds instead of days). The lack of data regarding some of these scales may generate spurious motions (which do not exist in nature) and reduce the prediction quality. A realistic description of meteorological phenomena cannot but take into account the prediction of water steam distribution, its changes (from liquid to gas), and consequent rainfall. The first attempt to solve this problem from a numerical point of view was carried out by Lewis Richardson, who succeeded in calculating a concrete example of the solution of atmospheric motion on a region as wide as the whole of North Europe. The results obtained by Richardson through extremely complicated hand calculations led to completely wrong predictions, though: as a matter of fact, at that time there was no theory able to dominate
the traps of the equations to be solved. The contribution of Carl-Gustaf Rossby, one of Richardson's students, was decisive enough to optimize the efforts made by Richardson. After immigrating to the USA in the 1920s, he contributed to founding the meteorological service for civil and military aviation during the Second World War. Among the indirect contributions he gave, the weather prediction made by the Americans for D-Day (June $4,1944)$ can be included. The simplified mathematical models introduced by Rossby allowed the first meteorological prediction to be made with an electronic computer, resulting from cooperation between John von Neumann and Jules Charney, which started in Princeton in the 1940s. In particular, it was possible to make a prediction for the whole of North America through a simplified model that described the atmosphere as a unique fluid layer. Even though it took 24 hours to make a prediction for the following 12 hours on the only electronic computer available (ENIAC), the efforts of von Neumann and Charney showed for the first time that a prediction based only on a mathematical model could achieve the same results as those by an expert on meteorology of that time. The modern approach to numerical weather prediction was born. As a matter of fact, beyond the spectacular improvements in computer performance, there have also been radical improvements in the accuracy of mathematical prediction tools, the development of a theory on the predictability of chaotic dynamical systems, and an improvement in data assimilation techniques. In the 1970s, the systematic use of surveys made by satellites was introduced, and it constitutes nowadays the most relevant part of the data used to start numerical models. Since then, the impact of scientific and technological progress has been very important. For instance, the IFS global model of the European Center for Medium Range Weather Forecasts (ECMWF) uses a computation grid with an average spatial resolution of about 22 km horizontal and 90 km vertical. This allows part of the stratosphere to be included. This model can make a 10-day prediction in about 1 hour on a modern parallel supercomputer, even though 6 further hours, necessary to insert the data, must be added. The IFS model allows reliable predictions to be made for about 7.5 days on a continental scale in Europe. See Figure 4 for an example of weather prediction.

Models for Life Sciences

In the 1970s, in vitro experiments, and those on animals, represented the main approach to cardiovascular studies. Recently, the progress of computational fluid dynamics and the great improvements of computer performance produced remarkable advances that revolutionize vascular research [7].

Figure 5. Computed velocity profiles downstream a carotid bifurcation.

Figure 6. Shear stress distribution on a pulmonary artery.

For instance, a physical magnitude such as the shear stress on the endothelial membrane, which is very difficult to test in vitro, can be easily calculated on real geometries obtained with tri-dimensional algorithms, thanks to the support of modern and noninvasive data acquisition technology (such as nuclear magnetic resonance, digital angiography, axial tomography, and Doppler anemometry). Flowing in arteries and veins, blood mechanically interacts with vessel walls, generating complex fluid-structural interaction problems. As a matter of fact, the pressure wave transfers mechanical energy to the walls, which dilate; such an energy is returned to the blood flow while the vessels are compressed. Vascular simulation of the interaction between the fluid and the wall requires algorithms that describe both the energy transfer between the fluid (typically modeled by the NavierStokes equations) and the structure (modeled by solid mechanics equations) at a macroscopic level, and the influence-at a microscopic level-of the shear stress on orientation, deformation, and

Figure 7. Scientific computing for cardiovascular flow simulation and related topics.
damage of endothelial cells [8]. At the same time, flow equations must be coupled to appropriate models in order to describe the transport, diffusion, and absorption of chemical components in the blood (such as oxygen, lipids, and drugs), in the different layers that constitute artery walls (tunica intima, tunica media, and tunica adventitia). Numerical simulations of this kind may help to clarify biochemical modifications produced by
changes in the flow field, generated, for example, by the presence of a stenosis, i.e., an artery narrowing. In the cardiovascular system, conditions of separated flow and secondary circulatory motions are met, not only in the presence of vessels featuring large curvature (e.g., the aortic bend or the coronary arteries), but also downstream of bifurcations (for instance the carotid artery in its internal and external branches) or regions with
restrictions due to the presence of stenosis. There are other areas with a flow inversion (from distal to proximal regions) and also areas with low shear stress with temporal oscillations [9]. These cases are nowadays recognized as potential factors in the development of arterial pathologies. A detailed comprehension of local haemodynamic change, of the effects of vascular wall modifications on the flow scheme, and of the gradual adaptation in the medium to long period of the whole system following surgical interventions, is nowadays possible thanks to the use of sophisticated computer simulations, and may be extremely useful in the preliminary phase before a therapeutic treatment. A similar scenario may provide specific data for surgical procedures. Simulating the flow in a coronary bypass, in particular the re-circulation that takes place downstream of the graft in the coronary artery, may help us to understand the effects of artery morphology on the flow and thus of the post-surgical progression. The theory of optimal shape control may be useful for designing a bypass able to minimize the vorticity produced downstream of the graft in the coronary artery. Similarly, the study of the effects of a vascular prosthesis and of implantation of artificial heart valves on local and global haemodynamics may progress thanks to more accurate simulations in the field of blood flow. In virtual surgery, the result of alternative treatments for a specific patient may be planned through simulations. This numerical approach is an aspect of a paradigm of practice, known as predictive medicine. See Figure 7 for a comprehensive picture on our current research projects in the field of cardiovascular flow simulations.

Models for Simulation and Competition

The application of mathematical models is not limited to the technological, environmental, or medical field. As a matter of fact, deterministic and stochastic models have been adopted for many years in analyzing the risk of financial products, thus facilitating the creation of a new discipline known as financial engineering. Moreover, the new frontier has already begun to touch sociology, architecture, free time, and sports.

As far as competitive sports are concerned, CFD for some years now has been assuming a key role in analyzing and designing Formula One cars. But Formula One racing is not the only field where mathematical/numerical modelling has been applied. As a matter of fact, my research group from EPFL has been involved in an extremely interesting experience, which saw the Swiss yacht Alinghi win the America's Cup both in 2003 and again in 2007. Until twenty years ago, the different designing teams used to develop different shapes of sails, hulls, bulbs, and keels. Nowadays the different

Figure 8. Pressure distribution around yacht appendages.
geometric shapes have been standardized, and even the smallest details may make a difference from the results point of view. Quoting Jerome Milgram, a professor from MIT and an expert in advising different American America's Cup teams: "America's Cup teams require an extreme precision in the design of the hull, the keel, and the sails. A new boat able to reduce the viscous resistance by one percent, would have a potential advantage on the finish line of as much as 30 seconds." To optimize a boat's performance, it is necessary to solve the fluid-dynamics equations around the whole boat, taking into account the variability of wind and waves, of the different conditions during the yacht race, of the position, and of the moves of the opposing boat, but also the dynamics of the interaction between fluids (water and air) and the structural components (hull, appendages, sails, and mast) must be considered. Moreover, the shape and dynamics of the so-called free surface (the interface between air and water) has to be accurately simulated as well. A complete mathematical model must take into account all these aspects characterizing the physical problem. The aim is to develop together with the designers optimal models for the hull, the keel, and appendages.

Ideally, one wishes to minimize water resistance on the hull and appendages and to maximize the boost produced by the sails. Mathematics allows different situations to be simulated, thus reducing costs and saving time usually necessary to produce a great number of prototypes to be tested in a towing tank and wind tunnel. For each new boat simulation proposed by the designers (which were

Figure 9. Streamlines around mainsails and spinnaker in a downwind leg.
several hundred), it was necessary to build the geometrical model-about 300 splines surfaces are needed to overlay the whole boat-to create the grid on the surface of all the elements of the boat reliable enough to enable the determination of the transition between laminar flow and turbulent flow regions, and consequently to generate the volumetric grid in external domain. The NavierStokes equations for incompressible viscous flows must be used to describe both water and wind dynamics and the consequent free surface, which need to be completed by additional equations that allow the computation of turbulent energy and its dissipation rate. These equations cannot be solved exactly to yield explicit solutions in closed form. Their approximate solution requires the introduction of refined discretization methods, which allow an infinite dimensional problem to be transformed into a big but finite dimensional one. The typical calculation, based on finite volume schemes, involved the solution of nonlinear problems with many millions of unknowns. Using parallel algorithms, 24 hours on parallel calculation platforms with 64 processors were necessary to produce a simulation, characterized by more than 160 million unknowns. A further computation is concerned with the simulation of the dynamical interaction between wind and sails by fluid-structure algorithms. These simulations enable the design team to eliminate those solutions that seem innovative and to go on with those that actually guarantee better performance. Moreover, by simulating the effects of aerodynamic interaction between two boats, one can determine the consistency of shadow regions (the areas with less wind because of the position of a boat with respect to the other), the flow perturbation, and the
turbulence vorticity generated by the interaction of the air, thus obtaining useful information for the tactician as well. These studies aim to design a boat having an optimal combination of the four features that an America's Cup yacht must have: lightness, speed, resistance, and maneuverability necessary to change the race outcome.

A more in-depth description of the mathematical tools necessary for this kind of investigation is provided in the next section.

Mathematical Models for America's Cup

The standard approach adopted in the America's Cup design teams to evaluate whether a design change (and all the other design modifications that this change implies) is globally advantageous, is based on the use of a Velocity Prediction Program (VPP), which can be used to estimate the boat speed and attitude for any prescribed wind condition and sailing angle. A numerical prediction of boat speed and attitude can be obtained by modeling the balance between the aerodynamic and hydrodynamic forces acting on the boat.

For example, on the water plane, a steady sailing condition is obtained imposing two force balances in the x direction (aligned with the boat velocity) and the y direction (normal to x on the water plane) and a heeling moment balance around the centerline of the boat:

$$
\begin{array}{r}
D_{h}+T_{a}=0 \\
S_{h}+S_{a}=0 \tag{1}\\
M_{h}+M_{a}=0
\end{array}
$$

where D_{h} is the hydrodynamic drag (along the course direction), T_{a} is the aerodynamic thrust, S_{h} is the hydrodynamic side force perpendicular to the course, S_{a} is the aerodynamic side force, M_{h} and M_{a} are, respectively, the hydromechanical righting moment and the aerodynamic heeling moment around the boat mean line. The angle β_{Y} between the course direction and the boat centerline is called yaw angle. The aerodynamic thrust and side force can be seen as a decomposition in the reference system aligned with the course direction of the aerodynamic lift and drag, which are defined on a reference system aligned with the apparent wind direction. Similar balance equations can be obtained for the other degrees of freedom.

In a VPP program, all the terms in system (1) are modeled as functions of boat speed, heel angle, and yaw angle. Suitable correlations between the degrees of freedom of the system and the different force components can be obtained based on different sources of data: experimental results, theoretical predictions, and numerical simulations.

The role of advanced computational fluid dynamics is to supply accurate estimates of the

Figure 10. Forces and moments acting on boat.
forces acting on the boat in different sailing conditions in order to improve the reliability of the prediction of the overall performance associated with a given design configuration.

The flow equations

Let Ω denote the three-dimensional computational domain in which we solve the flow equations. If $\hat{\Omega}$ is a region surrounding the boat B, the computational domain is the complement of B with respect to $\hat{\Omega}$, that is $\Omega=\hat{\Omega} \backslash B$. The equations that govern the flow around B are the density-dependent (or inhomogeneous) incompressible Navier-Stokes equations, which read:

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho u)=0 \tag{2}\\
& \frac{\partial(\rho u)}{\partial t}+\nabla \cdot(\rho u \otimes u)-\nabla \cdot \tau(u, p)=\rho g
\end{align*}
$$

(4) $\nabla \cdot u=0$
for $x \in \Omega$ and $0<t<T$, and where ρ is the (variable) density, u is the velocity field, p is the pressure, $g=(0,0, g)^{T}$ is the gravity acceleration, and $\tau(u, p)=\mu\left(\nabla u+\nabla u^{T}\right)-p I$ is the stress tensor with μ indicating the (variable) viscosity. The above equations have to be complemented with suitable initial conditions and boundary conditions. For the latter we typically consider a given velocity profile at the inflow boundary, with a flat far field free-surface elevation.

In the case we are interested in, the computational domain Ω is made of two regions, the volume Ω_{w} occupied by the water and that Ω_{a} occupied by the air. The interface Γ separating Ω_{w} from Ω_{a} is the (unknown) free-surface, which may be a disconnected two-dimensional manifold if wave breaking is accounted for. The unknown density ρ actually takes two constant states, ρ_{w} (in
Ω_{w}) and $\rho_{a}\left(\right.$ in $\left.\Omega_{a}\right)$. The values of ρ_{w} and ρ_{a} depend on the fluid temperatures, which are considered to be constant in the present model. The fluid viscosities μ_{w} (in Ω_{w}) and μ_{a} (in Ω_{a}) are constants that depend on ρ_{w} and ρ_{a}, respectively.

The set of equations (2)-(4) can therefore be seen as a model for the evolution of a two-phase flow consisting of two immiscible incompressible fluids with constant densities ρ_{w} and ρ_{a} and different viscosity coefficients μ_{w} and μ_{a}. In this respect, in view of the numerical simulation, we could regard equation (2) as the candidate for updating the (unknown) interface location Γ, then treat equations (3)-(4) as a coupled system of Navier-Stokes equations in the two sub-domains Ω_{w} and Ω_{a} :
$\frac{\partial\left(\rho_{w} u_{w}\right)}{\partial t}+\nabla \cdot\left(\rho_{w} u_{w} \otimes u_{w}\right)-\nabla \cdot \boldsymbol{\tau}_{w}\left(u_{w}, p_{w}\right)=\rho_{w} g$,
$\nabla \cdot u_{w}=0$,
in $\Omega_{w} \times(0, T)$,
$\frac{\partial\left(\rho_{a} u_{a}\right)}{\partial t}+\nabla \cdot\left(\rho_{a} u_{a} \otimes u_{a}\right)-\nabla \cdot \tau_{a}\left(u_{a}, p_{a}\right)=\rho_{a} g$,
$\nabla \cdot u_{a}=0$,
in $\Omega_{a} \times(0, T)$. We have set $\boldsymbol{T}_{w}\left(u_{w}, p_{w}\right)=\mu_{w}\left(\nabla u_{w}+\right.$ $\left.\nabla u_{w}{ }^{T}\right)-p_{w} I$, while $\tau_{a}\left(u_{a}, p_{a}\right)$ is defined similarly.

The free surface Γ is a sharp interface between Ω_{w} and Ω_{a}, on which the normal components of the two velocities $u_{a} \cdot n$ and $u_{w} \cdot n$ should agree. Furthermore, the tangential components must match as well since the two flows are incompressible. Thus we have the following kinematic condition

$$
\begin{equation*}
u_{a}=u_{w} \quad \text { on } \Gamma . \tag{5}
\end{equation*}
$$

Moreover, the forces acting on the fluid at the free-surface are in equilibrium. This is a dynamic condition and means that the normal forces on either side of Γ are of equal magnitude and opposed
direction, while the tangential forces must agree in both magnitude and direction:
(6) $\tau_{a}\left(u_{a}, p_{a}\right) \cdot n=\tau_{w}\left(u_{w}, p_{w}\right) \cdot n+\kappa \sigma n \quad$ on Γ, where σ is the surface tension coefficient, that is a force per unit length of a free surface element acting tangentially to the free-surface. It is a property of the liquid and depends on the temperature as well as on other factors. The quantity κ in (6) is the curvature of the free-surface, $\kappa=R_{t_{1}}^{-1}+R_{t_{2}}^{-1}$, where $R_{t_{1}}$ and $R_{t_{2}}$ are radii of curvature along the coordinates $\left(t_{1}, t_{2}\right)$ of the plane tangential to the free-surface (orthogonal to n).

Coupling with a 6-DOF rigid body dynamical system

The attitude of the boat advancing in calm water or wavy sea is strictly correlated with its performance. For this reason, a state-of-the-art numerical tool for yacht design predictions should be able to account for the boat motion.

Following the approach adopted in [2, 3], two orthogonal cartesian reference systems are considered: an inertial reference system (O, X, Y, Z), which moves forward with the mean boat speed, and a body-fixed reference system (G, x, y, z), whose origin is the boat center of mass G, which translates and rotates with the boat. The $X Y$ plane in the inertial reference system is parallel to the undisturbed water surface, and the Z-axis points upward. The body-fixed x-axis is directed from bow to stern, y positive starboard, and z upwards.

The dynamics of the boat in the 6 degrees of freedom are determined by integrating the equations of variation of linear and angular momentum in the inertial reference system, as follows

$$
\begin{align*}
& m \ddot{X}_{G}=F \tag{7}\\
& \overline{\bar{T}} \overline{\bar{I}} \overline{\bar{T}}^{-1} \dot{\Omega}+\Omega \times \overline{\bar{T}} \overline{\bar{I}} \overline{\bar{T}}^{-1} \Omega=M_{G} \tag{8}
\end{align*}
$$

where m is the boat mass, \ddot{X}_{G} is the linear acceleration of the center of mass, F is the force acting on the boat, $\dot{\Omega}$ and Ω are the angular acceleration and velocity, respectively, M_{G} is the moment with respect to G acting on the boat, $\overline{\bar{I}}$ is the tensor of inertia of the boat about the body-fixed reference system axes, and $\overline{\bar{T}}$ is the transformation matrix between the body-fixed and the inertial reference system (see [2] for details).

The forces and moments acting on the boat are given by

$$
\begin{aligned}
F & =F_{\text {Flow }}+m g+F_{\mathrm{Ext}} \\
M_{G} & =M_{\mathrm{Flow}}+\left(X_{\mathrm{Ext}}-X_{G}\right) \times F_{\mathrm{Ext}}
\end{aligned}
$$

where $F_{\text {Flow }}$ and $M_{\text {Flow }}$ are the force and moment, respectively, due to the interaction with the flow and $F_{\text {Ext }}$ is an external forcing term (which may model, e.g., the wind force on sails) while $X_{\text {Ext }}$ is its application point.

The equations for wind-sails interaction

The sail deformation is due to the fluid motion: the aerodynamic pressure field deforms the sail surfaces and this, in its turn, modifies the flow field around the sails.

From a mathematical viewpoint, this yields a coupled system that comprises the incompressible Navier-Stokes equations with constant density $\rho=\rho_{\text {air }}$ (3-4) and a second order elastodynamic equation that models the sail deformation as that of a membrane. More specifically, the evolution of the considered elastic structure is governed by the classical conservation laws for continuum mechanics.

Considering a Lagrangian framework, if $\hat{\Omega}_{s}$ is the reference 2D domain occupied by the sails, the governing equation can be written as follows:
(9) $\quad \rho_{s} \frac{\partial^{2} d}{\partial t^{2}}=\nabla \cdot \sigma_{s}(d)+f_{s} \quad$ in $\quad \hat{\Omega}_{s} \times(0, T]$,
where ρ_{s} is the material density, the displacement d is a function of the space coordinates $x \in \hat{\Omega}_{s}$ and of the time $t \in[0 ; T], \sigma_{s}$ are the internal stresses while f_{s} are the external loads acting on the sails (these are indeed the normal stresses $\tau(u, p) \cdot n$ on the sail surface exerted by the flowfield). In fact, $\hat{\Omega}_{s}$ represents a wider (bounded and disconnected) domain that includes also the mast and the yarns as parts of the structural model. The boundary of $\hat{\Omega}_{s}$ is denoted by $\partial \hat{\Omega}_{s}$ and $[0 ; T] \subset \mathbb{R}^{+}$is the time interval of our analysis. For suitable initial and boundary conditions and an assignment of an appropriate constitutive equation for the considered materials (defining $\sigma_{s}(d)$), the displacement field d is computed by solving (9) in its weak form:

$$
\begin{align*}
\int_{\hat{\Omega}_{s}} \rho_{s} \frac{\partial^{2} d_{i}}{\partial t^{2}} & \left(\delta d_{i}\right) d x+\int_{\hat{\Omega}_{s}} \sigma_{i k}^{I I}\left(\delta \epsilon_{k i}\right) d x \tag{10}\\
& =\int_{\hat{\Omega}_{s}} f_{s i}\left(\delta d_{i}\right) d x
\end{align*}
$$

where $\sigma^{I I}$ is the second Piola-Kirchoff stress tensor, ϵ is the Green-Lagrange strain tensor, and δd are the test functions expressing the virtual deformation. The second coupling condition enforces the continuity of the two velocity fields, u and $\frac{\partial d}{\partial t}$, on the sail surface.

Fluid-structural coupling algorithm

As previously introduced, the coupling procedure iteratively loops between the fluid solver (passing sail velocities and getting pressure fields) and the structural solver (passing pressures and getting velocities and structural deformations) until the structure undergoes no more deformations because a perfect balance of forces and moments is reached. When dealing with transient simulations, this must be true for each time step, and the sail geometry evolves over time as a sequence of
converged states. On the other hand, a steady simulation can be thought of as a transient one with an infinite time step, such that "steady" means a sort of average of the true (unsteady) solution over time. More formally, we can define two operators called Fluid and Struct that represent the fluid and structural solvers, respectively. In particular, Fluid can be any procedure that can solve the incompressible Navier-Stokes equations while Struct should solve a membrane-like problem, possibly embedding suitable nonlinear models to take into account complex phenomena such as, for example, the structural reactions due to a fabric wrinkle.

The fixed-point problem can be reformulated with the new operators as follows:

$$
\begin{equation*}
\operatorname{Fluid}(\operatorname{Struct}(p))=p \tag{11}
\end{equation*}
$$

A resolving algorithm can be devised as follows. At a given iteration the pressure field on sails p is passed to the structural solver (Struct), which returns the new sail geometries and the new sail velocity fields. Afterwards, these quantities are passed to the fluid solver (Fluid) which returns the same pressure field p on sails. Clearly, the "equal" sign holds only at convergence. The resulting fixed-point iteration can be rewritten more explicitly as follows: Given a pressure field on sails p_{k}, do:

$$
\begin{gather*}
\left(G_{k+1}, \mathbf{U}_{k+1}\right)=\operatorname{Struct}\left(p_{k}\right) \\
\bar{p}_{k+1}=\mathrm{Fluid}\left(G_{k+1}, \mathbf{U}_{k+1}\right) \tag{12}\\
p_{k+1}=\left(1-\theta_{k}\right) p_{k}+\theta_{k} \bar{p}_{k+1}
\end{gather*}
$$

where G_{k+1} and \mathbf{U}_{k+1} are the sail geometry and the sail velocity field at step $k+1$, respectively, while θ_{k} is a suitable acceleration parameter.

Even though the final goal is to run an unsteady simulation, the fluid-structure procedure has to run some preliminary steady couplings to provide a suitable initial condition. The steady run iterates until a converged sail shape and flow field are obtained, where converged means that there does exist a value of k_{c} such that (11) is satisfied for every $k>k_{c}$ (within given tolerances on forces and/or displacements). When running steady simulations the velocity of the sails is required to be null at each coupling, thus somehow enforcing the convergence condition (which prescribes null velocities at convergence). This explains why convergence is slightly faster when running steady simulations with respect to transient ones (clearly only when such a solution reflects a steady state physical solution).

References

[1] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, Oxford, 1999.
[2] R. Azcueta, Computation of turbulent free-surface flows around ships and floating bodies, Ph.d. thesis, 2001.
[3] , RANSE simulations for sailing yachts including dynamic sinkage \& trim and unsteady motions in waves, in High Performance Yacht Design Conference, pages 13-20, Auckland, 2002.
[4] D. Detomi, N. Parolini, and A. Quarteroni, Mathematics in the wind, 2008, to appear in Monographs of the Real Academia de Ciencias de Zaragoza, Spain.
[5] N. Parolini and A. Quarteroni, Mathematical models and numerical simulations for the America's Cup, Comp. Meth. Appl. Mech. Eng., 173 (2005), 1001-1026.
[6] ___ Modelling and numerical simulation for yacht engineering, in Proceedings of the 26th Symposium on Naval Hydrodynamics, Arlington, VA, USA, 2007, Strategic Analysis, Inc.
[7] A. Quarteroni, Modeling the cardiovascular system: A mathematical adventure, SIAM News 34 (2001).
[8] A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, Modelling of Living Systems, Handbook of Numerical Analysis Series, (P. G. Ciarlet and J. L. Lions, eds.), Elsevier, Amsterdam, 2004.
[9] A. Quarteroni, L. Formaggia, and A. Veneziani, Complex Systems in Biomedicine, Springer, Milano, 2006.

Acknowledgments

The contributions from Davide Detomi and Nicola Parolini to the section on Mathematical Models for America's Cup are gratefully acknowledged.

Credit for graphic images is attributed to:
Marzio Sala (Figures 2 and 3)
ARPA Emilia Romagna (Figure 4)
Martin Prosi (Figure 5)
Johnathan Wynne (Figure 6)
Nicola Parolini (Figure 8)
Davide Detomi (Figure 9)

Is the Sky Still Falling?

David M. Bressoud

In the 1998 Notices article "The Sky is Falling" [4], Garfunkel and Young drew attention to the alarming decrease in the number of students who study mathematics in college. In their words, "Our profession is in desperate trouble-immediate and present danger [...] If something is not done soon, we will see mathematics department faculties decimated and an already dismal job market completely collapse." In the past ten years the situation seems to have reversed. The mathematical community is not in the desperate straits that Garfunkel and Young predicted. Yet, as this article will show, the situation is far from healthy, and in many respects we are worse off now than we were in 1995. Today we teach a smaller percentage of the total enrollment than ever before. The growth that has occurred has been entirely within our research universities, and there it can be explained by a short-term increase in the number of engineering students. This article concludes with three action items that the mathematical community needs to undertake if we are to reverse this decline.

Garfunkel and Young's argument rested on data from the Conference Board of the Mathematical Sciences (CBMS) showing a drop in enrollments from 1985 to 1995. As Table 1 shows, the situation in 1995 looked far worse than it does today. Enrollment in precollege (remedial) mathematics has continued to decline at 4 -year colleges. ${ }^{1}$ For all other categories of courses, ${ }^{2}$ enrollments are up

[^2]over the 1995 numbers by between 9% and 17%. While we are still well below the 1985 numbers for courses at the level of calculus and above, whatever was going wrong in the early 1990s seems to have been corrected.

But if we compare the number of students studying mathematics to the number of students enrolled in our 4 -year undergraduate programs, we see that mathematics has been accounting for an ever-decreasing slice of the pie. The figures for 1995 were bad, but the percentages for 2005 are considerably worse (see Table 2).

These percentages should be alarming. The true situation is revealed to be even more discouraging once we unpack these numbers and look at what is happening in individual courses and at specific types of institutions. Because of its central role in the undergraduate curriculum, I will focus on calculus.

Calculus in High School

In the spring of $1985,46,000$ students took the Advanced Placement Calculus exam. In spring 2008, the number was 292,000 . By 2009, it will be well over 300,000 . In fact, the number of AP Calculus exams given each year has grown steadily over the past decade at an average rate of over 7\% per year with no sign yet that it is approaching its inflection point (see Figure 1). AP Calculus exam takers are only a piece of the broader population of students who study calculus while in high school, a population that includes those who take an AP Calculus course but not the exam as well as those in the International Baccalaureate program, dual enrollment programs, registration in 2- or 4-year college calculus classes, and the many students who are given a soft introduction to calculus while in high school in the hope of easing the transition to college calculus. Based on the NELS study from spring 2004 [3], the NAEP transcript study from 2005 [12], and the growth of AP Calculus since then, it is safe to conclude that we have reached the point where each year over half a million high school students study calculus.

	$\mathbf{1 9 8 5}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$
precollege level	251	261	222	219	201
introductory level	593	592	613	723	706
calculus level	637	647	538	570	587
advanced	138	119	96	102	$\mathbf{1 1 2}$

Table 1. Mathematics enrollments (thousands) for fall term at 4-year colleges and universities in the United States. Sources: [1, 5-7].

	$\mathbf{1 9 8 5}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$
precollege level	3.25%	3.04%	2.53%	2.34%	1.83%
introductory level	7.69%	6.90%	6.99%	7.72%	6.42%
calculus level	8.26%	7.54%	6.14%	6.09%	5.34%
advanced	1.79%	1.39%	1.09%	1.09%	1.02%

Table 2. Mathematics enrollments at 4 -year colleges as a percentage of total number of students enrolled in fall term. Sources: [1, 5-7, 13].

	$\mathbf{1 9 8 5}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$
Calculus I	217	201	192	192	201
Calculus II	95	88	83	87	85
Calculus III \& IV	90	84	62	73	74

Table 3. Mainstream calculus enrollments (thousands for fall term in 4-year colleges). * 1985 breakdown is estimate based on total number of students in all mainstream calculus classes. Sources: [1, 5-7, 13].

Most of the students who study calculus in high school do not receive college credit for this course. Morgan [8] estimates that about half of the students who take the AP Calculus exam are entitled to and choose to use credit for Calculus I. Perhaps another 30,000 receive college credit via dual enrollment, IB, or enrollment in a college class. A reasonable estimate is that between 150,000 and 200,000 students arrive at college each fall bringing with them credit for calculus. That suggests that we should be seeing dramatically increasing numbers of students taking Calculus II in the fall term. As Table 3 shows, this is not the case. In fact, Calculus II enrollments in the fall term actually dropped over the period 2000-05.

What about the other 300,000-350,000 students who took calculus but not for college credit? One would hope that the increasing numbers of these students would translate into increasing numbers of students taking calculus in college. But combining all mainstream Calculus I classes in all 2- and 4year colleges in the United States, fall enrollments have been stuck at very close to 250,000 over the past quarter century.

Calculus in College

At least we have seen some increase in the Calculus I, III, and IV enrollments over the period 2000-05. In fact, even that is less robust than it seems. When we break down calculus enrollments

[^3]by type of institution, ${ }^{3}$ we see that the growth is occurring entirely at the research universities (see Figures 2-4).

For all levels of college calculus, the increase since 1995 is entirely within the research universities. Everywhere else, enrollment has declined. There is a distinctive pattern of enrollments across all levels of calculus that occurred at the research universities and at no other type of institution: a five-year decline from 1990 to 1995 followed by steady growth. This pattern can be explained by the fact that most large research universities have large engineering programs. If we consider the number of incoming freshmen who intend to major in engineering (Figure 5 and Table 4), we see that it also decreased from 1990 to 1995, then grew. The scatterplot in Figure 6 shows a high correlation (correlation coefficient of 0.99) between the number of entering freshmen who intend to major in engineering and the total number of students in research universities each fall who enroll in any level of calculus. The downturn at the end of the graph in Figure 5 suggests that the 2005 CBMS numbers may be overly optimistic. As Table 4 shows, the number of students who intend to major in engineering began a steady decrease following a record large number in 2004.

It is interesting to compare the number of intended majors in engineering with those in the other STEM (science, technology, engineering,
university", and "undergraduate college" are substituted as descriptive of the general type of institution and to clarify that the categorization is by type of institution.

Figure 1. Fall enrollments in mainstream Calculus I and number of AP Calculus exams (thousands). Sources [1, 2, 5-7, 11].

Figure 2. Fall enrollments in mainstream Calculus I by type of institution (thousands). Sources: [1, 5-7].
mathematics) disciplines: the biological sciences in Figure 7 and the physical sciences (including mathematics ${ }^{4}$) in Figure 8.

Conclusions

We have seen growth in enrollments in mathematics courses over the past ten years, but that growth is well below the rate of increase in total enrollments. The only place where it has been robust has been where it is tied to the increase in engineering

[^4]majors, a phenomenon that appears to be cyclical and has now entered a downturn.

The mathematical community needs to look at what it can do to strengthen enrollments. One solution is to get a lot more high school students to plan careers in engineering. It would be interesting to know what caused the reversal in engineering enrollments in the mid-1990s. These projections of intent to major in engineering were measured during freshman orientation, and thus the increase after 1995 was the result of something that happened in high school. What role did the introduction and widespread acceptance of graphing calculators and reform teaching methods within high schools have on the increased interest in and willingness to pursue highly technical majors? What is causing the current downturn in interest in engineering?

Engineering has served us well, but there is no reason why the fate of mathematics should be so dependent on just this discipline. The key to getting students into our advanced courses is to first get them into firstyear courses that teach solid mathematics and pique their interest to continue in mathematics. This does not have to be a course tied to the engineering curriculum. Nevertheless, calculus is at the heart of the mathematics curriculum, and we must begin by taking a serious look at what is happening in college calculus and how well it articulates with the experiences that today's students have in high school. This is the basis for my first two recommendations.

Recommendation 1: We need to understand what happens in college to students who study calculus in high school.

The half million students who study calculus in high school are a reasonable approximation of the top 15% of all high school graduates. They should be swelling the ranks of the students taking cal-culus- and advanced-level mathematics. We need a better understanding of what happens to these students after they enter college. For the 150,000 to 200,000 who arrive with and use credit for calculus taken in high school, how many continue to pursue mathematics and how well do they succeed? What happens to the other 300,000 to 350,000? For all of these students, what are the programs that most
effectively engage them, preparing and encouraging them into the further study of mathematics?

Recommendation 2: We need to know more about the preparation of the students who take calculus in college and what they need in order to succeed once they get to our classes.
We must have a better sense of who these students are who sit in our college calculus classes. What is the preparation that has gotten them to this point? How can we modify our courses so as to capitalize on the strengths and correct the weaknesses that these students bring? The answers to these questions will necessarily be local, highly dependent on the nature of a given college or university, but the entire mathematical community should be able to identify commonalities among similar types of institutions. The entire community should also promote programmatic and course structures that are particularly effective for each of the different populations we encounter.
Recommendation 3: Mainstream calculus should not be the only entry to good college-level mathematics.
The department of mathematics should be at the core of its college or university, interacting with every other department and working collaboratively to develop courses that meet the needs of each group of students. These should be courses that involve real mathematics and that open the way to the further, deeper study of mathematics. This conviction should be part of the vision of every department of mathematics.

Ilook with longing at those 120,000 prospective biological science majors coming in each year. We need courses that are attractive to them, courses that give them the tools from linear algebra that they will need for sophisticated statistical modeling, courses that enable them to read and write differential equations and turn them into computer simulations. We are not going to be able to convince the biologists that their students need to take more of the courses that we have created for the engineers, nor is it enough to take an engineering course and throw in some biological examples. These courses must be designed from the ground

Figure 3. Fall enrollments in mainstream Calculus II and number of AP Calculus exams (thousands). Sources: [1, 2, 5-7].

Figure 4. Fall enrollments in mainstream Calculus III \& IV and number of AP Calculus exams (thousands). Sources: [1, 2, 5-7].
up in collaboration with biologists. Many colleges and universities have begun this process. See, for example, Math \& Bio: 2010 [14]. Doing this for biology is just the beginning of what should be a broad program of outreach and development.

The surge in engineering enrollments since 1995 coupled with the growth in physical science enrollments over the past five years has given us

Figure 6. Number of prospective engineering majors against total fall calculus enrollment at research universities. Sources: [1, 5-7, 9, 10].
 Figure 5. Number of freshmen in 4-year undergraduate programs who intend to major in engineering. Sources: [9, 10].

Figure 7. Number of freshmen in 4-year undergraduate programs who intend to major in biological sciences. Sources: [9, 10].
a reprieve. Yet, unless we address fundamental weaknesses, the long-term prognosis for the health of undergraduate mathematics is not good. I am still optimistic. Many talented people are working hard to improve the undergraduate program in mathematics. With a better of sense of where we are and widespread dissemination of what works, we can build a foundation for the future.

References

[1] Donald J. Albers, Don O. LoftsgaArden, Donald C. Rung, and Ann E. WATKINs, Statistical Abstract of Undergraduate Programs in the Mathematical Sciences and Computer Science in the United States: 1990-91 CBMS Survey, Number 23 in MAA Notes, Mathematical Association of America, Washington, DC, 1992.http://www.ams.org/cbms/cbms1990. htm 7 .
[2] COLLEGE BoARD, AP report to the nation, New York, NY, 2004-2007. http://professionals. col1egeboard.com/data-reports-research/ap/ nation.
[3] Ben Dalton, Steven J. Ingels, Jane Downing, Robert Bozick, and Jeffrey Owings, Advanced Mathematics and Science Coursetaking in the Spring High School Senior Classes of 1982, 1992, and 2004: Statistical Analysis Report, Number 2007-312, National Center for Education Statistics, U.S. Department of Education, Washington, DC, 2007.http://nces.ed.gov/ pubsearch/pubsinfo.asp?pubid=2007312
[4] Solomon A. Garfunkel and Gail S. Young, The sky is falling, Notices of the AMS, 45 (1998), 256-257.
[5] DON O. LoftsgAARDEN, Donald C. Rung, and AnN E. WATKInS, Statistical Abstract of Undergraduate Programs in the Mathematical Sciences in the United States: Fall 1995 CBMS Survey, Number 2 in MAA Reports, Mathematical Association of America, Washington, DC, 1997.http://www.ams.org/cbms/ cbms1995.htm7.
[6] DAVID J. LUTZER, JAMES W. MAXWELL, and STEPHEN B. Rodi, Statistical Abstract of Undergraduate Programs in the Mathematical Sciences in the United States: Fall 2000 CBMS Survey, American Mathematical Society, Providence, RI, 2002. http://www.ams.org/cbms/ cbms2000.htm7.
[7] David J. Lutzer, Stephen B. Rodi, Ellen E. KirkMAN, and JAMES W. MAXWELL, Statistical Abstract of Undergraduate Programs in the Mathematical Sciences in the United States: Fall 2005 CBMS Survey, American Mathematical Society, Providence, RI, 2007.http:// www.ams.org/cbms/cbms2005.htm7.
[8] KAREN CHRISTMAN MORGAN, The use of AP examination grades by students in college, preprint.
[9] JOHN H. PRYOR, The American freshman: Forty year trends, ACE Research Reports, Higher Education Research Institute, UCLA, Los Angeles, CA, 2007.
[10] John H. Pryor, Sylvia Hurtado, Jessica SharkNESS, and William S. KORN, The American freshman: National norms for 2007, ACE Research Reports, Higher Education Research Institute, UCLA, Los Angeles, CA, 2007.
[11] LARRY RIDDLE, personal communication of record maintained by AP Calculus Chief Readers of the total number of exams taken each year.

year	$4-$-year freshman enrollment	$\%$ engineering	prospective engineers
1985	$1,067,928$	11.0%	117,000
1986	$1,023,762$	10.2%	104,000
1987	$1,031,968$	9.4%	97,000
1988	$1,076,036$	8.7%	94,000
1989	$1,028,143$	9.9%	102,000
1990	$1,010,548$	9.7%	98,000
1991	$1,024,976$	10.8%	111,000
1992	$1,060,087$	10.0%	106,000
1993	996,690	10.0%	100,000
1994	$1,017,725$	8.8%	90,000
1995	$1,024,550$	8.1%	83,000
1996	$1,076,035$	9.7%	104,000
1997	$1,054,500$	9.7%	102,000
1998	$1,066,679$	8.2%	87,000
1999	$1,098,833$	9.0%	99,000
2000	$1,101,817$	8.7%	96,000
2001	$1,204,240$	9.1%	110,000
2002	$1,234,968$	9.5%	117,000
2003	$1,196,089$	9.3%	111,000
2004	$1,258,333$	9.6%	121,000
2005	$1,298,093$	8.4%	109,000
2006	$1,320,824$	8.0%	106,000
2007	$1,354,958$	7.5%	102,000

Table 4. Number of freshmen in 4-year undergraduate programs who intend to major in engineering. Sources: [9, 10].
[12] Carolyn Shettle, Shep Roey, Joy Mordica, Robert Perkins, Christine Nord, Jelena Teodorovic, Janis Brown, Marsha Lyons, Chris Averett, and David Kastberg, America's High School Graduates: Results from the 2005 NAEP High School Transcript Study, Number 2007-467, National Center for Education Statistics, U.S. Department of Education, Washington, DC, 2007.http://nces.ed.gov/ nationsreportcard/pubs/studies/2007467. asp
[13] Thomas D. Snyder, Sally A. Dillow, and Charlene M. Hoffman, Digest of Education Statistics: 2007, Number 2008-022, National Center for Education Statistics, U.S. Department of Education, Washington, DC, 2008.http://nces.ed.gov/ programs/digest/
[14] Lynn Arthur Steen, editor, Math \& Bio 2010: Linking Undergraduate Disciplines, Mathematical Association of America, Washington, DC, 2005.

Headlines \& Deadlines for students

Email notifications of news, helpful websites, special programs, book sales, and deadlines for applications for fellowships and grants, meeting registrations, and more.

Headlines \& Deadlines for Students, a service from the AMS Public Awareness Office, provides email notification of mathematics news and of upcoming deadlines. These email notifications are issued about once a month, and when there's special news. Imminent deadlines are included in these emails, which link to a web page that's a centralized source for information relevant to students and faculty advisors, at: www.ams.org/news-for-students/

Sign up for the email service at:www.ams.org/news-for-students/signup

Check out the latest Headlines \& Deadlines for Students for news and due dates for applications, registrations, proposals...

Pi Mu Epsilon Student Paper Presentation Awards

Fellowships and Grants
New Mathematical Moments
Marshall Scholarships
Stipends for Study and Travel Trjitzinsky Awards

Math in Moscow Semester - Call for Applications

AWM Essay Contest Special Book Sales on AMS Bookstore
Poster Session Proposals Putnam Exam Results

Employment Center Registration

Clay Research Fellowships
www.ams.org/news-for-students

Book Review

Pythagorean Crimes

Reviewed by Alex Kasman

Pythagorean Crimes
Tefcros Michaelides
Parmenides Publishing, October 2008
US\$14.95, 300 pages
ISBN-13: 978-1930972278

There are many different ways in which mathematics can show up in a work of fiction. The author could have conceived of an interesting, but entirely fictional, mathematical result that advances the plot-such as the hidden message in the decimal expansion of the number π from Carl Sagan's novel Contact. Sometimes, the mathematical specifics are of no particular importance-as in David Auburn's Proof, where the interest is in the question of authorship of a theorem that is never described. Yet other works of fiction make use of a story to enhance the reader's understanding and appreciation of a real mathematical result.

Pythagorean Crimes by Tefcros Michaelides is a mathematical mystery novel that falls into the last of these categories. The narrator, Michael Igerinos, is a man from an aristocratic family who studied math in Göttingen at the turn of the twentieth century but wound up taking over his father's business in Greece and so only keeps up with mathematics as an amateur. As the novel begins we learn that his good friend, Stefanos Kandartzis, has been murdered. The murder victim, who like the novel's author holds a Ph.D. in mathematics from a French university and teaches high school in his native Greece, used to meet weekly with Michael to play chess and discuss mathematics. Seemingly in response to questions

[^5]from the police, we are treated to a long digression in "flashback form" that recalls their friendship from the time they met until the day of the murder, all of which happens to coincide with many exciting developments in the history of mathematics and art during the years 1900 through 1931. The title of the book
 refers to the supposed murder of Hippasus by the Pythagoreans for his discovery that the length of the diagonal of a unit square is not a rational number. According to the legend, because the Pythagoreans believed that "all is number" and lacked any concept of an irrational number, they drowned Hippasus at sea in order to keep his "dangerous" discovery secret. Although it is certainly possible that this tragic story is true, we have so little reliable information about the Pythagoreans that it seems equally probable that it is no more than a myth. (In another common version of the legend, he is merely exiled rather than killed. Moreover, there are different stories about Hippasus in which he was killed for crimes unrelated to the discovery of irrational numbers, such as revealing the secrets of geometry to those outside of the Pythagorean cult or for claiming someone else's results as his own.) In the novel, however, we read about Hippasus in three brief sections that expand on the traditional legend of his discovery and subsequent murder. These well written passages succeed in taking a
mathematical discovery that many nonmathematicians would probably perceive as dry and ensuring that it is emotionally powerful. Michaelides' prose generates the atmosphere of a cult in which a mathematical discovery could be perceived as outrageous heresy and the feelings of excitement and uncertainty as Hippasus wonders whether to reveal his discovery to the group.

Most of the novel, however, takes place in the more recent past and focuses on history that is much more certain. As it turns out, the two good friends first met at the International Congress of Mathematicians in 1900 at which David Hilbert delivered his famous lecture on the future of mathematics. Michaelides does a great job of putting this lecture in its historical context by explaining how it was motivated by Poincaré's lecture at the previous Congress and the discussion of the limits of science begun by physiologist Emile du Bois-Remond whose motto was "ignoramus et ignorabimus" (we do not know and we will not know). When it relates this sort of factual information the novel begins to sound like a textbook. The reader is expected to absorb a great deal of information about mathematicians and their discoveries in a short amount of time. A reader who is a mathematician has the dual advantage of already knowing about many of these people and having read dense mathematical texts. For those with less prior mathematical experience, however, it may be difficult. That is precisely why the inclusion of these facts in a murder mystery-where one must pay close attention to many small details, never being sure which ones will be relevant to the eventual resolution-is potentially so useful.

I do not mean to suggest that reading Pythagorean Crimes will be easy or unenlightening for a mathematician. Michaelides appears to have done very careful research in writing it, and it is so detailed that nearly anyone is sure to learn something. Even those who know all of the mathematical results are unlikely to be as familiar with the political contexts in which they developed. Here, I use the word "political" in the sense of interactions between different groups of mathematicians as well as its more traditional sense. For instance, although I have had several occasions to read the text of Hilbert's speech, I was not previously aware of the tension between him and Peano or the subtle verbal "warfare" between their two groups at the Congress. Another example arises as Michael and Stefanos gossip while observing a discussion between Hadamard and de la Vallée-Poussin:
"Whether it was Gauss or Legendre," I replied, "what does it matter who formulated the question first? You are telling me these two discovered the answer independently. I am amazed they haven't yet come to
blows." I made this last comment in jest, of course, wishing to keep the conversation at the level of simple gossip...

My friend swallowed the bait. "If they were to come to blows, they would have a thousand and one reasons for doing so, quite apart from the disputed theorem. Can't you see? Hadamard is a Jew, de la ValléePoussin a Catholic-and a graduate of a Jesuit college, to boot; Belgian, but of French extraction. And observe what each is wearing: one a fedora, the other a silk tie and pince-nez. If you ask the latter who Dreyfus is, he may not even know. As for the other, he is passionately committed to the campaign for a retrial. A follower of Zola and all that. In fact, I think Hadamard and Dreyfus are related."
Moreover, encountering them in this novel gives one a sense of going beyond simply knowing about these historical figures. Of course, I knew of David Hilbert before, but having read this book I now feel as if I knew him personally and had occasion to run into him among the can-can dancers at the Moulin Rouge!

The artistic culture in Paris at the time is also a major focus of the novel. Stefanos takes Michael away from the math conference to introduce him to some of his friends, including a painter named Pablo Ruiz. They have a discussion with the artist about the possibility of tiling the plane with different regular polygons. When Michael returns to Paris years later, Ruiz is instead going by his mother's name, Picasso, and is still interested in mathematics. In fact, Michael is there (and so also is the reader) at the dramatic moment when Maurice Princet discusses non-Euclidean geometries with Picasso, helping inspire the artist to create "cubism". Like the discussions of mathematics, the discussion of art is dense with historical details.

In historical fiction such as this, it is reasonable to wonder whether the history is presented accurately and fairly. (See, for example, Frans Oort's review, in the June/July 2008 Notices, of Measuring the World, which criticizes that novel's portrayal of Gauss.) No obvious inaccuracies or slanderous representations jumped out at me as I read this book. However, it is clear that the author knows a great deal more about this period in history than I do, and I am merely trusting that he is offering a historically accurate portrayal. This faith is reinforced by the author's guilty tone in the postscript to the book when he admits to certain trivial inaccuracies. For instance, he confesses, "I had to place Picasso in Paris a couple of months too
early (in fact, he first visited Paris in the autumn of 1900)." It may be that my faith is misplaced, but I like to think that an author who is so concerned about whether Picasso was in Paris in August as opposed to "the autumn" is one who can be trusted.

There are other portions of the book that are more fictional than fact-based. They address such nonmathematical topics as Stefanos' heroic adventures as a soldier, Michael's open marriage with an unusually independent woman, his dealings with the underworld in order to free a young prostitute, and Stefanos' romantic involvement with each of these women (unknowingly with the former and secretly with the latter). These bits of sex and violence, perhaps necessary to maintain the interest of readers, are handled tastefully and are relevant to the mystery.

As for the mystery, it is unfortunately not terribly mysterious. To a perspicacious reader, the fact that the novel spans the years from 1900 until 1931 may itself suggest which mathematical result eventually becomes essential to the plot: Kurt Gödel's 1931 paper in which he provides a negative answer to one of the problems posed by Hilbert in 1900.

It was certainly a shock to many people when Gödel demonstrated the necessary existence of undecidable propositions in mathematics, destroying Hilbert's hope that for mathematicians there was "no ignorabimus". Combining knowledge of this fact with the title of the book (and its reference to a man who was killed for making a discovery deemed to be dangerous to the faith of other mathematicians), one might fear that the resolution of the mystery will be a little too obvious to anyone who already knows some of the history of mathematics. Fortunately, the author was clever enough to include one additional surprise "twist", so that even if you are knowledgeable enough to suspect that a discussion of incompleteness is certain to arise in the final chapters, things still do not work out quite the way that you might expect.

Michaelides not only knows about the history of mathematics, but also knows about connections between mathematics and fiction. He has written essays on this subject and has also translated into Greek several works of "mathematical fiction" that were written in French and English. So I am sure he is very familiar with the three books that I consider to be most similar to Pythagorean Crimes. Since it was written originally in Greek and is infused with modern Greek culture and history, it is sure to be compared to Apostolos Doxiadis' novel Uncle Petros and Goldbach's Conjecture (Notices review, November 2000). However, it is arguably much more similar to two other relatively recent novels of mathematical fiction: A Certain Ambiguity by Gaurav Suri and Hartosh Singh Bal (Notices review, February 2008) and Denis Guedj's The Parrot's

Theorem (Notices review, March 2001). It is interesting to me that Gödel's Theorem is of central importance to three out of these four "fact heavy" novels. Only The Parrot's Theorem avoids using this literarily potent mathematical result as a key plot device.

The mystery story is presumably there to help those with less knowledge of the history of mathematics to stay focused and interested while learning all that is necessary to appreciate Gödel's theorem. For those novices who successfully get through to the conclusion, this will certainly be an emotionally charged introduction to one of the most interesting results in mathematical history. Another tool provided to aid these less mathematically experienced readers-mentioned but not actually present in the "uncorrected proof" of the book that I read-is a glossary with separate sections for people, concepts, places, events, and "things". Sadly, I fear that the number of people who are not already familiar with Gödel's work and yet are still sufficiently interested in mathematics to read through the new English translation of this fact-filled novel will be very small. In any case, many readers of the AMS Notices will enjoy reading this book for the feeling that they have been able to spend some time with famous historical figures whom we all know by name, providing a context that can enhance our appreciation of these researchers and their work.

Authors:

Let the AMS Author Resource Center be your all-in-one guide for writing and publishing mathematics

The Center

includes:

- Tools for writing mathematics, including LaTeX and TeX resources and graphics guidelines
- Mathematical Reviews tools to create references and provide linking capabilities
- Resources for AMS Book Authors (learn how to prepare a proposal and how to produce and submit your manuscript)
- Specific resources for AMS Journal Authors (find information about each journal, explore the Author Handbook, and obtain details about copyright, permissions, manuscript tracking, and more)
- AMS Acquisitions Editors contact information
- Answers to Frequently Asked Questions from AMS authors and access to technical support

Visit the AMS booth at the Joint Mathematics Meetings to learn more about the AMS Author Resource Center.

Membership Career Services Meetings Surveys \& Outreach Government Relations Public Awareness Customer Services

The Cat inNumberland

Reviewed by James Propp

The Cat in Numberland
Ivar Ekeland, illustrated by John O'Brien
Cricket Books, 2006 (reading level ages 9-12)
US\$19.95, 56 pages
ISBN-13: 978-0812627442

The Cat in Numberland is a well-thought-out and stylish attempt to present ideas about infinity to children who are ready to take a step beyond the notion of infinity as "the largest number". I found Ekeland's text engaging, with enough whimsy to keep the story from being dry but not so much as to be cutesy or condescending, and I thought O'Brien's charming black-and-white illustrations compensated for their lack of color through their loopy, nervy vigor.

There's something mind-numbing about the concept of infinity, and for many students, even the word itself invites a retreat from forwardmoving thought into static wonder; so, when leading a first-timer on a trip to infinity, it's best to use the word as little as possible. Ekeland borrows a famous pedagogical device from David Hilbert's popularization of Cantor's ideas about infinity, namely the idea of a hotel with infinitely many rooms, but even though Ekeland's hotel is called "Hotel Infinity", you will not find any other occurrence of the words "infinity" or "infinite" in his book. Ekeland honors Hilbert by making him the proprietor of this hotel on the planet of Numberland, though the character's fastidiousness, quarrelsomeness, and lack of creativity make this homage a mixed compliment at best. Where Ekeland departs from Hilbert is his fancy that the guests in the hotel are not people but the actual numbers One, Two, Three, etc., personified. The number One starts out in room 1 of the hotel, the number Two starts out in room 2, and so on. The use of names for the numbers, and numerals for the rooms they occupy, at first struck me as strange, but I later realized that this is an astute authorial choice that wards off numerous potential confusions.

The plot is driven by the difference between the temperaments of Mr. Hilbert and his wife

[^6](Mr. Hilbert wants to keep all the rooms occupied, while Mrs. Hilbert wants to admit new guests), and all the puzzles that the Hilberts and their guests tackle are driven by the pursuit of marital harmony. The tension between Mr. and Mrs. Hilbert as described by Ekeland is just one instance of a fictionalizing touch that might at first seem to pull the story away from mathematical issues but actually plays a pedagogical role. Another example is the discussion in Chapter 1 of the "games" (addition, subtraction, multiplication, and division) that
 the numbers play with one another; this leads to a seemingly incidental discussion of odd and even numbers that lays the groundwork for the problem faced in Chapter 4 (how can you keep the hotel full when infinitely many guests leave?). Likewise, the discussion of how the letters A through Z attempt to participate in these games, while it plays no role in later developments in the book, serves as a nice preparation for the idea of using a letter as a place-holder, which the young reader will encounter when starting the study of algebra.

The climax of the book occurs in Chapter 5, when the hotel must be made to accommodate an infinite number of new guests, the Fractions, who arrive in an infinite rectangular two-dimensional array, each of whose rows is infinite. The solution to this problem comes from a change in perspective, quite literally: the number Zero, by looking out the high window of Room $1,234,566$, is able to see his old hotel-mates and all the new arrivals as forming a triangular array each of whose rows is finite, which makes it possible to fit them into the hotel.

If you have a copy of the book available, jump immediately to page 55 for a masterly visual rendition of the key idea. The scene can be parsed in two different ways, and the viewer can go back and forth between them: now you see it, now you don't, now you do again. "I see it now!" says Mr. Hilbert. "But we could not see it from where we were standing." This is a fine motto for every
stage of the process of learning mathematics, from pre-kindergarten to post-graduate. Each time we make a conceptual advance, we should jump back and forth across the divide we have crossed, to understand what made the leap so difficult the first time and so easy afterward, with the goal of enabling ourselves to make other jumps with less trouble in the future.

I have one mathematical quibble with this otherwise excellent little book, namely, the description of the layout of the hotel. We are told in Chapter 1 that there is a first room, which is Room 1; but we are also told that each odd-numbered room lies between two even-numbered rooms and vice versa (and there is no Room 0, at least at the outset). This inconsistency is easily fixed by treating Room 1 as an exception, but what are we to make of the fact that Hotel Infinity has infinitely many floors? If Room n lies between Room $n-1$ and Room $n+1$ for all n (as is strongly implied by the text), then which numbers are on the hotel's higher floors? Indeed, you can lead any young reader to see that Rooms 1 through 1,234,566 must all be on the ground floor, so that room $1,234,566$ cannot play the pivotal role required by the plot. And, leaving that aside, if there were infinitely many floors, why couldn't the whole numbers and fractions be accommodated by putting the whole numbers on the ground floor, the fractions with denominator 2 on the second floor, the fractions with denominator 3 on the third floor, etc.?

Since this is a work of fiction designed to awaken the imagination, I view these imperfections of the book as a plus, not a minus; if you know a child who likes this book, you might try to lead him or her to discover these inconsistencies with a little bit of Socratic prodding (and perhaps challenge the child to redesign the hotel in various ways). At some point or other, the question may arise whether there could be a hotel with more than one floor such that Room n lies between Room $n-1$ and Room $n+1$ for all $n>1$. At this point the child might embark on a project equivalent to proving the axiom of induction, and experience both confusion and frustration. This would be an excellent occasion for explaining that when we learn or create mathematics, confusion is often a good thing: it means we have understood a tension between two opposed ideas that must somehow be reconciled. Indeed, if you are a mathematical researcher, you might explain to the child that the way you make a living is by finding good things to be confused about and then trying to un-confuse yourself.

The topic of confusion leads us to the title character of the book, the unnamed cat, who is the reader's surrogate, and who can serve as a stand-in for both the future mathematician and the future nonmathematician. The cat's role is to express puzzlement at what is really going on, when everyone else seems content that a solution has been
found. The cat can see that the move-everyone-to-the-next-room trick has worked, but is mystified as to how the trick works. Since all the rooms were full before, and all the rooms are full now, and one new guest has been accommodated, there must be a new room in the hotel somewhere-but where is it? Ekeland wisely does not introduce a character to resolve the cat's confusion. Some confusions need to be left unresolved, and revisited from year to year as we gain new ways of thinking.

Most mathematicians, as young students, played the role of the cat at one time or another, feeling (and perhaps voicing) confusion in a classroom situation in which the other students, who were satisfied with a more superficial level of understanding, didn't see anything to be confused about. Our schools need teachers who understand that confusion can sometimes be evidence of a deeper approach to the subject matter. Indeed, who can say how many potential mathematicians were driven away from mathematics at an early age by classmates and teachers who made them feel stupid for feeling rightly confused about deep matters?

In the end the cat opts to leave Numberland for a place that is easier to understand, namely, our own world (more specifically, Corsica-which may be an arbitrary or personal choice of Ekeland's, or may hold some meaning that eludes me). The cat still dreams of Numberland, but she enjoys living in a place where puzzlement is not a fact of daily life. Like Alice, or the Dorothy of the MGM version of The Wizard of Oz , the cat's sojourn in a land governed by strange rules has given her a heightened appreciation of the mundane (though unlike Alice or Dorothy, she ends up on Earth as a refugee, not a returning native).

In this final stage of her journey the cat strikes me as a stand-in for the student who retreats from the counterintuitive constructs of abstract mathematics in favor of the concrete and the graspable. Whether these students become engineers or accountants or artists, what we mathematicians hope for them is not that they become good at solving fanciful puzzles like the ones the Hilberts face, but that they accord some respect to the challenge of these puzzles, and that, in some corner of their minds, they have an esthetic response to such puzzles and their solutions. Such "dreams of Numberland" should be part of the residue that students are left with after their mathematical education is completed.

We should not expect all of our students to want to live in Numberland, or even to visit very often, but we should hope they will acquire the view of mathematics that is tacitly advertised by Ekeland and O'Brien: a view of mathematics as not just a mountain of facts but also a fountain of paradox.

Visit the Wiley-Blackwell Booth \#515 at the Joint Mathematics Meeting!

Numerical Solution of Ordinary Differential Equations
By Kendall Atkinson, Weimin Han, David W. Stewart
$9780470042946 \bullet$ Jan $09 \bullet \$ 89.95 \bullet$ Cloth
This precise and easy to read book provides a complete introduction to topics in the numerical solution of ordinary differential equations (ODEs).

Numerical Methods for
 Ordinary Differential Equations, 2nd Edition
 By John C. Butcher
 9780470723357•May 08•\$160.00•Cloth

A comprehensive treatment of numerical methods and an authoritative account of the recent development of general linear methods.

DISCRETE
FOURER FOURIER ANALYSIS AND WAVELETS

The Probabilistic Method, 3rd Edition
By Noga Alon, Joel H. Spencer 9780470170205•Jul 08•\$110.00•Cloth

This is the only book that is totally devoted to the probabilistic method, which is used to show the existence of combinatorial objects by
! studying appropriately defined random objects.

An Introduction to Linear
Programming and Game
Theory, 3rd Edition
By Paul R. Thie, Gerard E. Keough 9780470232866•Jul 08•\$99.95•Cloth

This third edition provides the development of the theoretical concepts and computational techniques of linear programming and game theory.

L.......................

Introduction to Computation
 and Modeling for Differential
 Equations

By Lennart Edsberg
$9780470270851 \bullet$ Jul $08 \bullet \$ 80.95 \bullet$ Cloth
This book provides a unified view of numerical analysis, mathematical modeling in applications, and programming, known as computational science.

Wiley-Blackwell publishes over 30 mathematics and statistics journals. Visit
 www.interscience.wiley.com/mathjournals today to find out more!

Valentin Ovsienko and Sergei Tabachnikov

Almost every mathematician has encountered, at some point of his or her education, the following rather intimidating expression and, most likely, tried to forget it right away:

$$
\begin{equation*}
S(f(x))=\frac{f^{\prime \prime \prime}(x)}{f^{\prime}(x)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right)^{2} \tag{1}
\end{equation*}
$$

Here $f(x)$ is a function in one (real or complex) variable and $f^{\prime}(x), f^{\prime \prime}(x), \ldots$ are its derivatives. This is the celebrated Schwarzian derivative, or the Schwarzian, for short. It was discovered by Lagrange in his treatise "Sur la construction des cartes géographiques" (1781); the Schwarzian also appeared in a paper by Kummer (1836), and it was named after Schwarz by Cayley.

Expression (1) is ubiquitous and tends to appear in seemingly unrelated fields of mathematics: classical complex analysis, differential equations, and one-dimensional dynamics, as well as, more recently, Teichmüller theory, integrable systems, and conformal field theory. Leaving these numerous applications aside, we focus on the basic properties of the Schwarzian itself.

Two examples. a) The first example is perhaps the oldest one. Consider the simplest second-order differential equation, the Sturm-Liouville equation,

$$
\begin{equation*}
\varphi^{\prime \prime}(x)+u(x) \varphi(x)=0 \tag{2}
\end{equation*}
$$

[^7]where the potential $u(x)$ is a (real or complex valued) smooth function. The space of solutions is two-dimensional and spanned by any two linearly independent solutions, φ_{1} and φ_{2}. Suppose that we know the quotient $f(x)=\varphi_{1}(x) / \varphi_{2}(x)$; can one reconstruct the potential? The reader can carry out the relevant computations to check that $u=\frac{1}{2} S(f)$. The geometrical meaning of this formula is as follows. The quotient $t=\varphi_{1} / \varphi_{2}$ is an affine coordinate on the projective line \mathbb{P}^{1} so that $t=f(x)$ is a parametrized curve in \mathbb{P}^{1}. This curve has non-vanishing speed, i.e., $f^{\prime} \neq 0$, since the Wronski determinant of two solutions of (2) is a non-zero constant. The Schwarzian then reconstructs a Sturm-Liouville equation from such a curve.
b) The next example is due to C. Duval, L. Guieu, and the first author (2000). Consider the Lorentz plane with the metric $\mathrm{g}=d x d y$ and a curve $y=f(x)$. If $f^{\prime}(x)>0$, then its Lorentz curvature can be easily computed: $\varrho(x)=f^{\prime \prime}(x)\left(f^{\prime}(x)\right)^{-3 / 2}$, and the Schwarzian enters the game when one computes $\varrho^{\prime}=S(f) / \sqrt{f^{\prime}}$. Thus, informally speaking, the Schwarzian derivative is curvature.

The following beautiful theorem of E. Ghys (1995) is a manifestation of this principle: for an arbitrary diffeomorphism f of the real projective line, its Schwarzian derivative $S(f)$ vanishes at least at 4 distinct points. Ghys' theorem is analogous to the classical 4 vertex theorem of Mukhopadhyaya (1909): the Euclidean curvature of a smooth closed convex curve in \mathbb{R}^{2} has at least 4 distinct extrema.

Not a function. A surprise hidden in formula (1) is that the Schwarzian is actually not a function. The difference between a function and a more complicated tensor field is in its behavior
under coordinate changes. Choose another coordinate y. What is the formula for $S(f)(y)$? For a function the answer is simply $f(y)=f(x(y))$, but for its derivative, due to the Chain Rule, it is different: $f^{\prime}(y)=f^{\prime}(x(y)) x^{\prime}(y)$; this is why the invariant (geometric) quantity is not the derivative but the differential $d f=f^{\prime}(x) d x$-a distinction that tortures countless calculus students. The geometric quantity corresponding to (1) is the quadratic differential: $S(f)=S(f(x))(d x)^{2}$. In other words, $S(f)$ is a quadratic function on the tangent space $T \mathbb{R}$, just like a metric but without the non-vanishing condition. We denote by $\mathcal{Q}_{2}\left(\mathbb{R} \mathbb{P}^{1}\right)$ the space of the quadratic differentials on the real projective line $\mathbb{R}^{1}{ }^{1}$.

Main properties. 1. $S(f)=S(g)$ if and only if $g(x)=(a f(x)+b) /(c f(x)+d)$, where a, b, c, d are (real or complex) constants with $a d-b c \neq 0$. In particular, $S(f)=0$ if and only if f is a linear-fractional transformation:

$$
\begin{equation*}
f(x)=\frac{a x+b}{c x+d} \tag{3}
\end{equation*}
$$

Note that $f(-d / c)=\infty$, but $f(x)$ is well-defined for $x=\infty$. We can understand f as a diffeomorphism of $\mathbb{R} \mathbb{P}^{1}$. The transformations (3) with real coefficients form a group of projective symmetries of $\mathbb{R} \mathbb{P}^{1}$, which is $\operatorname{SL}(2, \mathbb{R}) /\{ \pm 1\}$. It follows that the Schwarzian is a projective invariant.
2. Given two diffeomorphisms f, g of \mathbb{R}^{1}, one has: $S(g \circ f)=S(g) \circ f+S(f)$, where the first summand is the action of f on a quadratic differential, $(u \circ f)(x)=u(f(x))\left(f^{\prime}(x)\right)^{2}$.

From discrete projective invariants to differential ones. The reader may be familiar with projective invariants; see F. Labourie's article [1]. Recall that a quadruple of points in \mathbb{P}^{1} has a numerical invariant. Choose an affine coordinate that represents the points by four numbers t_{1}, t_{2}, t_{3}, and t_{4}; the cross-ratio

$$
\left[t_{1}, t_{2}, t_{3}, t_{4}\right]=\frac{\left(t_{1}-t_{3}\right)\left(t_{2}-t_{4}\right)}{\left(t_{1}-t_{2}\right)\left(t_{3}-t_{4}\right)}
$$

is invariant under the projective transformations of the projective line. What is the relation of this discrete invariant to the Schwarzian?

Consider a diffeomorphism f of $\mathbb{R}^{\mathbb{P}^{1}}$. The Schwarzian measures how f changes the crossratio of infinitesimally close points. Let t be a point in $\mathbb{R} \mathbb{P}^{1}$ and v a tangent vector to \mathbb{R}^{1} at t. Extend v to a vector field in a vicinity of t and denote by ϕ_{s} the corresponding local flow. Consider four points: $t, t_{1}=\phi_{\varepsilon}(t), t_{2}=\phi_{2 \varepsilon}(t), t_{3}=\phi_{3 \varepsilon}(t)$. The cross-ratio does not change in the first order in ε :

$$
\begin{gathered}
{\left[f(t), f\left(t_{1}\right), f\left(t_{2}\right), f\left(t_{3}\right)\right]=} \\
{\left[t, t_{1}, t_{2}, t_{3}\right]-2 \varepsilon^{2} S(f)(t)+O\left(\varepsilon^{3}\right) .}
\end{gathered}
$$

The coefficient of ε^{2} depends on the diffeomorphism f, the point t, and the tangent vector v, but not on its extension to a vector field. It is
homogeneous of degree 2 in v, and therefore $S(f)$ is indeed a quadratic differential.

Schwarzian as a cocycle. Let G be a group acting on a vector space V, i.e., there is a homomorphism $\rho: G \rightarrow \operatorname{End}(V)$. A map $c: G \rightarrow V$ is a 1-cocycle on G with coefficients in V if

$$
\tilde{\rho}_{g}:(v, \lambda) \mapsto\left(\rho_{g} v+\lambda c(g), \lambda\right)
$$

is again a G-action on $V \oplus \mathbb{R}$. The cocycle c is nontrivial if this action is not isomorphic to that with $c=0$. In this case, c defines a class of cohomology of G, the notion that plays a fundamental role in geometry, algebra, and topology.

Diffeomorphisms of $\mathbb{R} \mathbb{P}^{1}$ form an infinitedimensional group, $\operatorname{Diff}\left(\mathbb{R}^{1}\right)$, which acts on all tensor fields on $\mathbb{R} \mathbb{P}^{1}$. Property 2 means precisely that the Schwarzian is a 1-cocycle with coefficients in the space of quadratic differentials $Q_{2}\left(\mathbb{R}^{1}\right)$. Moreover, one can prove uniqueness: the Schwarzian is the only projectively invariant 1 -cocycle on Diff $\left(\mathbb{R}^{1}\right)$. This serves as a good intrinsic definition.

The algebra of vector fields, $\operatorname{Vect}\left(\mathbb{R}^{1}\right)$, is the Lie algebra of the group $\operatorname{Diff}\left(\mathbb{R} \mathbb{P}^{1}\right)$. Every differentiable map on $\operatorname{Diff}\left(\mathbb{R}^{\mathbb{P}^{1}}\right)$ corresponds to a map on $\operatorname{Vect}\left(\mathbb{R}^{1}\right)$, its infinitesimal version. The infinitesimal version of the Schwarzian is easy to compute (substitute $f(x)=x+\varepsilon X(x)$ in (1) and differentiate with respect to ε at $\varepsilon=0): s(X(x) d / d x)=$ $X^{\prime \prime \prime}(x)(d x)^{2}$. This is a projectively invariant 1cocycle on $\operatorname{Vect}\left(\mathbb{R}^{1} \mathbb{P}^{1}\right)$ with coefficients in $\mathcal{Q}_{2}\left(\mathbb{R} \mathbb{P}^{1}\right)$. Moreover, the invariant pairing between quadratic differentials and vector fields yields a 2-cocycle on $\operatorname{Vect}\left(\mathbb{R}^{1} \mathbb{P}^{1}\right)$ with trivial coefficients:

$$
\omega\left(X(x) \frac{d}{d x}, Y(x) \frac{d}{d x}\right)=\int_{\mathbb{R} \mathbb{P}^{1}} X^{\prime \prime \prime}(x) Y(x) d x
$$

This is the Gelfand-Fuchs cocycle (1967); it defines a central extension of $\operatorname{Vect}\left(\mathbb{R} \mathbb{P}^{1}\right)$ called the Virasoro algebra, perhaps the most famous infinitedimensional Lie algebra, defined on the space $\operatorname{Vect}\left(\mathbb{R}^{1}\right) \oplus \mathbb{R}$ by the commutator

$$
[(X, \alpha),(Y, \beta)]=([X, Y], \omega(X, Y))
$$

where $[X, Y]$ is the commutator of vector fields.
The Schwarzian contains complete information about the Gelfand-Fuchs cocycle; for instance, the 2 -cocycle condition follows from Property 2. The relations between the Schwarzian and the Virasoro algebra were discovered, independently, by A. Kirillov and G. Segal (1980).

Multi-dimensional versions of the Schwarzian. Here is a "universal method" of discovering a multidimensional Schwarzian:
a) choose a group of diffeomorphisms and a subgroup G that has a nice geometrical meaning, b) find a G-invariant 1-cocycle on the group of diffeomorphisms,
c) (the most important step) check that no one did it before.

One of the most interesting multi-dimensional Schwarzians is that of Osgood and Stowe (1992). Consider a Riemannian surface ($M, \mathrm{~g}$) and the group $\operatorname{Diff}_{c}(M)$ of all conformal transformations of M. The Riemann uniformization theorem implies that M is conformally flat. One can (locally) express the metric as $g=(1 / F) \psi^{*} \mathrm{~g}_{0}$, where ψ is a conformal diffeomorphism of M, F is a smooth function, and g_{0} is a metric of constant curvature. The conformal Schwarzian is given by

$$
S(\psi)=\frac{\nabla d F}{F}-\frac{3}{2} \frac{d F \otimes d F}{F^{2}}+\frac{1}{4} \frac{\mathrm{~g}^{-1}(d F, d F) \mathrm{g}}{F^{2}}
$$

where ∇ is the covariant derivative corresponding to the Levi-Civita connection. This is a 1-cocycle on $\operatorname{Diff}_{c}(M)$, invariant with respect to the (local) Möbius subgroup $\operatorname{SO}(3,1)$ associated to the metric g_{0}. The construction also makes sense if $\operatorname{dim} M>$ 2 , but the conformal group is finite-dimensional in this case.

Among other generalizations, let us mention the "Lagrangian Schwarzian" modeled on symmetric matrices, Ovsienko (1989); a more general noncommutative Schwarzian of Retakh and Shander (1993); and various generalized Schwarzians with coefficients in the space of differential operators.

Last but not least, the Schwarzian derivative plays a key role in Teichmüller theory, namely, the Bers embedding of the Teichmüller space of a Riemann surface into an appropriate complex space. However, this vast topic deserves a separate treatment.

Further Reading

[1] F. Labourie, What is...a cross-ratio?, Notices 55 (2008), No 10. (November), 1234-1235.
[2] V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups, Cambridge University Press, Cambridge, 2005.

Lagrange and the Schwarzian Derivative

The name "Schwarzian derivative" was coined by Cayley, but he points out that Schwarz himself says that it occurs already, at least implicitly, in Lagrange's essay on cartes géographiques. Felix Klein learned about Lagrange’s work through a private communication from Schwarz (noted in §III. 5 of Lectures on the Icosahedron). It is not quite straightforward, however, in reading Lagrange, to see what he is doing, and it is not clear to what extent later mathematicians went to the original work. Joseph Sylvester, in "Method of reciprocants" records that he tried to track down Lagrange's use of the Schwarzian, but then only concludes that "There are two papers by Lagrange ... but I have not been able to discover the Schwarzian derivative in either one of them." Even in modern times Lagrange's role has been missed-for example, George Heine in an article in the recent book Euler at 300: An Appreciation says that Lagrange's work had little influence on either mathematics or cartography.

Schwarz was, however, correct-Lagrange did introduce some version of the Schwarzian derivative $S(f)$, and for an interesting purpose. He considers the Earth as a general body of revolution, taking into account the known non-sphericity.

He studies the maps given by a conformal mapping from a spherical region to the plane that takes all the meridians and all the parallels to arcs of circles (as does stereographic projection). This is equivalent to describing local conformal mappings $z \mapsto f(z)$ for which the image of each horizontal and each vertical line is a circular arc. He proves that the conditions on horizontals and verticals are equivalent and that both are equivalent, in contemporary notation, to the equation $\operatorname{Im} S(f)=0$. This implies in turn that $S(f)=$ constant. He solves this equation and explicitly describes its solutions. The Schwarzian derivative $S(f)$ appears in his paper as $\phi^{\prime \prime} / \phi$ where $\left.\phi=1 / \sqrt{f^{\prime}}\right)$, which excuses Sylvester to some extent for missing it.

All this was found again much later, but apparently quite independently of Lagrange's original work. What is sometimes called Arnold's Law asserts, "Discoveries are rarely attributed to the correct person." One might add to this (Michael) Berry's Law, prompted by the observation that the sequence of antecedents under the previous law seems endless: "Nothing is ever discovered for the first time."

Lagrange's article on cartes géographiques is in Volume IV of his collected works. This is not, unfortunately, available at http:ga11ica.bnf.fr as are Volumes II and VIII, but we have made a scan of it available at
http:www.math.ubc.ca/~cass/cartes.pdf.
It is this volume, incidentally, that contains as frontispiece the well known portrait of Lagrange reproduced here.

[^8]

Mathematics in India
Kim Plofker

The Hypoelliptic Laplacian and Ray-Singer Metrics
Jean-Michel Bismut ơ Gilles Lebeau

The Structure of Affine Buildings

Kichard M. Weiss
annats or mathematics studits

The Structure of Affine Buildings
Richard M. Weiss

> Classifying Spaces of Degenerating Polarized Hodge Structures
> Kazuya Kato \&́ Sampei Usui

This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion.

Annals of Mathematics Studies
Phillip A. Griffiths, John N. Mather, and Elias M. Stein, Series Editors
Paper \$45.00 978-0-691-13732-2
Cloth \$70.00 978-0-691-13731-5
Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge-such as the Indian origin of Arabic numerals-and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic scientific traditions.

Cloth \$39.50 978-0-691-12067-6 February

Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the classification of spherical buildings and their root data as it is carried out in Tits and Weiss's Moufang Polygons.

Annals of Mathematics Studies
Phillip A. Griffiths, John N. Mather, and Elias M. Stein, Series Editors
Paper \$49.95 978-0-691-13881-7
Cloth \$99.50 978-0-691-13659-2

> Classifying Spaces of Degenerating Polarized Hodge Structures

Classifying Spaces of
Degenerating Polarized
Hodge Structures

Karuya Kato and Sampei Usui

In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure.

[^9]
Hans Grauert:Mathematiker Pur

Alan Huckleberry

Hans Grauert in Utrecht (1980).

On April 25, 2008, on the occasion of the GaußVorlesung in Bonn, Hans Grauert was presented the Ehrenmitgliedschaft of the Deutsche Mathema-tiker-Vereinigung (DMV, German Mathematical Society). Given the opportunity to describe even superficially the contributions of this most distinguished colleague, I was pleased when asked to write this article for the Mitteilungen of the DMV. Only a few months after that article appeared, ${ }^{1}$ on September 15, 2008, Grauert was awarded the prestigious CantorMedaille of the DMV at its annual meeting, which took place in Erlangen. The inaugural CantorMedaille was awarded in 1990, on the occasion of the 100th anniversary of the founding of the DMV, to Karl Stein who, like Grauert, devoted most of his scientific life to the subject of several complex variables. The Medaille has been awarded on a regular basis since that time, being presented to J. Moser (1992), E. Heinz (1994), J. Tits (1996), V. Strassen (1999), Y. Manin (2002), F. Hirzebruch (2004), and H. Föllmer (2006).

It is presumptuous for a mere mortal to even attempt to write a laudation for Hans Grauert. The easy part is to construct a representative list of the various important stations of his life, and of his

[^10]accomplishments and honors, and to put them in a timeline. I have indeed integrated a rough outline of these data in this article, but to me this is just a small part of a story that I feel is very important.

Hans Grauert was born in Haren-Ems in 1930. At his retirement festival in Göttingen he recalled how he struggled with mathematics as a schoolboy until a teacher told him it was acceptable to think abstractly, he didn't necessarily need deal with numbers. No more than fifteen years later he was introducing spaces without points, just structure!

After beginning his studies in the summer semester of 1949 in Mainz, Grauert transferred to Münster, starting in the winter semester of 1949-50. There he was integrated into an exciting, energized mathematical atmosphere with friends and teachers of all ages and experience. Among these was Reinhold Remmert, who would become his lifelong friend and main collaborator. The mathematics guru was Karl Stein. Heinrich Behnke was well connected to the outside mathematical world, in particular to H. Hopf and H. Cartan, and had a very good feeling for the important directions in complex analysis.

After a brief sojourn in Zürich, Grauert received his Dr. rer. nat. in Münster in 1954. Starting with his dissertation, Grauert contributed fundamental results that lie at the heart of a field of mathematics that was in an infantile state when he started and was at a refined and incredibly high level less than ten years later. Let us now think back to the time when he began his studies!

There were indeed the deep, perhaps mysterious ideas of Oka on the table. Stein understood these in his own way and was, for example, attempting to understand the role of topology in complex analysis, in particular for noncompact spaces. Hirzebruch had received his doctorate in 1950 in Münster and was on the path toward his
fundamental book Neue Topologische Methoden in der Algebraischen Geometrie. The power of the developing Cartan-Serre theory cannot be underestimated. However, the foundations of what is now called several complex variables were simply not there!

The works of Grauert and Remmert, together with the input of Cartan and Serre (the postive impact of the Münster-Paris connection is welldocumented), are these foundations. Komplexe Räume and Bilder und Urbilder analytischer Garben are two of numerous examples of their prolific joint work, which is basic for our subject.

Perhaps also because they have jointly written basic books on several complex variables, Stein Theory and Coherent Analytic Sheaves, one might tend to overlook their different viewpoints. One can see that in this beginning phase Remmert is interested in analytic sets, their continuations, their properties with respect to holomorphic and meromorphic maps.

Grauert seems to be guided by problems involving complex analytic objects on these sets. His Oka Principle, which in terms that certainly hide the true depth of this work, states that the category of holomorphic vector bundles on a Stein space is the same as the category of topological bundles, is a perfect example. The same is true of his solution to the Levi Problem where he constructs holomorphic functions with given polar data at the boundary of a domain by proving the finite-dimensionality of a certain obstruction space using a Fredholm theorem in a Fréchet context. His proof of the optimal version of Theorem B and his solution (with Docquier) of the Levi Problem for weakly pseudoconvex domains in Stein manifolds shows his deep understanding for approximation theorems of Runge type.

Shrinking coverings and understanding subtle properties involving restriction operators can be found at the top of the list of Grauert's important methods. The most complicated and perhaps most famous of his results where such arguments appear is his direct image theorem. Here one starts with a proper holomorphic map $F: X \rightarrow Y$ between complex spaces where one knows that the image $F(X)$ is an analytic subset of Y (Remmert's Theorem). Proving a theorem that is in a sense in another universe, Grauert shows that direct images of coherent sheaves on X are coherent on Y. One cannot think of working in global complex geometry without the availability of this result! To obtain some feeling for the order of magnitude of this work and for other interesting information we recommend reading Remmert's article in ([R]).

The last of the above-mentioned works appeared in 1960, but it is not at all clear to me when Grauert proved these theorems. It seems that at a certain point he understood everything, and it was just a matter of finding the time and energy

H. Grauert, K. Stein, R. Remmert.
to write the papers. In any case he chose the Oka Principle as his Habilitationsschrift and around the time of completing his Habilitation, continuing the postwar tradition that opened the world to numerous outstanding young German mathematicians of that generation, Grauert left Münster for the Institute for Advanced Study, where he spent the winter semester of 1957-58. I know from direct discussions with others who were there at the time that the richness, depth and breadth of his ideas, which he presented both formally and informally, were nothing short of startling.

In 1959 Grauert became professor in Göttingen and remained in this position until becoming emeritus in 1996. Once he told me he didn't want to be away from Göttingen for more than two weeks. But in fact he did travel widely. For example, most likely due to the connection to Wilhelm Stoll, Grauert, Remmert, and Stein visited Notre Dame for extended periods. I know how important this was for that faculty and of course for me personally!

Grauert also invited distinguished foreign guests to Göttingen, among them Aldo Andreotti. In the winter semester of 1968-69 at Stanford I was introduced to Grauert's work in the lectures of Andreotti. Imagine being the only student in a course given by the most wonderful of lecturers discussing results of his friend and coworker that are even in hindsight some of the most beautiful in complex geometry. Their joint work was certainly one of the highlights: the Andreotti-Grauert theorems on finiteness and vanishing of cohomology for q-pseudoconvex manifolds, and their jewel "Algebraische Körper von automorphen Funktionen", where they show how to use pseudoconcavity to prove the finite-dimensionality of spaces of automorphic forms. However, what I remember most is Andreotti's explaining Grauert's elegant solution

DMV chairman Günter Ziegler presenting the CantorMedaille to Grauert's daughter Ulrike Peternell, 2008.
of the Levi problem and applications to Kodairatype vanishing and embedding theorems.

These last mentioned results are in a sense just snippets of Grauert's remarkable paper "Über Modifikationen und exzeptionelle analytische Mengen". There, answers to fundamental questions such as "When can you blow down a variety?" are given. Concepts such as plurisubharmonicity, bundle curvature and signature of intersection forms flow together. A new, important criterion for projective embeddings is proved. After reading this work, I was sure that this is the way mathematics should be!

On Grauert's research timeline we have now reached a point around 1963. Of course the ideas kept coming! There was a phase when he was thinking about parameter spaces of complex analytic objects (deformation theory). Here his two basic Inventiones papers should be mentioned ("Über die Deformation isolierter Singularitäten analytischer Mengen" (1972) and "Der Satz von Kuranishi für kompakte komplexe Räume" (1974)). At the time when he was concentrating on vector bundles (see for example his paper with Mülich, "Vektorbündel vom Rang 2 über dem n-dimensionalen komplexprojektiven Raum" (1975)), I remember a young mathematician asking him a general question about what would nowadays be the most important direction of research in mathematics. Typifying how Grauert focused: "Vector bundles on \mathbb{P}_{3} "!

On the more analytic side there is the important work with his student Ramirez in the late 1960s and then with Lieb on integral kernel representations. The Grauert-Riemenschneider vanishing theorem ("Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen" (1970)) can also be regarded as being at home in complex analysis.

More recently Grauert turned back to his old interests in holomorphic and meromorphic equivalence relations. I remember he and Stein discussing these topics with great animation just a few years before Stein's passing. His most recent work in that direction appeared in 1987. Finally, one should not forget that hyperbolicity has been in the background for many years. One sees this in his work in 1965 with Reckziegel, his 1985 paper with Ulrike Peternell, née Grauert, and in his final paper that was devoted to mathematics research "Jetmetriken und hyperbolische Geometrie" (1989).

At this point I could begin to be more precise about the details of Grauert's work. However, I hope that the above is sufficient for the interested bystander. For those whose appetites might have been whetted, Grauert should have the final word: Please take a look at his collected works ([G]) with its interesting annotations written by Yum-Tong Siu and Grauert himself.

As we all know, research is an extremely important part of our academic lives, but there are other aspects that must be emphasized. Here in Germany there is the classical notion of Akademischer Lehrer, which encompasses everything that a professor should be. Nowadays there seem to be new interpretations being propagated. Grants, research clusters, elite universities, etc., are the buzzwords. However, we don't need new words to describe Grauert's contributions. Let me expand on this.

His work in administration of science must be commended, in particular his involvement with projects of the Deutsche Forschungsgemeinschaft (German Science Foundation) and his role on editorial boards, for example in bringing the Mathematische Annalen back to its historic high standards. Nevertheless, when I think of Grauert I think of him in the science not above it. This includes his lectures, which may seem dry and minimal, sometimes even formal, but you should listen very carefully. There are always deep ideas that should be followed! From the undergraduate student in his Funktionentheorie course to the researcher being advised in a private conversation, every listener should take every word seriously. The same is true of his vast written work. The reader must take the time to understand what is meant by every sentence! This holds just as well for his research monographs as it does for his textbooks. While reading a Grauert-proof of Stokes’ Theorem, you should keep in mind that he has seriously thought about it! These textbooks range from the basic
analysis sequence written with Fischer and Lieb to the new version of Grauert-Fritzsche where even new ideas in complex analysis are introduced.

Speaking of Grauert's minimality, I can't resist an anecdote. Whenever he lectures he carries the Konzept of the lecture with him on a three by five card. He will most often start his lecture writing Let X be a complex space \ldots on the board and meticulously checking his Konzept to make sure he got it right. Given that he and Remmert originally defined the notion of a complex space, this is a beautiful sight! Gossip has it that when giving a two-semester course on several complex variables he never changed the little piece of paper, but for the second semester did in fact turn it over!!

I have no idea how many students (Diplom, Staatsexam, Promotion) have done their work with Grauert. In any case it is a large number! We who are working in areas near their works see the strong positive influence of the master teacher, and I know that Grauert is proud of them all.

A researcher of the highest quality, a teacher at all levels with relevant fundamental new ideas always in the background, an author with a style where every word has a meaning, an important participant in and leader of academic societies, a cultured intellectual in the sense of Humboldt, and a very kind gentleman, Grauert personifies the true notion of Akademischer Lehrer.

References

[G] H. Grauert, Selected Papers I. and II., SpringerVerlag, 1994.
[R] R. Remmert, Mathematical Intelligencer 17(2) (1995), 4-11.

The Art of Doing Mathematics

\$49.00; Hardcover

\$49.00; Hardcover

\$24.00; Paperback

\$49.00; Hardcover

\$24.95; Paperback

\$35.00; Hardcover

Save 25\% at www.akpeters.com discount code AMS

A K PETERS
$781.416 .2888 \times 18$
www.akpeters.com

A Celebration of Women in Mathematics at MIT

Margaret A. M. Murray

On Saturday and Sunday, April 12-13, 2008, the Department of Mathematics at the Massachusetts Institute of Technology held a Celebration of Women in Mathematics at MIT. The conference-co-sponsored by the MIT School of Science and the National Science Foundation-was instigated by Susan Landau, a 1983 Ph.D. alumna of the department, who asked mathematics department head Michael Sipser to organize a formal event to recognize MIT's role as a leading educator of women mathematicians. The organizing committee for the conference, headed up by Gigliola Staffilani and Katrin Wehrheim of the MIT math department, included Bonnie Berger-MIT professor of applied mathematics and a 1990 Ph.D. alumna in computer science-together with Susan Landau and three other MIT math alumnae: Lenore Blum (Ph.D. 1968), Ana Cannas da Silva (Ph.D. 1996), and Susan Colley (Ph.D. 1983).

The MIT celebration featured seven colloquium talks on topics in pure and applied mathematics, as well as two panels devoted to the mathematical lives of MIT women alumnae and faculty members: "Life Now: Becoming and Being a Mathematician", and "Life Back Then: Graduates of the Sixties, Seventies, and Early Eighties". In addition, alumnus Ken Fan (Ph.D. 1995) introduced Girls’ Angle, a math club for Cambridge-area middle-school girls, on Saturday afternoon; MIT President Susan Hockfield and School of Science Dean Marc Kastner hosted a buffet supper on Saturday evening.

Seeking broader historical context for the mathematical achievements of women at MIT, the conference organizers graciously invited me to give an hour talk at lunch on Sunday. I also agreed to cover the conference for the Notices as a participant-observer. Because my only connection

[^11]to MIT comes by way of MIT Press, my account interweaves historical elements from my presentation with my observations as both insider and outsider to the proceedings. Table 1 provides an alphabetical list of speakers and panelists. The full schedule of the conference, including slides and references, is now online at http://www-math. mit.edu/womeninmath/schedu7e.htm7.

Women in Mathematics: Doctorate Production at MIT (and elsewhere)

While the conference was ostensibly a celebration of women in mathematics, the proceedings largely focused upon women in mathematical research. Because the Ph.D. degree is effectively the professional certification for research mathemati-cians-and because most mathematical research is conducted by university mathematics faculty and their doctoral students-the conference celebrated the role of MIT as a producer of female mathematics Ph.D.'s.

But MIT's leadership in Ph.D. production is a relatively recent phenomenon. Table 2 lists, in chronological order, the first Ph.D.'s awarded to women by each of the Top Ten departmentsBerkeley, Caltech, Chicago, Columbia, Harvard, MIT, Michigan, NYU, Princeton, Stanford, and Yale. ${ }^{1}$ Columbia was the first among all U.S. institutions to award a mathematics Ph.D. to a woman, when it recognized Winifred Edgerton in 1886 . 2 Swept along in the tide of first-wave feminism, many other universities steadily followed suit. ${ }^{3}$ Among Top Ten departments both Chicago (46) and Yale (13) were leading producers of female mathematics Ph.D.'s prior to 1940 ([6], p. 18). All told, nine of the Top Ten departments-all but Princeton and Caltech-had awarded math Ph.D.'s to women by $1940 .{ }^{4}$

World War II was a turning point in the development of the American mathematical community. Mathematical research came to be seen as
indispensable to national security, and a host of federal programs provided fuel for massive expansion of graduate programs in mathematics-above all the National Science Foundation, which began awarding fellowships in 1952. Paradoxically, however, the immediate result of this expansion was the virtual disappearance of women from mathematics doctoral programs in the 1950s ([14], pp. 21-46).

Table 3 lists the names, degree years, and advisers of the first nine women to earn Ph.D.'s in
mathematics from MIT. These are, in fact, all the women who earned MIT math Ph.D.'s prior to 1960. Domina Eberle Spencer, the third woman in the list, has been on the mathematics faculty at the University of Connecticut since 1950. At eightyeight, Spencer was the oldest participant in the MIT celebration-seated front-and-center at each presentation with her chihuahua, Nikki, resting contentedly in her lap. ${ }^{5}$

One of the paradoxical effects of the postwar boom in mathematics was that institutions that

Speaker	Highest Degree (in mathematics unless noted otherwise)	Current position	Title of Talk or Panel
Sami Assaf	Ph.D., UC Berkeley, 2007	Moore Instructor in Mathematics, MIT	Life Now
Bonnie Berger	Ph.D., MIT, 1990 (Computer Science)	Professor of Applied Mathematics, MIT	Comparative Genomics: Sequence, Structure, and Networks
Lenore Blum	Ph.D., MIT, 1968	Distinguished Career Professor of Computer Science, Carnegie-Mellon University	Computing Over the Reals: Where Turing Meets Newton; Life Back Then
Anna Marie Bohmann	B.A., MIT, 2005 (Mathematics \& Spanish); M.A., NYU, 2006 (Spanish)	Ph.D. Student, Mathematics, University of Chicago	Life Now
Ana Cannas da Silva	Ph.D., MIT, 1996	Associate Professor of Mathematics, Universidade Técnica de Lisboa; Senior Lecturer in Mathematics, Princeton University	Life Now
Susan Colley	Ph.D., MIT, 1983	Professor of Mathematics, Oberlin College	Life Back Then
Lenore Cowen	Ph.D., MIT, 1993	Associate Professor of Computer Science, Tufts University	Life Now
Ioana Dumitriu	Ph.D., MIT, 2003	Assistant Professor of Mathematics, University of Washington	Matrix Computations: How Fast and Accurate Can They Be?
Tara Holm	Ph.D., MIT, 2002	Assistant Professor of Mathematics, Cornell University	Dance of the Astonished Topologist, or How I Left Squares and Hexes for Math
Susan Landau	Ph.D., MIT, 1996	Distinguished Engineer, Sun Microsystems Laboratories	Life Back Then (moderator)
Nancy Lynch	Ph.D., MIT, 1972	Professor of Computer Science, MIT	Life Back Then
Margaret Murray	Ph.D., Yale, 1983; M.F.A., Iowa, 2005 (Nonfiction Writing)	Development Division, ACT, Inc.; Adjunct Professor of Mathematics, University of Iowa	Women Becoming Mathematicians: A Look Back (and a Look Forward)
Ruth Nelson	B.A., MIT, 1963	GTE Government Systems Corporation (retired)	Life Back Then
Ragni Piene	Ph.D., MIT, 1976	Professor of Mathematics, University of Oslo	Life Back Then
Sarah Raynor	Ph.D., MIT, 2003	Assistant Professor of Mathematics, Wake Forest University	Life Now
Linda Rothschild	Ph.D., MIT, 1970	Professor of Mathematics, University of California at San Diego	Real Geometric Objects that Live in Complex Manifolds; Life Back Then
Brooke Shipley	Ph.D., MIT, 1995	Professor of Mathematics, University of Illinois at Chicago	Rings Up to Homotopy
Katrin Wehrheim	Ph.D., ETH Zürich, 2002	Assistant Professor of Mathematics, MIT	Life Now (moderator)
Lauren Williams	Ph.D., MIT, 2005	Benjamin Peirce Assistant Professor of Mathematics, Harvard	Combinatorics and Statistical Physics: A Story of Hopping Particles

Table 1. Speakers at the Celebration of Women in Mathematics at MIT.

Year	Institution	Recipient
1886	Columbia	Winifred Edgerton (Merrill)
1895	Yale	Charlotte Barnum
1908	Chicago	Mary Emily Sinclair
1911	Berkeley	Annie Dale Biddle
1914	Michigan	Suzan R. Benedict
1917	Harvard (Radcliffe)	Mary Curtis (Graustein)
1928	Stanford	Marie Weiss
1930	MIT	Dorothy Weeks
1939	NYU	Harriet Griffin
1964	Caltech	Lorraine Turnbull Foster
1972	Princeton	Marjorie Leiter Stein Deborah L. Goldsmith Susan Friedlander

Table 2. Year first Ph.D. awarded to a woman in each of the Top Ten departments. Compiled and cross-checked from multiple sources, including Bulletin and Notices of the AMS, ProQuest Dissertations \& Theses, Mathematics
(32) of female math Ph.D.'s [8]. From 1995-96 to 2002-03, MIT ranked fifth among all departments in total numbers of Ph.D.'s awarded to women in math: 37 out of 174 total, about 21%. Among the Top Ten departments only Berkeley ranked higher in total numbers (39), although it was lower in percent (16\%). ${ }^{6}$

Women in Mathematics at MIT: Faculty Presence

But in terms of women on the graduate faculty, progress in the MIT math department is a much more recent development. According to departmental records for the period 1945-2007 [18], MIT's mathematics faculty was all male until 1968, when the department hired its first woman C.L.E. Moore Instructor, Karen Uhlenbeck. While women held a handful of untenured faculty positions during the decade that followed, Michèle Vergne-affiliated with MIT during 1977-1988-was MIT’s first and only tenured woman in mathematics until 1999

As a general matter, increases in women's faculty presence generally lag behind increases in doctoral production ([11], 127-130). According to the most recent CBMS survey, women account for about $15 \%(1,651 / 11,332)$ of the tenured, doctoral mathematics
had formerly been friendly to women became chilly, if not hostile, after 1945. The University of Chicago offers perhaps the most dramatic example of climate change ([14], pp. 26-27). But the post-Sputnik expansion of graduate fund-ing-under Title IV of the National Defense Education Act (NDEA) of 1958-improved the situation for women. Statistics indicate that NDEA Title IV funding in the 1960s benefited larger numbers of women than had NSF funding a decade before ([21], pp. 76-79). Title IV funding, combined with second-wave feminism, led to a growing presence of graduate women in mathematics in the 1960s.

Just as the Nineteenth Amendment in 1920 was the culmination of American first-wave feminism, the signing of Title IX in 1972 was the culmination of American feminism's second wave ([21], 361-382). Title IX of the Educational Amendments Act of 1972-which bans discrimination on the basis of sex in all educational institutions receiving federal funding-has had a revolutionary impact on the gender balance of American mathematical research. And in the Title IX era, MIT has been a leading provider of graduate mathematics education to women.

In the 1980s, for example, MIT led the Top Ten in overall percentage of math Ph.D.'s to women (15\%), and led all U.S. departments in total numbers
faculty at U.S. colleges and universities, and about $30 \%(926 / 3,120)$ of those deemed "tenure-eligible" ([12], p. 96). By contrast, women's representation among the tenured faculty at Top Ten institutions remains right around 5% [9]. But there have been clear signs of change in several Top Ten mathematics departments in recent years-including Michigan, Princeton, and MIT.

The revolution at MIT began in the summer of 1994, when biologist Nancy Hopkins joined with fifteen (of sixteen) other tenured women in the School of Science to petition then-Dean Robert Birgenau to establish a committee to investigate the status of women faculty at MIT. The committee, formed in 1995, included tenured women from every department in the school-except mathematics, which had no tenured women-and issued its final report in 1999 [4]. The report urged Dean Birgenau and then-President Charles M. Vest to improve conditions and ensure equity for both junior and senior women, and to increase women's faculty presence in each of the six departments of the School of Science. ${ }^{7}$

The transformation of MIT's mathematics faculty has been roughly concurrent with these developments. Bonnie Berger joined the department as an untenured assistant professor in 1992; she was tenured in 1999 and made full professor

Name	Ph.D. Year	Dissertation Adviser
Dorothy Weeks	1930	Norbert Wiener
Martha Plass	1939	Dirk Struik
Domina Eberle Spencer	1942	Dirk Struik
Helen Beard	1943	Dirk Struik
Miriam Lipschütz-Yevick	1948	Witold Hurewicz
Violet Haas	1951	Norman Levinson
Phyllis Fox	1954	C. C. Lin
Evelyn Bender	1954	Irvin Cohen

Table 3. Mathematics Ph.D.s awarded to women at MIT before 1960. Compiled and cross-checked from multiple sources, including Bulletin and Notices of the AMS, ProQuest Dissertations \& Theses, Mathematics Genealogy Project.
in 2002. Gigliola Staffilani arrived as an associate professor in 2002, was tenured, and made full professor in 2006. Katrin Wehrheim arrived as a tenure-track assistant professor in 2005, and JuLee Kim arrived as a tenured associate professor in 2007. Women now account for $6.5 \%(3 / 46)$ of the tenured and $14.3 \%(1 / 7)$ of the tenure-eligible faculty. With the ascent of Susan Hockfield to MIT's presidency in 2004, many expect that these numbers and proportions will continue to rise.

Celebration-and Circumspection

The seven colloquium speakers were chosendeliberately, I suspect-to represent three distinct academic generations. Lenore Blum and Linda Rothschild are veteran full professors, who completed their doctorates well after Sputnik but before Title IX. Bonnie Berger and Brooke Shipley are recent full professors, who earned Ph.D.'s roughly two decades after Title IX. Tara Holm, Ioana Dumitriu, and Lauren Williams are new assistant professors with twenty-first century doctorates; the ink had already dried on Title IX by the time they were born!

All seven speakers endeavored to communicate the excitement of research to a mathematically diverse audience; collectively, they illustrated the broad spectrum of women's work in pure and applied mathematics. Shipley and Rothschild gave classic colloquia, emphasizing internal connections among the disciplines of pure mathematics. Tara Holm took a step-or several-away from her puremathematical proclivities, joining with members of MIT's Tech Squares in a dynamic illustration of the topology of square dance. While Lauren Williams described how the problems of science inspire pure mathematics, Bonnie Berger emphasized how pure mathematics adapts to solve the problems of science. Finally, Ioana Dumitriu and Lenore Blum
explored the realm of computation-the inevitable meeting ground of theory and application.

When it came time for panel discussion, the organizers wisely chose to begin with the younger generation. The "Life Now" panelists told uplifting tales of early career success. The youngest panelist, Anna Marie Bohmann, is still working on her Ph.D.; she gave a brief but intriguing account of how she came to choose mathematics over Spanish as her academic specialty. Likewise, Sami Assaf had a dual major in mathematics and philosophy as an undergraduate at Notre Dame. These women exemplify a growing trend among a younger generation of scholars, drawn into the serious study of several disciplines at once [10]. Yet despite these Renaissance aspirations, the women of the "Life Now" panel seemed remarkably united in their desire for conventional careers in academic mathematics. All seemed to regard the conventional trajectory from Ph.D. to postdoc to tenure-track to tenure as both normative and desirable. Sami Assaf, Lenore Cowen, Ana Cannas da Silva, and Sarah Raynor told personal stories of the two-body problem, and of balancing marriage and childbearing with the timetables of promotion and tenure.

All this discussion of the "two-body problem" led to one of the more surprising moments of the conference. I asked the panelists if anyone would be willing to comment on the "one-body problem": the potential isolation of being a single woman in a coupled-up academic world. ${ }^{8}$ This question led panel moderator Katrin Wehrheim, who had kept mum up until then about her own personal life, to come out as a single tenure-track faculty mem-ber-and to come out as lesbian, too. Wehrheim's revelation was greeted with lengthy applause. It seems that there's still something radical about coming out as a gay or lesbian mathematicianeven in Massachusetts!

Despite themes common to both the panels, the "Life Back Then" panelists had generally grimmer tales to tell. Ruth Nelson, for example, worked on a Ph.D. in mathematics at MIT for four years in the 1960s before she was, in essence, ushered out of the program without so much as a master's degree. Devastated, she left MIT convinced that she would never do mathematical research. Years later, however, with a corporate career well underway, Ruth Nelson published original research in computer science.

While Linda Rothschild, Lenore Blum, Susan Landau, and Nancy Lynch all managed to complete their Ph.D.'s at MIT, their subsequent careers have involved heroic feats of academic perigrination. The youngest of the old-time panelists, Susan Colley and Ragni Piene, have had rather more-settled careers, earning tenure in their first job post-Ph.D. All in all, the older generation of panelists, though content with their hard-won successes, seemed to counsel vigilance: Blum warned against "making important decisions naïvely", while Lynch advised that a mathematician's first allegiance is to research, rather than to any institution or local community.

In this respect, both panels seemed to buy into at least a modified version of what I have elsewhere described as "the myth of the mathematical lifecourse" ([14], pp. 15-18). Indeed, at one point Sami Assaf asked the heartfelt question, "What happens when life doesn't conspire to help us?"

An Outsider's Perspective: Problems and Prospects

The MIT Celebration of Women in Mathematics showed that MIT can be a wonderful place for women to prepare for a career in research mathematics. But the match between a doctoral student and his or her department varies from student to student, and I know some women Ph.D.'s from MIT whose experiences in the department were not wholly positive and whose later careers were not so stellar as those showcased at the conference. Even so, that the conference could bring together so many talented women who have earned MIT doctorates and successfully joined the professorial ranks is a clear indication that MIT is doing many things right.

But in the words of a recent National Research Council report, women have "entered academia in increasing numbers at a time when opportunities for obtaining more permanent and prestigious faculty positions [have] begun to decline" ([11], pp. 148-9). In some disciplines, the casualization of the academic workforce has reached crisis proportions [1]. To paraphrase Sami Assaf: what indeed, happens, when circumstances do not conspire to create the academic life we have envisioned?

I cannot help but respond to this question from my own perspective, as a Top Ten Ph.D. graduate
who has strayed far from the mythical course. For me, creating a life-mathematical and other-wise-has been an act of faith and a great work of the imagination. In another venue, in another time, I offered some advice to graduate students and new Ph.D.'s:

> It is quite unlikely that you will lead the same kind of professional lives that your professors did. But this should not be reason for despair. You need always to remember that you have unusual training and skills. The world-both inside and outside of mathematics-is waiting for you, full of problems to be solved. ([5], p. 51)

Perhaps the best way for women to celebrate our achievements is to begin the work of envisioning the mathematical community of the future.

Notes

1. Top-ten rankings are issued periodically by the National Research Council and U.S. News and World Report. I offer the name Top Ten by analogy to the eleven-member Big Ten.
2. While Edgerton was the first woman to receive a U.S. mathematics Ph.D., she was not the first woman to actually earn one. That distinction goes to Christine Ladd-Franklin, student and collaborator of C. S. Peirce, who earned a Ph.D. at Johns Hopkins in 1882 but did not actually receive it until 1926 ([2], p. 133; [22], p. 123).
3. While women did not "officially" earn Ph.D.'s from Harvard until 1963, a Ph.D. from Radcliffe was a Harvard degree in all but name ([20], pp. 44, 169; [23]). Stanford's appearance in the list is delayed until 1928, owing perhaps to peculiar circumstances which strictly limited women's enrollment there until 1933 ([24], p. 59). Graduate programs in mathematics at MIT and NYU blossomed only in the 1930s, which explains their comparatively late entries in the table.
4. Caltech and Princeton were extremely slow to admit women to graduate study in any discipline ([21], p. 85; [16]; [25]). At Princeton, however, women held visiting memberships in the School of Mathematics at the Institute for Advanced Study throughout the 1930s [7]. For the early history of mathematics at Princeton, see [17].
5. Spencer's adviser, Dirk Struik, is just one among many notable émigré mathematicians who were especially welcoming to female doctoral advisees during the pre-war years. He advised fully one-third of MIT's pre-1960 women Ph.D.'s. For more on both Spencer and Struik, see [14].
6. In view of the fact that women received 26% of all mathematics doctorates during those years, however, all the Top Ten schools lagged behind the national average somewhat.
7. President Vest subsequently convened a meeting in 2001 at which MIT joined with eight other universitiesBerkeley, Caltech, Harvard, Michigan, Penn, Princeton, Stanford, and Yale-in pledging to work toward creating a faculty "that reflects the diversity of the student body" [13]. All the Top Ten institutions were represented at the meeting-save Chicago, Columbia, and NYU.
8. At the 1993 Joint Mathematics Meetings in San Antonio, I was invited to speak on an AWM panel entitled, "Is Geography Destiny?" While the stated purpose was to discuss the effects of geography on academic careers in mathematics, I was the only panelist to speak on the topic assigned; everyone else talked about the employment problems that face a heterosexually-married couple of mathematicians. At the time of my appearance on the panel, I had recently come out as lesbian and entered into a long-term relationship with another woman after several years of singleness. None of this personal history is evident in the short essay I was asked to write in the aftermath of the panel [15].

Works Cited

[1] M. Bousquet, How the University Works: Higher Education and the Low-wage Nation, New York University Press, New York, N.Y., 2008.
[2] J. Brent, Charles Sanders Peirce: A Life, Indiana University Press, Bloomington, IN, 1993.
[3] California Institute of Technology, Commencement 1964, Engineering and Science 27(9) (1964, June), 1-4. Retrieved from http://calteches. 1ibrary.caltech.edu/241/01/1964.pdf.
[4] Committee on Women Faculty in the School of Science, report of a study on the status of women faculty in science at MIT, MIT Faculty Newsletter 11(4) (1999, March), 1-15. Retrieved from http://web. mit.edu/fn1/women/women.htm7.
[5] J. Fleron, P. Humke, L. Lefton, T. LindQuester, \& M. Murray, Keeping your research alive, Starting our Careers, (Bennett, C., \& Crannell, A., eds.), American Mathematical Society, Providence, RI, 1999.
[6] J. Green, \& J. LaDuke, Women in the American mathematical community: The pre-1940 Ph.D.'s, Mathematical Intelligencer 9(1) (1987), 11-23.
[7] Institute for Advanced Study, (2006), Chronological history of members and visitors. Retrieved from http://www.math.ias.edu/inc1ude/ history_chron.php
[8] A. JACKSON, Top producers of women mathematics doctorates, Notices of the American Mathematical Society 38(7) (1991), 715-720.
[9]__ , Has the women-in-mathematics problem been solved?, Notices of the American Mathematical Society 51(7) (2004), 776-783.
[10] T. Lewin, For students seeking edge, one major just isn't enough, New York Times, November 17, 2002. Retrieved fromhttp://www.nytimes.com.
[11] J. S. Long, (ed.), From Scarcity to Visibility: Gender Differences in the Careers of Doctoral Engineers and Scientists, National Academies Press, Washington, D.C., 2001. Available at http://www.nap.edu/ catalog.php?record_id=5363.
[12] D. J. LuTZER, J. W. MAXWELL, \& S. B. Rodi, Statistical Abstract of Undergraduate Programs in the Mathematical Sciences in the United States: Fall 2000 CBMS Survey, American Mathematical Society, Providence RI, 2002. Retrieved from http://www.ams.org/cbms/ cbms2000.htm7.
[13] MIT News Office, Leaders at 9 universities and 25 women faculty meet at MIT, agree to equity reviews, 2001. Retrieved from http://web.mit.edu/ newsoffice/2001/gender.htm7.
[14] M. A. M. Murray, Women Becoming Mathematicians: Creating a Professional Identity in Post-World War II America, MIT Press, Cambridge, MA, 2000.
[15] ,_ Is geography destiny?, Complexities: Women in Mathematics, (B. Case, \& A. Leggett, eds.), Princeton University Press, Princeton, NJ, 2005.
[16] M. Myers, The graduate school, A Princeton Companion, (Leitch, A., ed.), Princeton University Press, Princeton, NJ, 1978.
[17] F. Nebeker, (ed.), The Princeton mathematical community in the 1930s: An oral history, 1985. Retrieved from http://www.princeton.edu/~mudd/ finding_aids/mathora1/pm02.htm
[18] D. PORCHE \& M. SIPSER, MIT mathematics teaching appointment numbers file, 1945-2007, unpublished document, 2008.
[19] L. Riddle, The first Ph.D.'s, 2006. Retrieved from the Biographies of Women Mathematicians at Agnes Scott College site, http://www.agnesscott.edu/ LRiddle/women/firstPhDs.htm.
[20] M. Rossiter, Women Scientists in America: Struggles and Strategies to 1940, Johns Hopkins University Press, Baltimore, MD, 1982.
[21] ___ Women Scientists in America: Before Affirmative Action, 1940-1972, Johns Hopkins University Press, Baltimore, MD, 1995.
[22] E. Scarborough, \& L. Furumoto, Untold Lives: The First Generation of American Women Psychologists, Columbia University Press, New York, NY, 1987.
[23] A. Silverberg, Women at Harvard, Association for Women in Mathematics Newsletter 36 (2006), 17-20. Retrieved from http://www.math.uci. edu/~asilverb/bibliography/awmharvard.pdf
[24] B. M. Solomon, In the Company of Educated Women, Yale University Press, New Haven, CT, 1985.
[25] W. Thorp, M. Myers, \& J. S. Finch, The Princeton Graduate School: A History, Second edition, Association of Princeton Graduate Alumni, Princeton, NJ, 2000.

The November 2008 issue of the Notices carried a study about the representation of females in high-level mathematics competitions. The study found that there are numerous girls who do well in such competitions but their participation is highly dependent on culture. In particular, United States girls participate in far fewer numbers than girls from some other countries. This article received widespread coverage in newspapers and magazines all over the world. A Reuters story was reprinted in many newspapers, and byline stories also appeared in the Boston Globe, the Los Angeles Times, New Scientist, the New York Times, Newsweek, Science News, and the Neue Zürcher Zeitung.

John Ewing Retires from the AMS

Allyn Jackson

John Ewing

In 1996, when John Ewing had been AMS executive director for about a year, several Russian translation journals that the Society had been publishing pulled out and went to other publishers. This move, coming in the wake of the many upheavals in the Russian mathematical community after the fall of the Soviet Union, meant a US $\$ 1.5$ million loss in income for the AMS-a substantial chunk of the Society's budget, which was US\$20 million at the time. This episode was a stark reminder of how outside events could jeopardize the financial health of the AMS. Ewing rose to the challenge, working with the staff and the volunteer leadership to make cuts in nearly all areas of AMS operations. The AMS not only survived the immediate crisis-in fact, it never even dipped into the red that year-but is today in better fiscal shape than ever before in its history and is a model of financial health for a nonprofit professional society.

At the beginning of January 2009 Ewing will retire as executive director of the AMS to become president of Math for America, a project that aims to improve mathematics instruction in the nation's schools. ${ }^{1}$ His tenure at the Society was marked by intelligent management of the many things the AMS did well and alacrity in tackling the challenges the Society faced. He also brought a deep belief in the value of the traditions developed over the Society's more than 100-year history and a vision for building on and diversifying them. Ewing leaves the AMS a stronger and more vibrant organization

[^12]than when he started as executive director thirteen years ago. As former AMS president James G. Arthur of the University of Toronto put it, "Under his leadership the AMS has greatly enhanced its standing as a professional organization of which mathematicians everywhere can be proud."

When one asks those in the AMS leadership what Ewing's biggest accomplishment has been, many point to the financial health of the Society. After fiscal crises in the 1980s, the Board of Trustees established an "economic stabilization fund" of 75 percent of the operating budget, to enable the Society to weather tough financial times. Ewing worked hard to build this fund, which today has surpassed the target set by the trustees and now operates something like an endowment, providing income of over one million dollars each year that helps support AMS activities. The net assets of the AMS went from about US $\$ 24$ million in Ewing's first year with the Society, to nearly US\$80 million in 2007. "That really took great political skills on his part, because...there was often pressure to spend the money," Arthur noted. "Why should the AMS be accumulating money? That's just wrong,' people might think. But it's not wrong...It's extremely important that the activity that we mathematicians live for be protected and have reserves that can keep it vibrant. I think that's John's biggest accomplishment."

The primary means for improving the financial position has been careful investment in and cultivation of the Society's publication program. (Dues and registration fees for meetings account for only a small portion of the AMS budget; close to 80 percent comes from publications.) Ewing strengthened and expanded the publication program at a time of huge uncertainty about and upheaval in scholarly publishing. In 2002, with the retirement of AMS publisher Donald G. Babbitt, Ewing took on the role of publisher himself-on top of all of his other duties as executive director. In one sense, this was no surprise, as publishing is in Ewing's blood: His father was president of van Nostrand Reinhold publishing company from the late 1960s to the mid-1980s and a vice president of McGrawHill before that.

Ewing worked on improving the Society's twelve journals and building the book program, which now publishes about 100 titles per year. He was also deeply involved in the development of the Society's most important publication, the Mathematical Reviews database, which most mathematicians today access over the Internet using MathSciNet. When MathSciNet came online in 1996, some thought that it might become obsolete as search engines for the Web proliferated. In fact, just the opposite has happened. MathSciNet is nowadays an indispensable tool for mathematicians in everything they do, from carrying out research to checking on the publications of job applicants. Ewing made sure that investments and improvements in MathSciNet have been continually made, including the gargantuan task of keyboarding all reviews that were on paper only, going back to the first Math Reviews issue in 1940. He also realized that expanding access to MathSciNet would be crucial to its success, and under his watch the AMS developed a novel pricing scheme to reduce subscription rates for small institutions and for poor countries. As a result the number of institutions with access to MathSciNet has doubled in the past decade.

Ewing has over the years emerged as one of the world's leading experts in electronic publishing and digital archiving, and his knowledge and wisdom have greatly benefited the AMS. Amid all the fervent discussion over the past decade or so about the future of scholarly publishing, Ewing was sometimes criticized for being too conservative. "Certainly he has not rushed out to make things free, for the pretty sensible reason that he thought it would in the end cripple the ability to produce journals at all," said former AMS president David Eisenbud of the University of California, Berkeley. Other groups that did start free electronic journals are now coming to realize that they need some income to make the journals viable over the long term. "He is a tremendously respected voice in [electronic publishing technology]," said Eisenbud. "People didn't always like what he said, but I don't think anybody ever proved him wrong on an issue."

The AMS is in one sense a business-and Ewing knows how to run a business. "He seems to have more raw talent than CEOs of major American corporations," remarked Arthur. "He has all of the talents that would make him successful at running a much larger business than the AMS. But given his outlook and his idealism, this is probably not something he would seek." Indeed, Ewing's combination of business acumen and idealism have brought a healthy balance to the Society, so that, as its fiscal health grew, it never lost sight of its role as a nonprofit professional society dedicated to serving the mathematical community. The success of the AMS publication program has served

Some Reflections on John Ewing

Like many members of the mathematical community I have known John Ewing for a long time and have known of him for much longer. I knew of his distinguished contributions as a researcher and of his substantial skills as an editor and as an administrator. I had seen him in action as the deft and entertaining host of the AMS banquet at the Combined Membership Meetings.

But it was only in 1998, when we both began ten-year terms as members of the International Mathematical Union's then-new Committee on Electronic Information and Communication (CEIC, http://www.ceic.math.ca, that I had the privilege to get to know John well. We both finished our twice-extended terms this July. In the intervening time I learned a great deal from John and quite a lot about John. Let me touch on both.

John is an enormously hard-working man-this is not a secret-who wears his remarkable erudition and breadth of knowledge very lightly. He is patient, hard to ruffle, and even harder to alienate. The CEIC was formed with many passionate members; all knowledgeable about some bits of the puzzle. It had only one expert: John Ewing. John's patience and generosity in educating the rest of us about the many pitfalls and subtleties was extraordinary. His care in trying to distinguish his role as committee member from that as AMS executive director (which could have made him the eight-hundred pound gorilla on the committee) was remarkable.

After all, only John actually had to publish, manage, and communicate electronic information on a pretty large scale. The rest of us had opinions on everything and expertise on a subset-often a small subset. John was a "decider" who had expertise on everything and opinions (at least expressed) only on a subset. It is a measure of John's probity that over the decade we "opinionators" sometimes changed the opinions of the decider. It was the quality of its members and the remarkable give-and-take that made the CEIC a wonderful committee to work on.

I learned John did not especially like the social-public parts of his job-despite being extremely good at them. I learned he would often rather be home reading a good book than going to one more party. That said, John is definitely a beer man not a wine drinker, and has a large repository of subtle jokes. I also learned it was hard to find an area in which he was not knowledgeable, be it about matters legal, political, scientific, or cultural. This I discovered over many days and many nights in many cities, sometimes over dinner, sometimes in the very wee hours in taxi rides to distant airports. During the last ten years, I spent two as Canadian Mathematical Society president and consequently several as CMS observer to the AMS Council. This allowed me to confirm that John plays the same thoughtful and effective role outside the CEIC.

It is conventional to say that an individual is irreplaceable to an organization. John is irreplaceable to the AMS. It is luckily not the case that irreplaceable individuals cannot be replaced. John is off to master other challenges and we shall all be richer for that. I am eager to see the fruits of his ambitious new undertakings with Math for America. I am very proud to call John my friend.
-Jonathan Borwein, University of British Columbia

John Ewing and Math Reviews

John has been extremely successful at what is an almost impossible job, particularly for a hands-on perfectionist as John is. He has always seemed totally in command of all aspects of the AMS, usually knowing as much or more than the staff member with direct responsibility for a given aspect. Not only is he able to absorb large amounts of diverse and detailed information but with his acute intelligence he is able to use that knowledge constructively and imaginatively.

That John has been so successful is in part due to his control of the budget. His careful management and fiscal conservatism (at times a great frustration to staff!) led to many years of budget surpluses, which allowed new projects to be developed.

John arrived at the AMS when MathSciNet was well along in its development but hadn't been officially released. He has been instrumental in its growth since then, from all points of view-fiscal, technical, and mathematical. He pushed for investment in the database by digitizing the complete run of reviews from Mathematical Reviews from 1940 on and for the ongoing development of the citation database. He ensured that MathSciNet was available to mathematicians around the world by developing the database fee/consortium model of pricing, which at the same time has put the MR Database on sound financial footing. There is almost no aspect of MathSciNet, from what "author" means in a search to answering librarians' concerns about usage statistics, in which John has not been actively involved. Finally, John has for the last few years served as an active MR reviewer. His reviews, mostly on topics of general interest, are always lucid and very well written; these models of a good review should be required reading for aspiring reviewers.

John visited MR regularly throughout his tenure. At these regular meetings, John discussed aspects of MR of current concern. Because he had learned so much about the workings of the MR office and the individual staff members, he was able to provide support and valuable, and often imaginative, suggestions to the executive editor to tackle problems.

John was an exacting boss. It was sometimes hard to live up to his example of hard work, imaginative management, intimate knowledge of one's sphere of responsibility, and high standards of integrity, but he inspired one to try.

John is one of the most intelligent and moral people I have ever met. It was an honor to work with him.
-Jane Kister, MR Executive Editor, 1998-2004
the community by providing a model of low-cost, high-quality publishing, thereby goading commercial publishers into keeping their own prices in check. The community has also benefited from the Society's author-friendly copyright policies, strongly supported by Ewing, which have pressured other publishers to follow suit.

The financial strength of the AMS makes possible everything the Society does-national and international meetings, the employment register, the annual survey, prizes, etc. Three important activities that have blossomed during Ewing's tenure are the Washington Office, the Public Awareness Office, and the Epsilon Fund. Samuel M. Rankin III,
who since 1991 had been AMS associate executive director at Society headquarters in Providence, was hired as director of the Washington Office in 1995, shortly after Ewing joined the AMS staff. The Washington Office today runs several programs, including the annual Congressional briefings in which mathematicians make presentations to members of Congress and their staffs; the Mass Media Fellowships, which bring math graduate students into media outlets for summer internships; and the Congressional Fellowships, in which mathematicians spend a year working on the staff of a member of Congress or a congressional committee.

But Ewing understood that the most important function of the Washington Office is to cultivate relationships with government and with other scientific societies, so that mathematics has a place at the table when decisions are made. "What I have valued most in working with John is that from the beginning he allowed me the time to find out how other scientific societies work in Washington and develop the DC operations around what I find useful," Rankin said. "He has given me the freedom to form collaborations with other professional organizations and coalitions, which I believe helps enhance mathematics policy as well as science policy...John's supportive and decisive management style has allowed this to happen."

The AMS leadership talked for years about the need to improve awareness and understanding of mathematics among the general public. Ewing came to realize that a focused effort would be needed to pursue this goal, and he spent a couple of years laying plans for the Public Awareness Office before it got off the ground in late 2000. The office is staffed by Mike Breen, a Ph.D. mathematician, and Annette Emerson, who previously was an AMS employee in the promotions department. Today the office bustles with activity, developing the popular "Mathematical Moments" program (a brainchild of Ewing), staging the wildly successful "Who Wants to Be a Mathematician?" game show for high-school students, preparing the monthly "Math in the Media" webpages, as well as issuing news releases and fielding inquiries from reporters and the general public. "The things the Public Awareness Office is doing are quite remarkable, especially considering the size of the operation," Arthur remarked.
"The Epsilon Fund has been one of John's most cherished projects," said Eisenbud. This fund was started to help support summer programs for mathematically talented high-school students. Many of them go on to pursue mathematics as a career, while the others carry with them through their lives a realistic sense of what the field is like. In the late 1990s, because funding sources at the National Science Foundation (NSF) had dried up, some of these programs were experiencing
financial difficulty. Ewing, together with the Board of Trustees, created the Epsilon Fund to provide small grants for these programs. An endowment was set up, with a target of a US\$2 million. Through the generosity of the AMS membership, this target has nearly been reached, and grants have been given for several years now. Ewing has also devoted much energy to many other fundraising efforts for the AMS, and recently he persuaded an anonymous donor to endow fully all of the AMS prizes. "This was a great feat that will benefit the Society for the rest of its life," remarked John B. Conway of George Washington University, a member of the AMS Board of Trustees.

Ewing has also been deeply involved in one of the Society's newest endeavors, Mathematics Research Communities (MRC). Created by Ewing, Eisenbud, and AMS associate executive director Ellen Maycock, the MRC program provides a structure for mathematicians just starting in their research careers, to help them build networks of peers and collaborators. The program, supported by the NSF, started in the summer of 2008 and featured three one-week summer conferences on specific mathematical areas (the number of conferences will increase to four in summer 2009). In addition, there will be special sessions at the Joint Mathematics Meetings, discussion networks by research topic, ongoing mentoring, and a longitudinal study of early career mathematicians. The MRC received an enthusiastic response from the young people who attended the 2008 summer conferences and has the potential to make a large difference in their future careers.

Of course, there are many others, volunteer members and staff, who share responsibility for the accomplishments mentioned here. Nevertheless Ewing was a major figure in making all of them happen. Moreover, he knows how to pick the right people. As Conway put it, "He has a trait that all of us doing any form of administration aspire to: choosing the right person for the right job and convincing them to fully dedicate their talents to carrying out their mission." Ewing has been an effective manager of the 200-plus staff of the AMS, and he has had excellent relations with the volunteer leadership. When he speaks at meetings of AMS committees, the Council, or the Board of Trustees, he commands great respect and trust for his insightful command of the issues. "But there is a kind of lightheartedness about John as well as the great gravity that he has as his public face," Eisenbud noted. Often Ewing emceed Society events, such as the banquets at the Joint Mathematics Meetings, and proved himself to be a delightful, witty host. "He did this with such care and love that he gave a warmth and family feeling to the events, and made them quite special," Eisenbud said.

The esteem in which Ewing is held extends beyond the AMS as well. "Right now relations be-

John Ewing and the Notices

John Ewing came to the AMS as executive director right after the Notices had been completely redesigned, in content and appearance, by a committee specially appointed for this task. His support and encouragement as the Notices went through this transition were crucial to its success. He has told me that people regularly ask him if he can publish this or that article in the Notices, and he has to explain that no, the Notices is an independent publication whose content is decided by the editor and editorial board. And-apart from official reports that appear in the Notices because it is the Society's journal of record-this really is how the Notices is run. John strongly supported the policy of the Notices being independent because he wanted it to be a lively, interesting publication and not just a house organ. Because of this independence, the Notices has occasionally done things that John really didn't like-and he let us know! But much more often he enthusiastically cheered us on, telling us how much our work is valued and inspiring us to do better. That he is himself such a talented and experienced writer and editor makes his appreciation all the more meaningful. There were a couple of episodes-including the time we stopped the presses because I forgot to include a world-famous mathematician in a faculty list, and the time one of my articles was plagiarized by a French magazine-when I was especially grateful for his support. His great sense of humor, intelligence, and charm made working with him a real pleasure. He will be very much missed-by the Notices, and by me.

- Allyn Jackson
tween the AMS and the other professional societies are very positive, and I think in large part it's due to the fact that other executive directors and the key people on their boards both like and respect John," said AMS secretary Robert Daverman of the University of Tennessee. In addition, Ewing has increased the international presence of the AMS, serving on committees of the International Mathematical Union and building ties between the Society and other mathematics organizations abroad through, for example, his strong support for AMS international meetings. "He has worked hard at the diplomatic aspects of his job," said AMS treasurer John Franks of Northwestern University.

John Ewing has strengthened the AMS so that it could diversify its activities to meet the needs of the mathematical community while also remaining true to its original purpose of helping mathematicians to connect, communicate, and support one another. "He captures the soul and the spirit of the Society," remarked AMS president James Glimm of Stony Brook University. "He has an acute view of the many different constituencies that make up its membership and the many different roles that it plays for them and in society. I think that panorama is probably unique among mathematicians I know...And he is certainly loved within the mathematical community."

What Is New in $\mathrm{AT}_{\mathrm{E}} X$? I. Breaking Free

G. Grätzer

This is the first of a series of columns updating the mathematical community about some current developments in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and T_{E} Xing.

-Andy Magid

Jerry Seinfeld?

On this, we can all agree: $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is the most important tool of a mathematician. So everybody wants to know: What is new in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$?

In two words: Not much. Donald Knuth corrects obscure bugs in $\mathrm{T}_{\mathrm{E}} X$ every few years, and 2008 was such a year (next: 2013). $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ was updated from version 3.141592 to version 3.1415926. Chances are you have never come across any of the bugs exterminated this year...

ETEX is supposed to be updated in December of every year. It was not updated last year, and in the years before, the changes were rather small. So LETEX is extremely stable.

The AMS packages, which are so important for mathematical typesetting, are grouped under the name amsmath-not changed in eight years, and amscls-not changed in four years.

Is my series of articles like a Jerry Seinfeld episode: articles about nothing?

So why is it that any ETEX expert you talk to is so excited about the changes that are taking place?

Looking Back

Donald E. Knuth's multivolume work, The Art of Computer Programming [4], caused its author a great deal of frustration because the proofs of the second edition of Volume 2 turned out to be so awful. To solve this problem, Knuth decided in 1978 to create his own typesetting language. The result is described in The T_{E} Xbook [5]. We can
G. Grätzer is Distinguished Professor of Mathematics at the University of Manitoba. His email address is gratzer @me.com.
say that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ was designed by an American mathematician to be used in his own work, and then later "generalized" to be used by other American mathematicians also. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ had only one font family, Computer Modern, designed in Knuth's Metafont [7], based-indirectly-on the work of the great French font designers Didot (father and son), who published romantic novels in the early nineteenth century.

To work with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, you need a platform. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, developed by Leslie Lamport [8] in the early 1980s, provided

- the use of logical units to separate the logical and the visual design of an article;
- automatic numbering, cross-referencing;
- bibliographic databases.

If you

- write in English (accents are difficult to type and the default hyphenation works only in English),
- use an American keyboard,
- do not need sophisticated mathematical typesetting of the type developed by the AMS,
- do not dislike the CM fonts,
then you had a very capable system as early as 1982.

What Is a Font?

When you work at your computer, a font is selected for you. When you hit a key, your keyboard transmits to the computer an 8 -bit number (that is, an integer between 0 and 255). The computer looks up in a table what character corresponds to that number in the font used and displays the character on your monitor. The same way, when you print your document, that character is transformed into an "outline", which will produce the required output on your printer or when viewing a pdf file. The output is produced using a set of tables, mapping the character into a "glyph" (the
drawing), specifying sizes, ligatures, hinting (adjusting the glyph to the screen pixels), the spacing between the characters (kerning), and so on.

Until $1989 \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ only accepted 128 numbers (0 to 127); Version 3 accepted all 256. This made it possible to extend $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to foreign languages. Johannes Braams' babe1 package (released soon after Version 3 became available) provided the framework.

What happens if you type a character not accepted by $\mathrm{LT}_{\mathrm{E}} X$? Type
Grätzer György
in a ${ }^{4 T} \mathrm{E} X$ document. It will typeset as
Grtzer Gyrgy
The accented characters will be omitted (and the log file will record it).

PostScript Fonts

By this time, the basic 35 Adobe Type 1 PostScript fonts became available on most laser printers. All computers came equipped with the appropriate files to utilize them. The New Font Selection Scheme, NFSS, of Frank Mittelbach and Rainer Schöpf, written in 1989, allows the easy integration of the PostScript fonts into ETEX.

A ATEX document class specifies three standard font families (see Section 5.6.2 of [3]):

- a roman (or serif or main) font family,
- a sans serif font family,
- a typewriter style font family.

For instance, the times package in the PSNFSS distribution makes Times-Roman the roman font family, Helvetica the sans serif font family, and Courier the typewriter style font family. In the times package these are named ptm, phv, and pcr, respectively.

In the preamble of your document, type
kage\{times\}afterthe\documentclassline.ThenTimesbecomestheroman,Helveticathesansserif,andCourierthetypewriterstyledocumentfontfamily.undefined

MathTime and Lucida

Looking at a mathematical article typeset with the Times text font, you may find that the Computer Modern math symbols look too thin. To more closely match Times and other PostScript fonts, Michael Spivak created the MathTime fonts (the most recent version is called MathTime Pro 2). You can purchase these fonts from Personal $\mathrm{T}_{\mathrm{E}} \mathrm{X}$: http://pctex.com/fonts.htm7

If you do not like CM or Times fonts, you may want to consider the Lucida fonts designed by Bigelow \& Holmes, with support for both mathematics and text. You can obtain the font set from the $\mathrm{T}_{\mathrm{E}} X$ User Group (also from Personal $\mathrm{T}_{\mathrm{E}} X$): http://tug.org/lucida

Problems, Problems

When I get into trouble with ETEX, I turn to the TeX on Mac OS X Mailing List, where experts help me out. A substantial part of the ongoing discussion is about fonts:

- How do I install ...
- Why does the installation not work ...

Different types of fonts in the three basic operating systems require differing-and nontrivialinstallation processes, and the user is confused.

Font technology develops very fast; $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ has always had a hard time catching up.

Apple Computer developed TrueType fonts in the late 1980s as a competitor to Adobe's Type 1 fonts. Adobe and Microsoft in 1996 introduced OpenType fonts, which in 2007 became ISO Standard ISO/IEC 14496-22. By 2005 there were more than 10,000 OpenType fonts.

And how many of these can we use natively in ATEX? None.

Unicode

The problem is that a font does not contain enough room for the large number of characters we would need to typeset all languages (and also math!). It is easy to see that the 8 -bit font tables are at the root of the problem. Unicode is supposed to fix this problem.

In 1988 Joe Becker published a draft proposal with a 64-bit font table: "Unicode is intended to address the need for a workable, reliable world text encoding ... to encompass the characters of all the world's living languages."

The Unicode standard in 1991 defined 16 "planes" (see [10]), each containing 65,534 characters. Plane 0 is the Basic Multilingual Plane and all the often-used characters from the vast majority of living languages can be found there.

But what good is Unicode for $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$?

$\mathrm{X}_{\mathrm{H}} \mathrm{AL}_{\mathrm{E}} \mathrm{X}$

If instead of $\mathrm{ET}_{\mathrm{E}} X$, you use $\mathrm{X}_{\mathrm{H}} \mathrm{ET}_{\mathrm{E}} \mathrm{X}$, all your font problems go away. It is easy to switch from ETEX to $\mathrm{XH}^{\mathrm{A} T} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$. In WinEdt 6, the TEX icon is a pull-down menu; select $\mathrm{X}_{\mathrm{H}} \mathrm{ET}_{\mathrm{E}} \mathrm{X}$. In TeXShop, LaTeX is a pulldown menu; pull it down and choose XeLaTeX. The next time you typeset, you do it with XGETEX.
$\mathrm{X}_{\mathrm{H}} \mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is the brainchild of Jonathan Kew. It was introduced in 2004, and since 2007, it is included in the $\mathrm{T}_{\mathrm{E}} X$ distributions $\mathrm{T}_{\mathrm{E}} X$ Live and $\mathrm{MiKT}_{\mathrm{E}} X$. So you probably have it, even if you have never heard about it.

Now take your Hungarian (German) keyboard, and in a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document type:
Grätzer György
(the Hungarian keyboard has all these keys) and $\mathrm{X}_{\mathrm{G}} \mathrm{ET}_{\mathrm{E}} X$ will typeset this as

Grätzer György
(provided you use a font family, such as Lucida, that contains the characters ä and ö).

The real magic of athrm{X}_{\mathrm{H}}\mathrm{AT}_{\mathrm{E}}X\)isitshandlingoffonts.Weillustratesomesimpleuseswithashortsamplearticle:\documentc1ass\{amsart\}\usepackage\{amssymb,1atexsym\}\usepackage\{fontspec,x7txtra,xunicode\}\setmainfont[Mapping=tex-text]\{GaramondPremierPro\}\setmonofont[Scale=MatchLowercase]\{Courier\}\defaultfontfeatures\{Mapping=tex-text,Scale=MatchLowercase\}\setsansfont\{LucidaGrange\}~\newfontfamily\{\Bic\}\{BickhamScriptPro\}\begin\{document\}}undefined

\title\{Illustrating document fonts
 and font switching\}

This is set in Garamond Premier Pro, the roman document font.---
\texttt\{This is set in Courier, the typewriter style document font.\}

We set up a command, \verb+\Bic+, for switching to Bickham Script Pro:
 $\{\backslash$ Bic This is Bickham Script Pro.\} \end\{document\} }

In the preamble, we invoke the necessary packages and specify the three document fonts (you can pick any three system fonts installed on your computer). No more special installation for $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$! You no longer care whether the fonts are PostScript Type 1, or TrueType, or OpenType fonts; it just works.

The last command of the preamble sets up the font switching command, \Bic.

ILLUSTRATING DOCUMENT FONTS AND FONT SWITCHING

This is set in Garamond Premier Pro, the roman document font.-

This is set in Courier, the typewriter style document font.

We set up a command, \Bic, for switching to Sickham Script Pro:

The typeset sample article.

XGETEX accommodates all Latin alphabets, with all the accents, Cyrillic, Arabic, Chinese... It can print left-to-right or right-to-left, horizontal or vertical, as required by the language.

We have broken free from the ${ }^{\mathrm{LT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ font constrains.

For a technical description of $\mathrm{X}_{\mathrm{H}} \mathrm{ET}_{\mathrm{E}} \mathrm{X}$, read Michel Goossens’ The ${ }_{H} T_{E} X$ Companion [2]. To view a recent lecture by Jonathan Kew on "What is new in the XeTeX world?" go to http://river-valley.tv/conferences/ bachotex2008/
If you are curious about the commands, Mapping=tex-text (note how --- became an m-dash) and Scale=MatchLowercase (adjusting the font size), look them up in the fontspec package documentation by Will Robertson [9].

A Warning

ETEX is easy to work with, because it uses standard 8 -bit encoding for the characters. So if I write a paper on my Mac, send it to my coauthor, who works on a PC, and we submit it to a journal that uses Unix, there is no problem.

Mathematicians, as a rule, have no great need for fancy fonts, so there is little incentive to switch to $\mathrm{X}_{\mathrm{H}} \mathrm{UT}_{\mathrm{E}} \mathrm{X}$. However, soon there will be Unicode math fonts to choose from, and then we should reevaluate the situation.

On the other hand, if you are a linguist, or want to work in non-European languages, switching to $\mathrm{X}_{\mathrm{G}} \mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is a no-brainer.

References

[1] Johannes BraAms, Babel, a multilingual package for use with ETEX's standard document classes, TUGboat 12 (1991), 291-301.
[2] Michel Goossens, The $Z_{j} T_{E} X$ Companion, http://cern.ch/XML/1gc2/xetexmain.pdf
[3] George GrÄtzer, More Math into ${ }^{A} T_{E} X$, SpringerVerlag, New York, 2007. xxxiv+619 pp.
[4] Donald E. Knuth, The Art of Computer Programming, Volumes 1-3, Addison-Wesley, Reading, MA, 1968-1998.
[5] , The TEXtbook. Computers and Typesetting, Vol. A., Addison-Wesley, Reading, MA, 1984, 1990.
[6] _, The METAFONTbook. Computers and Typesetting, Vol. C., Addison-Wesley, Reading, MA, 1986.
[7] _, Computer Modern Typefaces. Computers and Typesetting, Vol. E., Addison-Wesley, Reading, MA, 1987.
[8] Leslie Lamport, ATEX: A Document Preparation Systet, 2nd edition, Addison-Wesley, Reading, MA, 1994.
[9] Will Robertson, The fontspec package, http://ctan.org/tex-archive/macros/xetex/ 1atex/fontspec/
[10] The Unicode Consortium, Unicode Standard, Version 5.0, Addison-Wesley Professional, Reading, MA, 2006.

Weill Cornell Medical College in Qatar

Faculty Position

In a pioneering international initiative, the Weill Cornell Medical College (WCMC) established the Weill Cornell Medical College in Qatar (WCMC-Q) with the sponsorship of the Qatar Foundation for Education, Science and Community Development. WCMC-Q is located in Doha, Qatar, and in its seventh year of operation, its inaugural class having graduated with Cornell MD degrees in May 2008.
WCMC-Q seeks candidates for a full-time senior level faculty position to teach in Doha in the Pre-medical Program, with major responsibility for teaching mathematics to premedical students. The two-year Pre-medical Program is designed to prepare students for admission to the WCMC-Q Medical Program. Intensive and challenging, this two-year program has been specifically prepared for students in the Middle East. It provides them with instruction in subjects that comprise the pre-medical requirements of most medical colleges in the US.

The successful candidate will teach one course per semester at the level of college calculus and introductory statistics. In addition, he/she will participate in student academic advising, committee work, and the academic life of WCMC-Q. Research funding support is available and active participation in relevant research will be encouraged.
Qualifications include a Ph.D. in Mathematics, demonstrable teaching skills, and teaching experience at the college/university level. Candidates are expected to have experience in the American higher education system and must be willing to relocate to Doha, Qatar for the duration of the appointment. Academic rank and salary are commensurate with training and experience and are accompanied by an attractive foreign-service benefits package. Qualified applicants should submit a curriculum vitae and a letter of interest outlining their teaching and research experience to:

http://job.qatar-med.cornell.edu *
 *Please select the appropriate position under the Academic options and indicate job \# 08-wemcq-MT

Cornell University is an equal opportunity, affirmative action educator and employer. Details regarding the WCMC-Q program and facilities can be accessed at:www.qatar-med.cornell.edu
The screening of applications will begin immediately and continue until suitable candidates are identified. Please note that due to the high volume of applications, only short-listed candidates will be contacted. Service is expected to begin in August 2009.
Short-listed candidates will be asked to provide names of three references.

Mathematics Advanced Study Semesters (MASS)

Department of Mathematics of the Penn State University runs a yearly semester-long intensive program for undergraduate students seriously interested in pursuing career in mathematics. MASS is held during the fall semester of each year. For most of its participants, the program is a spring board to graduate schools in mathematics. The participants are usually juniors and seniors.

The MASS program consists of three core courses (4 credits each), Seminar (3 credits) and Colloquium (1 credit), fully transferable to the participants' home schools. The core courses offered in 2009 are:
Groups and their connections to geometry (A. Katok),
Complex analysis from a fluid dynamics perspective (A. Belmonte), Explorations in convexity
(S. Tabachnikov).

Applications for fall semester of 2009 are accepted now. Application deadline is $04 / 10 / 09$.

Financial arrangements:

Successful applicants are awarded Penn State MASS Fellowship which reduces their tuition to the in-state level. Applicants who are US citizens or permanent residents receive NSF MASS Fellowship which covers room and board, travel to and from Penn State and provides additional stipend. Applicants with outstanding previous record are awarded additional MASS Merit Fellowship. Participants who significantly exceed expectations during the program will be awarded MASS Performance Fellowships at the end of the semester.

For complete information, see http://www/math/psu.edu/mass e-mail to mass@math.psu.edu or call (814)865-8462

Mathematics People

Venkatesh Awarded 2008 SASTRA Ramanujan Prize

Akshay Venkatesh of Stanford University has been awarded the 2008 SASTRA Ramanujan Prize. This annual prize is given for outstanding contributions to areas of mathematics influenced by the Indian genius Srinivasa Ramanujan. The age limit for the prize has been set at thirty-two, because Ramanujan achieved so much in his brief life of thirty-two years. The prize carries a cash award of US $\$ 10,000$.

The 2008 SASTRA Prize Citation reads as follows: "Akshay Venkatesh is awarded the 2008 SASTRA Ramanujan Prize for his phenomenal contributions to a wide variety of areas in mathematics, including number theory, automorphic forms, representation theory, locally symmetric spaces, and ergodic theory, by himself and in collaboration with several mathematicians. The prize recognizes the enormous influence his work has had, involving an interplay of number theoretic and analytic techniques. In particular, the prize recognizes his pathbreaking work on subconvexity of automorphic L-functions by himself and with Philippe Michel; his fundamental paper with Jordan Ellenberg in Inventiones Mathematicae (2007) on representing integral quadratic forms by quadratic forms-a problem having its roots in the work of Ramanujan; his work with Harald Helfgott in the Journal of the American Mathematical Society (2006) providing the first nontrivial upperbounds of 3-torsion in class groups of number fields; his seminal paper with Jordan Ellenberg in the Annals of Mathematics (2006) on bounds for the number of number fields with a bounded discriminant; his work with Elon Lindenstrauss on general Weyl laws, which establishes a conjecture of Sarnak; and his work with Lior Silberman establishing partial results towards a conjecture of Rudnick and Sarnak for higher rank arithmetic locally symmetric spaces. The prize also recognizes his recent work with Manfred Einseidler, Elon Lindenstrauss, and Philippe Michel on Duke's theorem for cubic fields, among others."

Akshay Venkatesh was born in New Delhi in 1981 but was raised in Perth, Australia. He showed his brillance in mathematics very early and was awarded the Woods Memorial Prize in 1997, when he finished his undergraduate studies at the University of Western Australia. He did his doctoral studies at Princeton under Peter Sarnak, completing his Ph.D. in 2002. He was C.L.E. Moore Instructor at the Massachusetts Institute of Technology for two years and was selected as a Clay Research Fellow in 2004. He served as associate professor at the Courant Institute of Mathematical Sciences at New York University and received the Salem Prize and a Packard Fellowship in 2007. He is now professor of mathematics at Stanford University.

The 2008 SASTRA Ramanujan Prize Committee consisted of Krishnaswami Alladi (chair), Manjul Bhargava, Bruce Berndt, Jonathan Borwein, Stephen Milne, Kannan Soundararajan, and Michel Waldschmidt. Previous winners of the SASTRA Ramanujan Prize are Manjul Bhargava and Kannan Soundararajan (2005), Terence Tao (2006), and Ben Green (2007).
-From a SASTRA Ramanujan Prize announcement

Hansen Awarded 2008 CME/ MSRI Prize

Lars Peter Hansen of the University of Chicago has been awarded the 2008 Prize in Innovative Quantitative Applications of the Chicago Mercantile Exchange (CME) Group and the Mathematical Sciences Research Institute (MSRI). The prize carries a cash award of US $\$ 25,000$ and a medal.

According to the prize citation, in the 1980s Hansen was "the leading contributor to the development and application of rigorous estimation and testing methods for financial data. His 1982 paper on generalized methods of moments fundamentally altered the way that empirical research is done in finance and macroeconomics. This new methodology led him, with Ken Singleton, to make one of the pioneering contributions to what became known as the 'equity premium puzzle'. Hansen continues to be
a prolific researcher. He is part of a team investigating how long-run risk tradeoffs are encoded in asset prices. Hansen has also collaborated with others to develop models in which investors guard their investments against possible model misspecification, which they have shown are reflected in security market values and contribute to price dynamics."

Hansen is a member of the National Academy of Sciences and of the American Academy of Arts and Sciences, and is a fellow of the Econometric Society and of the American Finance Association. He has also held a Guggenheim Fellowship and a Sloan Fellowship. He received the 2006 Erwin Plein Nemmers Prize in Economics from Northwestern University, a Faculty Award for Excellence in graduate teaching from the University of Chicago, and the Frisch Medal from the Econometric Society.

The 2008 CME Group/MSRI Prize Selection Committee consisted of Leo Melamed (CME Group), Anat Admati (Stanford Graduate School of Business), Robert Bryant (Mathematical Sciences Research Institute), Darrell Duffie (Chair, Stanford University), John Gould (University of Chicago), Sanford Grossman (Quantitative Financial Strategies, Inc.), Stephen A. Ross (Massachusetts Institute of Technology Sloan School of Management), Jose A. Scheinkman (Princeton University), and Hugo Sonnenschein (University of Chicago). The previous recipients of the prize are Stephen A. Ross (2006) and David M. Kreps (2007).

The annual CME Group/MSRI Prize is awarded to an individual or a group to recognize originality and innovation in the use of mathematical, statistical, or computational methods for the study of the behavior of markets and, more broadly, of economics.
-From a CME Group announcement

Faltings Receives von Staudt Prize

The Otto und Edith Haupt-Stiftung of the Universität Erlangen-Nürnberg has presented the 2008 Karl Georg Christian von Staudt-Preis to GERD Faltings of the Max-Planck-Institut für Mathematik, Bonn. The prize was given at the annual meeting of the Deutsche MathematikerVereinigung (German Mathematical Society) in September 2008 in Erlangen.
-DMV announcement

Burban and Oppermann Receive ICRA Awards

Igor Burban of the University of Bonn and Steffen OpPERMANN of NTNU Trondheim, Norway, received awards from the International Conference on Representations of Algebras (ICRA) at its thirteenth conference in Sao Paulo, Brazil.

According to the prize citation, Burban was honored "for his work on derived categories of coherent sheaves and modules and their relation to the Yang-Baxter equation. He developed new techniques for explicit calculation in such derived categories of modules and coherent sheaves. His main results were obtained in terms of strings and bands, linking the topic to the representation theory of finite-dimensional algebras and matrix problems." Oppermann was recognized "for his highly original, inventive and influential work on representation dimension of finite-dimensional algebras. He has introduced completely new and far-reaching methods to determine lower bounds for representation dimension. He also applied his methods to obtain deep results in a broad variety of problems including representations of algebras, finite groups and coherent sheaves."

The series of conferences was established in 1974 to exchange results in the field of representations of finitedimensional algebras. The next conference will be held in Tokyo, Japan, in 2010.
-From an ICRA announcement

NDSEG Fellowships Awarded

Fourteen young mathematicians have been awarded National Defense Science and Engineering Graduate (NDSEG) Fellowships by the Department of Defense (DoD). As a means of increasing the number of U.S. citizens trained in disciplines of military importance in science and engineering, DoD awards fellowships to individuals who have demonstrated ability and special aptitude for advanced training in science and engineering. The fellowships are sponsored by the United States Army, Navy, and Air Force.

The following are the names of the fellows in mathematics, their institutions, and the offices that awarded the fellowships: Allison Bishop (University of Texas at Austin), Office of Naval Research (ONR); Elette Boyle (Massachusetts Institute of Technology), Army Research Office (ARO); Rex Cheung (Yale University), ARO; MichaEl Chmutov (University of Michigan, Ann Arbor), Air Force Office of Scientific Research (AFOSR); Ross Kravitz (University of Michigan, Ann Arbor), ARO; Brandon LEvin (Stanford University), ARO; ERIC MARBERG (Massachusetts Institute of Technology), ONR; Jeffrey Miller (Brown University), AFOSR; JOHN PATE (University of Arizona), AFOSR; AARON SILbERSTEIN (Harvard University), AFOSR; Charles StaAts (University of Chicago), AFOSR; GEORGE Tucker (Massachusetts Institute of Technology), High Performance Computing Modernization Program (HPCMP); Gabriel Zayas-CAbAN (Cornell University), ARO; JUliette ZERICK (University of California, Davis), ONR.
-From an NDSEG annoucement

New From OXFORD

Mathematics Faculty

The Farquhar College of Arts and Sciences seeks applications for the following faculty positions. Unless specifically noted otherwise, positions are fulltime (9.5 month) and entail teaching the equivalent of 8 courses, participation in department and college committees and curriculum development, and strong commitment to student and community service and scholarship.
Candidates with a terminal degree are strongly preferred; faculty rank is dependent on terminal degree, college level teaching experience, and scholarship. Candidates with college-level teaching experience and a plan for active scholarship are preferred. Interest in or experience with teaching or developing online courses is a plus. Review of applications begins immediately; positions begin August 2009.
Duties include the instruction of mathematics and/or statistics. Candidates should exhibit a strong commitment to undergraduate teaching and research. Experience with online or computer-assisted instruction is a plus. Master's degree in relevant field required; terminal degree preferred.
With more than 120 full-time faculty members, 250 part time faculty members, and 2600 students, the Farquhar College of Arts and Sciences at Nova Southeastern University offers 21 undergraduate majors, 35 minors, and 5 certificate programs across four academic divisions, as well as a graduate program in writing. The College serves more than 5600 undergraduate students through general education, honors, and study abroad programs. Nova Southeastern University is the sixth largest not-for-profit university in the United States, serving more than 27,000 students. The university is located on 300 acres in Fort Lauderdale, Florida.
For confidential consideration, please apply to position \#994324 at www.nsujobs.com and submit a letter of interest, resume, and curriculum vitae. Visit our website:www.nova.edu
Nova Southeastern University is an Equal Opportunity/Affirmative Action Employer.

Masayoshi Nagata (1927-2008)
Masayoshi Nagata, professor emeritus of Kyoto University, passed away in Kyoto on August 27, 2008, at the age of 81. Nagata played outstanding roles, especially in the 1950s and 1960s, in the development of commutative algebra and algebraic geometry. Many of his contributions were through a result of producing crucial counterexamples. The most famous among them is a nonfinitely generated ring of invariants for a group acting on a polynomial ring, thereby negatively solving Hilbert's 14th problem in 1958. Another is a complete nonsingular 3-dimensional algebraic variety that cannot be embedded in any projective space.

His book Local Rings, published in 1962, remains one of the basic references in commutative algebra and algebraic geometry. "Pseudo-geometric rings", treated in the book, are now called "Nagata rings" and form an important class of Noetherian rings. This concept too resulted from his earlier examples of Noetherian rings not enjoying properties of those appearing in connection with algebraic varieties.

A series of papers in the late 1950s on algebraic geometry over Dedekind domains laid the foundation for later developments of algebraic geometry in terms of schemes. The concept of the Henselization of rings, developed in a series of papers in the 1950s, turned out to be fundamental for algebraic spaces and étale topology.

The completion of algebraic varieties-that is, embedding of algebraic varieties as open subvarieties of complete varieties-published in his paper in 1962, remains one of the basic techniques in algebraic geometry.
I. Shestakov and U. Umirbaev finally confirmed in 2004 Nagata's conjecture of 1972 to the effect that a certain automorphism of the polynomial ring in three variables is not a composite of "elementary" ones. Recent increased interest in this topic is an indication of Nagata's lasting influence in commutative algebra and algebraic geometry.

Nagata was born on February 9, 1927, and graduated in 1950 from Nagoya Imperial University, where he was a student of Tadasi Nakayama. After serving as an assistant at Nagoya University, a lecturer, and then an assistant professor at Kyoto University, he was promoted to professor in February 1963 and held the position until his retirement on March 31, 1990.

He played quite active roles in the mathematical community in Japan by serving as a trustee of the Mathematical Society of Japan and as a member of the Science Council of Japan, among others.

At the International Mathematical Union he served as a member of the Executive Committee between 1975 and 1978 and as vice president from 1979 to 1982.

He was awarded the Chunichi Cultural Prize in 1961, the Matsunaga Prize in 1970, and the Japan Academy Prize in 1986. The Order of the Sacred Treasure, Gold and Silver Star was conferred on him in November 1998.

[^13]
Mathematics Opportunities

Proposal Due Dates at the DMS

The Division of Mathematical Sciences (DMS) of the National Science Foundation (NSF) has a number of programs in support of mathematical sciences research and education. Listed below are some of the programs and their proposal due dates for the year 2009. Please refer to the program announcement or contact the program director for more information.

December 15, 2008 (full proposal): Computational Mathematics

January 13, 2009 (full proposal): Mathematical Biology

January 22, 2009 (full proposal): Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)

February 12, 2009 (full proposal): Interdisciplinary Training for Undergraduates in Biological and Mathematical Sciences (UBM)

February 16, 2009 (full proposal): Proactive Recruitment in Introductory Science and Mathematics (PRISM)

February 19, 2009 (full proposal): Interdisciplinary Grants in the Mathematical Sciences (IGMS)

February 27, 2009 (full proposal): Mathematical Science Research Institutes

June 2, 2009 (full proposal): University-Industry Cooperative Research Programs in the Mathematical Sciences

June 5, 2009 (full proposal): Research Experiences for Undergraduates (REU)

June 15, 2009 (full proposal): Workforce Program in the Mathematical Sciences

July 23, 2009 (full proposal): Faculty Early Career Development (CAREER) Program

August 21, 2009 (letter of intent): Focused Research Groups (FRG) in the Mathematical Sciences

August 27, 2009 (full proposal): Conferences, Workshops, and Special Meetings in the Mathematical Sciences

September 18, 2009 (full proposal): Focused Research Groups (FRG) in the Mathematical Sciences

October 6, 2009 (full proposal): Algebra, Number Theory and Combinatorics; Analysis; Foundations

For further information see the websitehttp://www. nsf.gov/funding/pgm_1ist.jsp?ord=date\&type=a11 \&org=DMS\&se1_org=DMS\&status=1. The mailing address is Division of Mathematical Sciences, National Science Foundation, Room 1025, 4201 Wilson Boulevard, Arlington, VA 22230. The telephone number is 703-292-5111.
-From the DMS website

AMS-AAAS Mass Media Summer Fellowships

The American Association for the Advancement of Science (AAAS) sponsors the Mass Media Science and Engineering Summer Fellows Program, through which graduate students work during the summer in major media outlets. The AMS provides support each year for one or two graduate students in the mathematical sciences to participate in the program. In past years, AMS-sponsored fellows have held positions at Scientific American, Business Week, Voice of America, Discovery Channel Online, National Geographic Television, Popular Science, The Chicago Tribune, and Time magazine.

Fellows receive a weekly stipend of US $\$ 450$, plus travel expenses, to work for ten weeks during the summer as reporters, researchers, and production assistants in media organizations. They observe and participate in the process by which events and ideas become news, improve their ability to communicate about complex technical subjects in a manner understandable to the public, and increase their understanding of editorial decision making and of how information is effectively disseminated. Each fellow attends an orientation and evaluation session in Washington DC and begins the internship in mid-June. Fellows submit interim and final reports to the AAAS. A wrap-up session is held at the end of the summer.

Mathematical sciences faculty are urged to make their graduate students aware of this program. The deadline to apply for fellowships for the summer of 2009 is January 15, 2009. Further information about the fellowship program and application procedures is available online athttp://www.aaas.org/programs/education/ MassMedia/, or applicants may contact Stacey Pasco, Director, Mass Media Program, AAAS Mass Media Science and Engineering Fellows Program, 1200 New York Avenue, NW, Washington, DC 20005; telephone 202-326-6641; fax 202-371-9849; email: spasco@aaas.org. Further information is also available at/http://www.ams.org/government/ massmediaann.htm7 and through the AMS Washington Office, 1527 Eighteenth Street, NW, Washington, DC 20036; telephone 202-588-1100; fax 202-588-1853; email: amsdc@ ams.org.
-AMS Washington Office

DARPA Mathematical Challenges

The Defense Advanced Research Projects Agency has issued a Broad Agency Announcement (BAA) soliciting innovative research proposals in the area of DARPA Mathematical Challenges, with the goal of dramatically revolutionizing mathematics and thereby strengthening the scientific and technological capabilities of the Department of Defense. Proposers are strongly encouraged to submit a white paper in advance of a full proposal. White papers can be submitted at any time up to July 25, 2009; full proposals can be submitted at any time up to September 25, 2009. Further information on DARPA-BAA08-65 is available at https://www.fbo.gov/spg/ODA/DARPA/ CMO/DARPA-BAA08-65/1isting.htm7.
-DARPA announcement

NDSEG Fellowships

As a means of increasing the number of U.S. citizens trained in disciplines of military importance in science and engineering, the Department of Defense (DoD) awards National Defense Science and Engineering Graduate (NDSEG) Fellowships each year to individuals who have demonstrated ability and special aptitude for advanced training in science and engineering. The fellowships are awarded for a period of three years for study and research leading to doctoral degrees in mathematical, physical, biological, ocean, and engineering sciences. Approximately two hundred fellowships will be awarded in 2009.

The NDSEG Fellowship Program is open only to applicants who are citizens or nationals of the United States. NDSEG Fellowships are intended for students at or near the beginning of their graduate studies in science or engineering. Applicants must have received or be on track to receive their bachelor's degrees by fall of 2009. Fellows selected in spring 2009 must begin their fellowship tenure
in fall 2009. Fellowships are tenable only at U.S. institutions of higher education offering doctoral degrees in the scientific and engineering disciplines specified. Fellows will receive full tuition and a stipend for 12-month tenures. Applications are encouraged from women, persons with disabilities, and minorities, including members of ethnic minority groups such as African American, American Indian and Alaska Native, Asian, Native Hawaiian and other Pacific Islander, Hispanic, or Latino.

Complete applications must be submitted electronically or postmarked by January 5, 2009. Application materials are available from, and completed applications should be returned to, the American Society for Engineering Education (ASEE) at NDSEG Fellowship Program, c/o American Society for Engineering Education, 1818 N Street, N.W., Suite 600, Washington, DC 20036; telephone 202-3313516; email: ndseg@asee.org. For further information see the websitehttp://www.asee.org/ndseg/preface. cfm.

National Academies Research Associateship Programs

The Policy and Global Affairs Division of the National Academies is sponsoring the 2009 Postdoctoral and Senior Research Associateship Programs. The programs are meant to provide opportunities for Ph.D., Sc.D., or M.D. scientists and engineers of unusual promise and ability to perform research at more than one hundred research laboratories throughout the United States and overseas.

Full-time associateships will be awarded for research in the fields of mathematics, chemistry, earth and atmospheric sciences, engineering, applied sciences, life sciences, space sciences, and physics. Most of the laboratories are open to both U.S. and non-U.S. nationals and to both recent doctoral recipients and senior investigators. The amount of the stipend depends on the sponsoring laboratory. Support is also provided for allowable relocation expenses and for limited professional travel during the period of the award.

Awards will be made four times during the year: in February, May, August, and November. The deadline for application materials to be postmarked or for electronic submissions for the February 2009 review is February 15, 2009. Materials for the May review are due May 15, 2009; for the August review, August 15, 2009; and for the November review, November 15, 2009.

For further information and application materials, see the National Academies website at http://www7. nationalacademies.org/rap/or contact Research Associateship Programs, National Research Council, Keck 568, 500 Fifth Street, NW, Washington, DC 20001; telephone 202-334-2760; fax 202-334-2759; email: rap@nas.edu.
-From an NRC announcement

Noether Lecture at ICM 2010

Emmy Noether was one of the great mathematicians of her time, someone who worked and struggled for what she loved and believed in. Her life and work remain a tremendous inspiration. The 2010 Emmy Noether Lecture will be presented as a plenary lecture at the International Congress of Mathematicians in August 2010 in Hyderabad to honor women who have made fundamental and sustained contributions to the mathematical sciences.

There have been Emmy Noether Lectures at four previous ICMs, and this will be the second time that the selection of the Emmy Noether Lecturer has been made formally by the International Mathematical Union. The IMU Executive Committee has established a committee of five, chaired by Cheryl Praeger (Australia), to select the 2010 Emmy Noether Lecturer. The committee will conduct their work over the next six to nine months, and suggestions for consideration by the committee may be sent to Cheryl Praeger at praeger@maths.uwa.edu.au.
-IMU announcement

2009 Fermat Prize for Mathematics Research

The Fermat Prize for Mathematics Research recognizes research in fields in which Pierre de Fermat made decisive contributions. These include statements of variational principles, foundations of probability and analytical geometry, and number theory. The prize carries a cash award of 20,000 euros (approximately US $\$ 27,000$). The prize is awarded every two years. The deadline for applications is June 30, 2009. Further information is available from Prix Fermat de Recherche en Mathématiques, Service Relations Publiques, Université Paul Sabatier, 31062 Toulouse Cedex 9, France, or at the website http://www.math. ups-t1se.fr/Fermat/.

- Jean-Marc Schlenker, Université Paul Sabatier

Plus Magazine New Writers Award

Plus, an Internet magazine that aims to introduce readers to the beauty and the practical applications of mathematics, is looking for science writers who can make mathematics lively and interesting for a general audience. The New Writers Award competition is open to new writers of any age and from any background who can explain a mathematical topic or application they think the world needs to know about. The winning entries will appear in the June 2009 issue of Plus, and the winners will receive an iPod, subscriptions to the journal Nature, and signed copies of popular math books by some of the best science writers today. The competition is open to secondary school and sixth-form students, university students (both
undergraduate and postgraduate), and the general public. The submission deadline is March 31, 2009. For further information, see the websitehttp://plus.maths.org/ competition/

Plus is part of the Millennium Mathematics Project (MMP), a long-term national initiative based in Cambridge, United Kingdom. The MMP aims to help people of all ages and abilities share in the excitement of mathematics and understand the enormous range and importance of its applications to science and commerce.
-From a Plus announcement

Departments Again Coordinate Job Offer Deadlines

A group of mathematical sciences departments has adopted an agreement to coordinate deadlines for acceptance of postdoctoral job offers for jobs that begin in the fall of 2009. The purpose is to ensure that applicants do not have to make decisions about job offers before the results of the National Science Foundation (NSF) postdoctoral fellowship competition are announced. The agreement applies only to offers of postdoctoral positions and not tenure-track positions, and only to applicants who are two years or less past the Ph.D. The departments have agreed not to require these applicants to decide about a job offer before Monday, February 9, 2009. The NSF has already agreed that it will complete its review of applications by January 31, 2009, at the latest, and that all awardees of NSF postdoctoral fellowships will receive notification electronically by February 7, 2009. The list of participating departments, together with additional information, may be found on the Web at http://www. ams.org/employment/postdoc-offers.htm1.
-AMS Career Services announcement

News from the Fields Institute

Edward Bierstone, professor of mathematics at the University of Toronto, has been appointed as the new director of the institute, beginning July 2009. He succeeds Barbara Lee Keyfitz, who retired from the directorship to assume a professorship at the Ohio State University in Columbus, Ohio. The current deputy director, Juris Steprans, is acting director in the interim. Bierstone, a graduate of the University of Toronto who received his Ph.D. from Brandeis University, has made pathbreaking contributions in singularity theory, analytical geometry, and differential analysis.

The 2009 Winter/Spring thematic program at the Fields Institute will be o-Minimal Structures and Real Analytic Geometry. Two workshops will be held: o-Minimal Geometry, January 12-16, 2009; and Finiteness Problems in Dynamical Systems, June 22-26, 2009. See http://www. fie1ds.utoronto.ca/programs/scientific/08-09/ o-minima1/.

The Distinguished Lecture Series is tentatively scheduled for May 25-29, 2009. Jean-Christophe Yoccoz (Collège de France) will deliver the lecture series. See http://www. fields.utoronto.ca/programs/scientific/for information on activities at the institute. Future thematic programs include Quantum Computation (summer 2009), Foundations of Computational Mathematics (fall 2009), Quantitative Finance: Foundations and Applications (2010 winter/spring), Asymptotic Geometric Analysis (fall 2010), Dynamics and Transport in Disordered Systems (winter/ spring 2011), Discrete Geometry and Applications (fall 2011), and Galois Representations (winter/spring 2012). Support for postdoctoral fellows is available; seehttp:// www.fie7ds.utoronto.ca/proposa1s/postdoc.htm7.
-Fields Institute announcement

Clay Mathematics Institute 2009 Summer School

The Clay Mathematics Institute (CMI) Summer School on Galois Representations will be held at the University of Hawaii at Manoa from June 15 to July 10, 2009. The school will focus on recent progress in the theory of Galois representations. Many advances on the algebraic side of number theory in the last 15 years (such as the solutions of the Shimura-Taniyama conjecture, Sato-Tate conjecture, and Serre's conjecture, as well as decisive progress on the Fontaine-Mazur conjecture and Main conjectures for modular forms) have relied in an essential way on improvements in the theory of Galois representations. The aim of the three main courses is to present an overview of many of the ideas and applications involved, aimed at advanced graduate students and postdocs with a strong background in number theory, Galois cohomology, and basic algebraic geometry. One course will focus entirely on local problems (p-adic representations of Galois groups of p-adic fields), a second course will have a more global flavor (Galois deformation theory and global applications), and a third (on L-values) will rely on the other two courses. The scientific committee consists of Brian Conrad, David Alexandre Ellwood, Mark Kisin, and Chris Skinner.

The Foundational Courses will be: p-adic Hodge Theory (Olivier Brinon, Brian Conrad), Deformation of Galois Representations and Modular Forms (Jacques Tilouine, Mark Kisin), Iwasawa Theory and Automorphic Applications (Joel Bellaiche, Chris Skinner).

Financial Support: Graduate students and postdoctoral fellows who are within five years of receipt of their Ph.D.'s can apply for financial support. Support is decided on a competitive basis and may include accommodation plus funds towards the cost of economy travel.

The deadline for applications is February 15, 2009. More information and an online application form can be found athttp://www.claymath.org/summerschool.
-Clay Mathematics Institute Announcement

News from the Mathematical Biosciences Institute

The Mathematical Biosciences Institute (MBI) at The Ohio State University is accepting applications for Early Career Visitor and postdoctoral positions. The Early Career Visitor term runs during the 2009-2010 Year on Molecular Interactions within the Cell: Network, Scale, and Complexity. Early Career Visitors are hired for up to a one-year term. They are engaged in the integrated program of tutorials, working seminars, and workshops tied to the scientific theme of the year and are expected to interact with local and visiting researchers. Early Career Visiting positions are aimed at nontenured scientists who currently have continuing employment.

Postdoctoral positions will start in September 2009. Postdoctoral fellows are immersed in the topics of the MBI's emphasis year programs. They will engage in an integrated program of tutorials, working seminars or journal clubs, workshops, and interactions with local and visiting mentors. These activities are geared toward providing the tools to pursue an independent research program with an emphasis on collaborative research in the mathematical biosciences. MBI-facilitated activities for postdoctoral fellows are tailored to the needs of each young scientist. The program provides training in bioscience fundamentals to the mathematically oriented fellow, as well as mathematical fundamentals to the bioscience-oriented fellow. The postdoctoral program includes both regular postdoctoral fellows and sponsored postdoctoral fellows.

The deadline for applications for either program is January 18, 2009. For more information and to apply, see the website http://mbi.osu.edu or call 614-292-3648.
-MBI announcement

Inside the AMS

AMS Current Events Bulletin

The Joint Mathematics Meetings in Washington DC in January 2009 will feature a Special Session called "Current Events Bulletin", which will showcase four expository lectures on topics at the frontier of mathematical research. The session is organized by AMS past president David Eisenbud of the University of California, Berkeley.

The format for the talks follows the model of the famous Bourbaki Seminars in that mathematicians with especially strong expository skills speak on work not their own; written versions of the talks are prepared beforehand and distributed at the session. There are some novel features also. The talks are generally more accessible than those of the Bourbaki Seminars, and the coverage is broader and includes applied areas. Often a talk begins with a general, nontechnical presentation of the topic, lasting about twenty minutes. There is a short break, after which the talk continues with a more detailed presentation of how the topic is used in a particular setting. The "Current Events" sessions have drawn large audiences and have turned out to be one of the most popular activities at the Joint Meetings. The written versions of the talks are collected in an attractive booklet distributed at the session.

A tradition has also developed for the talks to appear in print. Some of them have been expanded to appear as articles in the Bulletin of the AMS.

For the session at the Washington Joint Meetings, the names of the speakers and their lecture titles are as follows:

Matthew James Emerton, Northwestern University, Topology, representation theory, and arithmetic: Threemanifolds and the Langlands program.

OlGA V. Holtz, University of California, Berkeley, and Technische Universität Berlin, Compressive sensing: A paradigm shift in signal processing.

Michael Hutchings, University of California, Berkeley, From Seiberg-Witten theory to closed orbits of vector fields: Taubes's proof of the Weinstein conjecture.

Frank Sottile, Texas A\&M University, Frontiers of reality in Schubert calculus.

The session will take place on Wednesday, January 7, 2009, from 1:00 p.m. to 4:45 p.m. Information about this and other Joint Meetings activities is available on the AMS Meetings website, http://www.ams.org/meetings.

- Allyn Jackson

Erdős Memorial Lecture

The Erdős Memorial Lecture is an annual invited address named for the prolific mathematician Paul Erdős (19131996). The lectures are supported by a fund created by Andrew Beal, a Dallas banker and mathematics enthusiast. The Beal Prize Fund, now US $\$ 100,000$, is being held by the AMS until it is awarded for a correct solution to the Beal Conjecture (seehttp://www.math.unt.edu/~mau1din/ bea1.htm7). At Beal's request, the interest from the fund is used to support the Erdős Memorial Lecture.

The Erdős Memorial Lecturer for 2008 was William Timothy Gowers of the University of Cambridge. He delivered a lecture titled "Decomposing bounded functions" at the Spring Eastern Section Meeting at the Courant Institute of Mathematical Sciences, New York University, in March 2008.
-AMS announcement

From the AMS Public Awareness Office

Activities managed by the AMS Public Awareness Office at the 2009 Joint Mathematics Meetings in Washington DC include:

- JMM Blog. Adriana Salerno, a mathematics graduate student at the University of Texas at Austin, records her summaries of events at the 2009 meeting on the JMM Blog. Salerno is a past AMS-AAAS Media Fellow, working for ten weeks as a reporter for Voice of America, and she is a regular contributor to the AMS's Math Digest http:// www.ams.org/mathmedia/mathdigest/). Read Adriana's impressions of JMM 2009 and contribute some of your own at http://www.ams.org/blog/jmm2009/.
- JMM Press Room. Here is where journalists meet to write articles, interview speakers, connect with colleagues, review news releases about the Joint Mathematics Meetings and prize winners, and pick up fact sheets from participating organizations.
- Meet the Notices Editors. An informal event on Tuesday, January 6, 11:00 a.m. to 1:00 p.m. in the AMS exhibit area. If you are attending the Joint Mathematics Meetings, you are invited to stop by to meet the editors who bring you Notices each month, find out more about Notices and how it is produced, give your feedback, talk about what you would like to see in Notices, get information on how to submit articles, and pick up a free poster featuring Notices covers.
- Who Wants to Be a Mathematician? The game for local high school math students is Wednesday, January 7, 10:00 a.m. to 11:00 a.m. in the Marriott Ballroom Salon 3, Lobby Level, Marriott Wardman Park Hotel. The AMS special presentation, organized by Michael A. Breen, AMS Public Awareness Officer, and William T. Butterworth, DePaul University, is open to the public, and mathematicians are invited to attend.
- Annette Emerson and Mike Breen AMS Public Awareness Officers paoffice@ams.org

AMS Hosts Congressional Briefing: Can Mathematics Cure Leukemia?

Doron Levy, an associate professor of mathematics at the University of Maryland, College Park, and at the Center for Scientific Computation and Mathematical Modeling, delivered an address to congressional representatives at a Capitol Hill briefing in which he presented his recent work on leukemia. The briefing was sponsored by the AMS.

Levy discussed a particular type of leukemia, known as Chronic Myelogenous Leukemia (CML). He noted that new drug therapies are able to keep most patients in remission, but ultimately do not cure the disease. Levy then described his joint work with Peter Lee, M.D., from Stanford University Medical School, and his former student Peter Kim (now at the University of Utah) in which they focused on the role of the immune response to CML. By combining mathematical modeling with new experimental data, they propose a new low-risk clinical approach to enhancing the effect of drug therapy, possibly leading to a cure for the disease.

Previous AMS Congressional Lunch Briefings have covered the following topics:

November 2007: Mathematics of Ice to Aid Global Warming Forecasts, presented by Ken Golden, professor of mathematics at the University of Utah.

November 2006: The Necessity of Mathematics: From Google to Counterterrorism to Sudoku, presented by Amy Langville, professor of mathematics at the College of Charleston.

November 2005: From Katrina Forward: How Mathematics Helps Predict Storm Surges, presented by Clint Dawson, professor at the University of Texas and a member of the Center for Subsurface Modeling in the Institute for Computational Engineering and Sciences; and Joannes Westerink, associate professor of civil engineering and geological sciences at the University of Notre Dame.

September 2004: Homeland Security: What Can Mathematics Do?, presented by Fred S. Roberts, professor of mathematics and director of the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) at Rutgers University.

July 2003: Mathematics Is Biology's Next Microscope, Only Better; Biology Is Mathematics' Next Physics, Only Better, presented by Joel E. Cohen, Laboratory of Populations, Rockefeller and Columbia Universities.

February 2002: Mathematics, Patterns and Homeland Security, presented by Ingrid Daubechies, Princeton University.

July 2001: Adding It Up: Helping Children Learn Mathematics, a briefing on this National Research Council Report, presented by Deborah Loewenberg Ball and Hyman Bass, University of Michigan, and by Roger Howe, Yale University.

Other previous briefings include: What Does Water Know about Mathematics, by Mary Fannett Wheeler, University of Texas at Austin; Calculating the Secrets of Life: Mathematics in Medicine, by DeWitt Sumners, Florida State University; Eavesdropping on the Internet: Mathematics and Policy, by Carl Pomerance, University of Georgia; and Mathematical Transcriptions of the Real World: Fingerprints, Magnetic Resonance and Video, by Ronald Coifman, Yale University.
-Anita L. Benjamin, AMS Washington Office

Deaths of AMS Members

Alfred Aeppli, professor emeritus, University of Minnesota, died on September 14, 2008. Born on November 8, 1928, he was a member of the Society for 48 years.

Romae J. Cormier, retired associate professor, Northern Illinois University, died on July 24, 2008. Born on May 17, 1928, he was a member of the Society for 50 years.

Andrew M. Gleason, former president of the AMS, and professor emeritus from Harvard University, died on October 17, 2008. Born on November 4, 1921, he was a member of the Society for 67 years.

George R. Greaves, Cardiff University, died on August 24, 2008. Born on June 3, 1941, he was a member of the Society for 24 years.

Jack L. Hursch, from Tallahassee, FL, died on August 11, 2008. Born on September 8, 1930, he was a member of the Society for 35 years.

Horst F. Niemeyer, professor, Rheinisch-Westfälische Technische Hochschule Aachen, Germany, died on October 31, 2007. Born on June 30, 1931, he was a member of the Society for 43 years.

Reference and Book List

The Reference section of the Notices is intended to provide the reader with frequently sought information in an easily accessible manner. New information is printed as it becomes available and is referenced after the first printing. As soon as information is updated or otherwise changed, it will be noted in this section.

Contacting the Notices

The preferred method for contacting the Notices is electronic mail. The editor is the person to whom to send articles and letters for consideration. Articles include feature articles, memorial articles, communications, opinion pieces, and book reviews. The editor is also the person to whom to send news of unusual interest about other people's mathematics research.

The managing editor is the person to whom to send items for "Mathematics People", "Mathematics Opportunities", "For Your Information", "Reference and Book List", and "Mathematics Calendar". Requests for permissions, as well as all other inquiries, go to the managing editor.

The electronic-mail addresses are notices@math.ou.edu in the case of the editor and notices@ams.org in the case of the managing editor. The fax numbers are 405-325-7484 for the editor and 401-331-3842 for the managing editor. Postal addresses may be found in the masthead.

Upcoming Deadlines

December 15, 2008: Applications for AMS Epsilon Fund grants. See http://www.ams.org/outreach/ epsilon.htm1 or contact Membership and Programs Department, American Mathematical Society, 201 Charles Street, Providence, RI 029042294; telephone: 800-321-4267, ext. 4170; email: prof-serv@ams.org.

January 5, 2009: Applications for NDSEG Fellowships. See "Mathematics Opportunities" in this issue.

January 10, 2009: Applications for AAUW Educational Foundation Fellowships and Grants. See http: // www. aauw.org/fga/fellowships_ grants/selected.cfm or contact the AAUW Educational Foundation, Selected Professions Fellowships,

Where to Find It

A brief index to information that appears in this and previous issues of the Notices.
AMS Bylaws-November 2007, p. 1366
AMS Email Addresses-February 2008, p. 274
AMS Ethical Guidelines-June/July 2006, p. 701
AMS Officers 2006 and 2007 Updates-May 2008, p. 629
AMS Officers and Committee Members-October 2008, p. 1122
Conference Board of the Mathematical Sciences—September 2008, p. 980

IMU Executive Committee—December 2008, p. 1441
Information for Notices Authors-June/July 2008, p. 723
Mathematics Research Institutes Contact Information—August 2008, p. 844

National Science Board-January 2009, p. 67
New Journals for 2006, 2007-June/July 2008, p. 725
NRC Board on Mathematical Sciences and Their Applications-March 2008, p. 401
NRC Mathematical Sciences Education Board—April 2008, p. 515
NSF Mathematical and Physical Sciences Advisory Committee-February 2008, p. 276
Program Officers for Federal Funding Agencies-October 2008, p. 1116 (DoD, DoE); December 2007, p. 1359 (NSF); December 2008, p. 1440 (NSF Mathematics Education)

Program Officers for NSF Division of Mathematical SciencesNovember 2008, p. 1297
Stipends for Study and Travel-September 2008, p. 983

Dept. 60, 301 ACT Drive, Iowa City, IA 52243-4030; telephone: 319-3371716, ext. 60; email: aauw@act.org.

January 15, 2009: Applications for Jefferson Science Program at U.S. Department of State. See http:// www7. nationalacademies.org/ jefferson/; telephone: 202-3342643; email: jsf@nas.edu.

January 15, 2009: Applications for AMS-AAAS Mass Media Summer Fellowships. See http://www. aaas. org/programs/education/MassMedia/; or contact Stacey Pasco, Manager, Mass Media Program, AAAS Mass Media Science and Engineering Fellows Program, 1200 New York Avenue, NW, Washington, DC 20005; telephone: 202-326-6441; fax: 202-371-9849; email: spasco@aaas.org. Also see http://www.ams.org/ government/massmediaann.htm1 or contact the AMS Washington Office, 1527 Eighteenth Street, NW, Washington, DC 20036; telephone: 202-588-1100; fax: 202-588-1853; email: amsdc@ams.org.

January 18, 2009: Applications for Mathematical Biosciences Institute (MBI) Early Career Visitor and postdoctoral positions. See "Mathematics Opportunities" in this issue.

January 22, 2009: Proposals for NSF Scientific Computing Research Environments for the Mathematical Sciences (SCREMS). See http:// www.nsf.gov/funding/pgm_summ. jsp?pims_id=5616.

January 31, 2009: Applications for AMS-AAAS Congressional Fellowship. See http://www.ams.org/ government/congressfellowann. htm1 or contact the AMS Washington Office at 202-588-1100, email: amsdc@ams.org.

February 1, 2009: Applications for AWM Travel Grants. See http: // www. awm-math.org/travelgrants. htm7; telephone: 703-934-0163; email: awm@awm-math.edu. The postal address is: Association for Women in Mathematics, 11240 Waples Mill Road, Suite 200, Fairfax, VA 22030.

February 13, 2009: Applications for Math for America Foundation (MfA) Fellowship Program for New York City and Los Angeles. See http://www.mathforamerica. org/.

February 15, 2009: Applications for National Academies Research Associateship Programs. See "Mathematics Opportunities" in this issue.

February 15, 2009: Nominations for Clay Liftoff Program for summer 2009. See http://claymath. org/fas/1iftoff; telephone: 617-995-2600.

February 27, 2009: Submissions for Association for Women in Mathematics (AWM) essay contest. See http://www.awm-math.org/ biographies/contest.htm7.

February 27, 2009: Proposals for DMS New Institute Competition. See http://www.nsf.gov/funding/ pgm_summ.jsp?pims_id=5302.

March 1, 2009: Applications for the June program of the Christine Mirzayan Science and Technology Policy Graduate Fellowship Program of the National Academies. See http://www7.nationalacademies. org/po1icyfe11ows; or contact The National Academies Christine Mirzayan Science and Technology Policy Graduate Fellowship Program, 500 Fifth Street, NW, Room 508, Washington, DC 20001; telephone: 202-334-2455; fax: 202-334-1667; email: policyfe11ows@nas.edu.

March 2, 2009: Applications for EDGE Summer Program. See http:// www.edgeforwomen.org/?page_ $i d=5$.

March 31, 2009: Submissions for Plus Magazine New Writers Award. See "Mathematics Opportunities" in this issue.

April 15, 2009: Applications for fall 2009 semester of Math in Moscow. See http://www.mccme.ru/mathinmoscow or write to: Math in Moscow, P.O. Box 524, Wynnewood, PA 19096; fax: +7095-291-65-01; email: mim@ mccme.ru. For information on AMS scholarships see http://www.ams. org/outreach/mimoscow.htm1 or write to: Math in Moscow Program, Membership and Programs Department, American Mathematical Society, 201 Charles Street, Providence RI 02904-2294; email: student-serv@ ams.org.

May 8, 2009: Applications for AWM Travel Grants. See http: //www. awmmath.org/trave1grants.htm1; telephone: 703-934-0163; email: awm@ awm-math. edu. The postal address is:

Association for Women in Mathematics, 11240 Waples Mill Road, Suite 200, Fairfax, VA 22030.

May 15, 2009: Applications for National Academies Research Associateship Programs. See "Mathematics Opportunities" in this issue.

June 1, 2009: Applications for the September program of the Christine Mirzayan Science and Technology Policy Graduate Fellowship Program of the National Academies. See http://www7.nationalacademies. org/policyfellows; or contact The National Academies Christine Mirzayan Science and Technology Policy Graduate Fellowship Program, 500 Fifth Street, NW, Room 508, Washington, DC 20001; telephone: 202-334-2455; fax: 202-334-1667; email: policyfellows@nas.edu.

June 1, 2009: Applications for the Math for America Foundation (MfA) Fellowship Program in San Diego. See http://www.mathforamerica. org/.

June 2, 2009: Proposals for NSF's Enhancing the Mathematical Sciences Workforce in the Twenty-First Century program. See http://www. nsf.gov/publications/pub_summ. jsp?ods_key=nsf05595.

June 30, 2009: Applications for Fermat Prize for Mathematics Research. See "Mathematics Opportunities" in this issue.

August 15, 2009: Applications for National Academies Research Associateship Programs. See "Mathematics Opportunities" in this issue.

October 1, 2009: Applications for AWM Travel Grants. See http:// www. awm-math.org/travelgrants. htm7; telephone: 703-934-0163; email: awm@awm-math.edu. The postal address is: Association for Women in Mathematics, 11240 Waples Mill Road, Suite 200, Fairfax, VA 22030.

November 1, 2009: Applications for the January program of the Christine Mirzayan Science and Technology Policy Graduate Fellowship Program of the National Academies. See http://www7.nationalacademies. org/policyfe11ows; or contact The National Academies Christine Mirzayan Science and Technology Policy Graduate Fellowship Program, 500 Fifth Street, NW, Room 508, Washington, DC 20001; telephone: 202-

334-2455; fax: 202-334-1667; email: policyfellows@nas.edu.

November 15, 2009: Applications for National Academies Research Associateship Programs. See "Mathematics Opportunities" in this issue.

National Science Board

The National Science Board is the policymaking body of the National Science Foundation. Listed below are the current members of the NSB. For further information, visit the website http://www.nsf.gov/nsb/.

Mark R. Abbott
Dean and Professor
College of Oceanic and Atmospheric Sciences
Oregon State University

Dan E. Arvizu

Director and Chief Executive
National Renewable Energy
Laboratory (NREL)

Barry C. Barish (Consultant)

Linde Professor of Physics Emeritus
Director, Laser Interferometer
Gravitational-Wave Observatory (LIGO)
California Institute of Technology

Steven C. Beering (Chair)

President Emeritus
Purdue University

Camilla P. Benbow

Patricia and Rodes Hart Dean of Education and Human Development
Peabody College of Education and Human Development
Vanderbilt University

Ray M. Bowen (Consultant)

President Emeritus
Texas A\&M University

John T. Bruer

President
James S. McDonnell Foundation
St. Louis, Missouri
G. Wayne Clough

Secretary
Smithsonian Institution

Kelvin K. Droegemeier
Associate Vice President for Research
Regents' Professor of Meteorology and Weathernews Chair
University of Oklahoma
Kenneth M. Ford (Consultant)
Director and Chief Executive Officer
Institute for Human and Machine Cognition
Pensacola, Florida
Patricia D. Galloway (Vice Chair)
Chief Executive Officer
Nielsen-Wurster Group, Inc.
Seattle, Washington
José-Marie Griffiths
Dean
School of Information and Library Science
University of North Carolina, Chapel Hill

Daniel E. Hastings (Consultant)
Dean for Undergraduate Education
Professor, Aeronautics and Astronautics and Engineering Systems
Massachusetts Institute of Technology

Karl Hess (Consultant)

Swanlund Chair
Advanced Study Professor Emeritus
University of Illinois
Elizabeth Hoffman (Consultant)
Executive Vice President and Provost
Iowa State University

Louis J. Lanzerotti

Distinguished Research Professor of Physics
Center for Solar Terrestrial Research
Department of Physics
New Jersey Institute of Technology
Alan I. Leshner
Chief Executive Officer
American Association for the Advancement of Science

Douglas D. Randall (Consultant)
Professor of Biochemistry and
Thomas Jefferson Fellow
University of Missouri

Arthur K. Reilly
Senior Director
Cisco Systems, Inc.
Jon C. Strauss
President Emeritus
Harvey Mudd College
Kathryn D. Sullivan
Director
Battelle Center for Mathematics and Science Education Policy John Glenn School of Public Affairs
Ohio State University
Thomas N. Taylor
Roy A. Roberts Distinguished Professor
Department of Ecology and Evolutionary Biology
Curator of Paleobotany in the Natural History Museum and Biodiversity Research Center University of Kansas

Richard F. Thompson

Keck Professor of Psychology and Biological Sciences
University of Southern California
Jo Anne Vasquez (Consultant)
Vice President and Program Director
Arizona Transition Years Teacher
and Curriculum Initiatives
Helios Education Foundation
Phoenix, Arizona
Arden L. Bement Jr.
(member ex officio)
Director
National Science Foundation
Craig R. Robinson
Executive Officer and Acting
Office Director
National Science Board
The contact information for the Board is: National Science Board, National Science Foundation, 4201 Wilson Boulevard, Room 1225N, Arlington, VA 22230; telephone 703-292-7000; World Wide Web http://www.nsf.gov/nsb/.

Book List

The Book List highlights books that have mathematical themes and are aimed at a broad audience potentially including mathematicians, students,
and the general public. When a book has been reviewed in the Notices, a reference is given to the review. Generally the list will contain only books published within the last two years, though exceptions may be made in cases where current events (e.g., the death of a prominent mathematician, coverage of a certain piece of mathematics in the news) warrant drawing readers' attention to older books. Suggestions for books to include on the list may be sent to notices-booklist@ ams.org.
*Added to "Book List" since the list's last appearance.

An Abundance of Katherines, by John Green. Dutton Juvenile Books, September 2006. ISBN-13:978-0-5254-7688-7. (Reviewed October 2008.)

Amongst Mathematicians: Teaching and Learning Mathematics at University Level, by Elena Nardi. Springer, November 2007. ISBN-13: 978-0-387-37141-2.

The Archimedes Codex, by Reviel Netz and William Noel. Weidenfeld and Nicolson, May 2007. ISBN-13: 978-0-29764-547-4. (Reviewed September 2008.)

The Book of Numbers: The Secret of Numbers and How They Changed the World, by Peter J. Bentley. Firefly Books, February 2008. ISBN-13: 978-15540-736-10.

The Cat in Numberland, by Ivar Ekeland. Cricket Books, April 2006. ISBN-13 978-0-812-62744-2. (Reviewed in this issue.)

A Certain Ambiguity: A Mathematical Novel, by Gaurav Suri and Hartosh Singh Bal. Princeton University Press, June 2007. ISBN-13: 978-0-6911-27095. (Reviewed February 2008.)

Digital Dice, by Paul J. Nahin. Princeton University Press, March 2008. ISBN-13: 978-06911-269-82.

Dimensions, by Jos Leys, Etienne Ghys, and Aurélien Alvarez. DVD, 117 minutes. Available at http://www. dimensions-math.org.

Discovering Patterns in Mathematics and Poetry, by Marcia Birken and Anne C. Coon. Rodopi, February 2008. ISBN-13: 978-9-0420-2370-3.

Does Measurement Measure Up?: How Numbers Reveal and Conceal the Truth, by John Henshaw. Johns

Hopkins University Press, March 2006. ISBN-13: 978-0-8018-8375-0.

Einstein's Mistakes: The Human Failings of Genius, by Hans C. Ohanian. W. W. Norton, September 2008. ISBN13: 978-0393062939.

Euclidean and Non-Euclidean Geometries: Development and History, fourth revised and expanded edition, by Marvin Jay Greenberg. W. H. Freeman, September 2007. ISBN-13: 978-0-7167-9948-1.

Fighting Terror Online: the Convergence of Security, Technology and the Law, by Martin Charles Golumbic. Springer, 2008. ISBN: 978-0-387-73577-1.
*Five-Minute Mathematics, by Ehrhard Behrends (translated by David Kramer). AMS, May 2008. ISBN13: 978-08218-434-82.

Fly Me to the Moon: An Insider's Guide to the New Science of Space Travel, by Edward Belbruno. Princeton University Press, January 2007. ISBN-13: 978-0-6911-2822-1. (Reviewed April 2008.)

Geekspeak: How Life + Mathematics = Happiness, by Graham Tattersall. Collins, September 2008. ISBN-13: 978-00616-292-42.

Geometric Folding Algorithms: Linkages, Origami, Polyhedra, by Erik D. Demaine and Joseph O'Rourke. Cambridge University Press, July 2007. ISBN-13: 978-05218-57574.

The Golden Section: Nature's Greatest Secret (Wooden Books), by Scott Olsen. Walker and Company, October 2006. ISBN-13: 978-08027-153-95.

Group Theory in the Bedroom, and Other Mathematical Diversions, by BrianHayes. Hill and Wang, April 2008. ISBN-13: 978-0-8090-5219-6.

Guesstimation: Solving the World's Problems on the Back of a Cocktail Napkin, by Lawrence Weinstein and John A. Adam. Princeton University Press, April 2008.ISBN-13:978-0-6911-2949-5.

Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi: Martin Gardner's First Book of Mathematical Puzzles and Games, by Martin Gardner. CambridgeUniversity Press,September 2008. ISBN-13: 978-0-521-73525-4.

A History of Abstract Algebra, by Israel Kleiner. Birkhäuser, October 2007. ISBN-13: 978-0-8176-4684-4.

How Round Is Your Circle, by John Bryant and Chris Sangwin. Princeton University Press, January 2008. ISBN13: 978-0-6911-3118-4.

Impossible?: Surprising Solutions to Counterintuitive Conundrums, by Julian Havil. Princeton University Press, April 2008. ISBN-13: 978-0-6911-3131-3.

The Indian Clerk, by David Leavitt. Bloomsbury USA, September 2007. ISBN-13: 978-15969-1040-9. (Reviewed September 2008.)

Irreligion: A Mathematician Explains Why the Arguments for God Just Don't Add Up, by John Allen Paulos. Hill and Wang, December 2007. ISBN-13: 978-0-8090-591-95. (Reviewed August 2008.)
*Is God a Mathematician? by Mario Livio. Simon \& Schuster, January 2009. ISBN-13: 978-07432-940-58.

Kiss My Math: Showing Pre-Algebra Who's Boss, by Danica McKellar. Hudson Street Press, August 2008. ISBN-13: 978-1594630491.

The Last Theorem, by Arthur C. Clarke and Frederik Pohl. Del Rey, August 2008. ISBN-13: 978-0345470218.

The Legacy of Mario Pieri in Geometry and Arithmetic, by Elena Anne Marchisotto and James T. Smith. Birkhäuser, May 2007. ISBN-13: 978-0-8176-3210-6.

Leonhard Euler, A Man to Be Reckoned With, by Andreas K. Heyne and Alice K. Heyne. Birkhäuser, 2007. ISBN13: 978-3-7643-8332-9. (Reviewed March 2008.)

Logic's Lost Genius: The Life of Gerhard Gentzen, by Eckart MenzlerTrott, Craig Smorynski (translator), Edward R. Griffor (translator). AMSLMS, November 2007. ISBN-13: 978-0-8218-3550-0.

Making Mathematics Work with Needlework: Ten Papers and Ten Projects, edited by Sarah-Marie Belcastro and Carolyn Yackel. A K Peters, September 2007. ISBN-13: 978-1-5688-1331-8.
*The Map of My Life, by Goro Shimura. Springer, September 2008. ISBN-13: 978-03877-971-44.

Mathematical Mind-Benders, by Peter Winkler. A K Peters, August 2007. ISBN-13: 978-1-5688-1336-3.

Mathematical Omnibus: Thirty Lectures on Classic Mathematics, by Dmitry Fuchs and Serge Tabachnikov. AMS, October 2007. ISBN-13: 978-

08218-431-61. (Reviewed December 2008).

The Mathematician's Brain, by David Ruelle. Princeton University Press, July 2007. ISBN-13 978-0-691-12982-2. (Reviewed November 2008.)

Mathematics and Democracy: Designing Better Voting and FairDivision Procedures, by Steven J. Brams. Princeton University Press, December 2007. ISBN-13: 978-0691-1332-01.

Mathematics at Berkeley: A History, by Calvin C. Moore. A K Peters, February 2007. ISBN-13: 978-1-5688-13028. (Reviewed November 2008.)
*Mathematics in Ancient Iraq: A Social History, by Eleanor Robson. Princeton University Press, August 2008. ISBN13: 978-06910-918-22.

The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook, by Victor J. Katz et al. Princeton University Press, July 2007. ISBN-13: 978-0-6911-2745-3.

Measuring the World, by Daniel Kehlmann. Pantheon, November 2006. ISBN 0-375-42446-6. (Reviewed June/ July 2008.)

More Mathematical Astronomy Morsels, by Jean Meeus. WillmannBell, 2002. ISBN 0-943396743.

More Sex Is Safer Sex: The Unconventional Wisdom of Economics, by Steven E. Landsburg. Free Press, April 2007. ISBN-13: 978-1-416-53221-7. (Reviewed June/July 2008.)

Number Story: From Counting to Cryptography, by Peter M. Higgins. Springer, February 2008. ISBN-13: 978-1-8480-0000-1

One to Nine: The Inner Life of Numbers, by Andrew Hodges. W. W. Norton, May 2008. ISBN-13: 978-03930-664-18.

Origami, Eleusis, and the Soma Cube: Martin Gardner's Mathematical Diversions, by Martin Gardner. Cambridge University Press, September 2008. ISBN-13: 978-0-521-73524-7.

A Passion for Discovery, by Peter Freund. World Scientific, August 2007. ISBN-13: 978-9-8127-7214-5.

Perfect Figures: The Lore of Numbers and How We Learned to Count, by Bunny Crumpacker. Thomas Dunne Books, August 2007. ISBN-13: 978-0-3123-6005-4.

The Presidential Election Game, by Steven J. Brams. A K Peters, December 2007. ISBN-13: 978-1-5688-1348-6.

The Princeton Companion of Mathematics, edited by Timothy Gowers (June Barrow-Green and Imre Leader, associate editors). Princeton University Press, November 2008. ISBN-13: 978-06911-188-02.

The Probability of God: A Simple Calculation That Proves the Ultimate Truth, by Stephen D. Unwin. Three Rivers Press, October 2004. ISBN-13: 978-1-4000-5478-7. (Reviewed February 2008.)

Professor Stewart's Cabinet of Mathematical Curiosities, by Ian Stewart. Basic Books, December 2008. ISBN-13: 978-0-465-01302-9.

Pursuit of Genius: Flexner, Einstein, and the Early Faculty at the Institute for Advanced Study, by Steve Batterson. A K Peters, June 2006. ISBN 1-56881-259-0. (Reviewed August 2008.)

Pythagorean Crimes, by Tefcros Michalides. Parmenides Publishing, September 2008. ISBN-13: 978-19309-722-78. (Reviewed in this issue.)

Random Curves: Journeys of a Mathematician, by Neal Koblitz. Springer, December 2007. ISBN-13: 978-3-5407-4077-3.

Reminiscences of a Statistician: The Company I Kept, by Erich Lehmann. Springer, November 2007. ISBN-13: 978-0-387-71596-4.

Roots to Research: A Vertical Development of Mathematical Problems, by Judith D. Sally and Paul J. Sally Jr. AMS, November 2007. ISBN-13: 978-08218-440-38. (Reviewed December 2008.)

Sacred Mathematics: Japanese Temple Geometry, by Fukagawa Hidetoshi and Tony Rothman. Princeton University Press, July 2008. ISBN-13: 978-0-6911-2745-3.

Super Crunchers: Why Thinking-by-Numbers Is the New Way to Be Smart, by Ian Ayres. Bantam, August 2007. ISBN-13: 978-0-5538-0540-6.

Superior Beings: If They Exist, How Would We Know? Game-Theoretic Implications of Omnipotence, Omniscience, Immortality, and Incomprehensibility, by Steven Brams. Springer, second edition, November 2007. ISBN-13: 978-0-387-48065-7. (Reviewed February 2008.)

The Symmetries of Things, by John H. Conway, Heidi Burgiel, and Chaim Goodman-Strauss. A K Peters, May 2008. ISBN-13: 978-1-5688-1220-5.

Symmetry: A Journey into the Patterns of Nature, by Marcus du Sautoy. Harper, March 2008. ISBN-13: 978-0-0607-8940-4.

Symmetry: The Ordering Principle (Wooden Books), by David Wade. Walker and Company, October 2006. ISBN-13: 978-08027-153-88.

Tools of American Math Teaching, 1800-2000, by Peggy Aldrich Kidwell, Amy Ackerberg-Hastings, and David Lindsay Roberts. Johns Hopkins University Press, July 2008. ISBN-13: 9780801888144.

The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century Letter That Made the World Modern, by Keith Devlin. Basic Books, September 2008. ISBN-13: 978-0-4650-0910-7.

Unknown Quantity: A Real and Imaginary History of Algebra, by John Derbyshire. Joseph Henry Press, May 2006. ISBN 0-309-09657-X. (Reviewed May 2008.)

Useless Arithmetic: Why Environmental Scientists Can't Predict the Future, by Orrin Pilkey and Linda Pilkey-Jarvis. Columbia University Press, February 2007. ISBN 0-231-13212-3. (Reviewed April 2008.)

The Volterra Chronicles: The Life and Times of an Extraordinary Mathematician, by Judith R. Goodstein. AMS, February 2007. ISBN-13: 978-0-8218-3969-0. (Reviewed March 2008.)

The Wraparound Universe, by JeanPierre Luminet. A K Peters, March 2008. ISBN 978-15688-130-97. (Reviewed December 2008.)

Zeno's Paradox: Unraveling the Ancient Mystery behind the Science of Space and Time, by Joseph Mazur. Plume, March 2008 (reprint edition). ISBN-13: 978-0-4522-8917-8.

Mathematics Calendar

January 2009

* 5-February 6 Progress in Stein's Method, Institute for Mathematical Sciences National University of Singapore, Singapore.
Description: In view of the breadth and diversity of these and other recent advances, the time is now ripe to hold a further program, with the aim of bringing together the people actively involved in the area, and of cementing and further promoting the development of the field. In addition to the general scientific aim, program is also designed to develop research in Stein's method in Southeast Asia, where there is a growing interest in the method. It also aims, by way of a series of tutorial lectures, to encourage more young mathematicians to undertake research in the field.
Information: http://www.ims.nus.edu.sg/Programs/ stein09/index.htm; email: imscec@nus.edu.sg.
* 25-30 "First Winter School at IMDEA on PDE's and Inequalities", IMDEA Matematicas, C-IX, UAM, Campus Cantoblanco, (28049) Madrid, Spain.
Description: A Winter School on PDEs and Inequalities with Courses by Almut Burchard (Toronto); Frank Duzaar (Erlangen); Nicola Fusco (Naples). Invited lectures and short talks.
Information: For more information and registration; visit: http:// www-dimat.unipv.it/~pratelli/pde2009; http://mate. dm.uba.ar/~jrossi/pde2009; or you may contact: xemailpde2009@imdea.org|.

February 2009

* 19-20 Ph.D's in Logic, Department of Pure Mathematics and Computer Algebra, Ghent University, Building S22, Krijgslaan 281, 9000 Gent, Belgium.

Description: The aim of the colloquium is to bring together young researchers in the field of logic. During these two days there will be 6 tutorials in total, 3 about mathematical and 3 about philosophical logic. In addition, Ph.D. students and postdocs in mathematical or philosophical logic are invited to give a presentation. In combination with the planned social activity this will hopefully lead to a better overview of the current research in logic and even joint work. Of course, everyone is invited to attend the tutorials and contributed talks! Tutorials in mathematical logic: Raf Cluckers (K.U. Leuven), Benedikt Löwe (University of Amsterdam), Françoise Point (Mons-Hainaut University). Tutorials in philosophical logic: Reinhard Muskens (Tilburg University), Karl-Georg Niebergall (HU Berlin), Jean Paul Van Bendegem (Vrije Universiteit Brussel).
Information: http://www.phdsinlogic.ugent.be.

March 2009

* 22-28 Talbot Workshop 2009: Fukaya Categories, Nags Head, North Carolina.
Description: Workshop focused on the construction of the Fukaya category associated to a symplectic manifold and the geometric structure it encodes. Specifically, topics developed will include A-infinity categories, Lagrangian Floer (co)-homology and its obstructions, the Fukaya and derived Fukaya categories, and applications to questions in symplectic geometry and the Homological Mirror Symmetry conjecture. Discussions will have an expository character and will be aimed at graduate students and junior faculty interested in this area.
Information: http://math.mit.edu/talbot; email: gwilliam@ math. northwestern.edu.
* 25-26 Illinois Number Theory Celebration, University of Illinois at Urbana-Champaign, Urbana, Illinois.

This section contains announcements of meetings and conferences of interest to some segment of the mathematical public, including ad hoc, local, or regional meetings, and meetings and symposia devoted to specialized topics, as well as announcements of regularly scheduled meetings of national or international mathematical organizations. A complete list of meetings of the Society can be found on the last page of each issue.
An announcement will be published in the Notices if it contains a call for papers and specifies the place, date, subject (when applicable), and the speakers; a second announcement will be published only if there are changes or necessary additional information. Once an announcement has appeared, the event will be briefly noted in every third issue until it has been held and a reference will be given in parentheses to the month, year, and page of the issue in which the complete information appeared. Asterisks (*) mark those announcements containing new or revised information.
In general, announcements of meetings and conferences carry only the date, title of meeting, place of meeting, names of speakers (or sometimes a general statement on the program), deadlines for abstracts or contributed papers, and source of further information. If there is any application deadline with respect to participation in the meeting, this fact should be noted. All communications on meetings and conferences
in the mathematical sciences should be sent to the Editor of the Notices in care of the American Mathematical Society in Providence or electronically to notices@ams.org or mathcal@ams.org.
In order to allow participants to arrange their travel plans, organizers of meetings are urged to submit information for these listings early enough to allow them to appear in more than one issue of the Notices prior to the meeting in question. To achieve this, listings should be received in Providence eight months prior to the scheduled date of the meeting.
The complete listing of the Mathematics Calendar will be published only in the September issue of the Notices. The March, June/July, and December issues will include, along with new announcements, references to any previously announced meetings and conferences occurring within the twelve-month period following the month of those issues. New information about meetings and conferences that will occur later than the twelve-month period will be announced once in full and will not be repeated until the date of the conference or meeting falls within the twelve-month period.
The Mathematics Calendar, as well as Meetings and Conferences of the AMS, is now available electronically through the AMS website on the World Wide Web. To access the AMS website, use the URL: http : / / www. ams.org/.

Description: This meeting will celebrate the 90th birthday of Paul Bateman and the 70th birthday of Bruce Berndt. Speakers include: George Andrews, Richard Askey, Heng-Huat Chan, Youn-Seo Choi, Brian Conrey, Ron Evans, Marvin Knopp, Hugh Montgomery, Wolfgang Schmidt, Robert Vaughan, and Ae Ja Yee. A banquet honoring Bruce and Paul will be held the evening of March 25, and the evening of March 26 will be dedicated to the memory of Paul Erdos, with reminiscences of Erdos at Illinois and a showing of the film " N is a Number".
Information: http://www.math.uiuc.edu/intc2009/;
April 2009

* 2-4 International Conference on Multimedia Computing and Systems (ICMCS’09), Polydisciplinary Faculty of Ouarzazate, Morocco. Description: ICMCS'09 is organized with the objective of bringing together researchers, developers, and practitioners from academia and industry working in all facets of multimedia, content authoring, processor technology, and systems design.
Information: http://www.icmcs09.org; email: bouzahir@ensaagadir.ac.ma.
*6-9 BMC 2009/IMS This is a joint meeting of the 61st British Mathematical Colloquium and the 22 nd annual meeting of the Irish Mathematical Society, National University of Ireland, Galway, Ireland.
Description: This is the annual forum in the UK at which leading mathematicians present their work to a general mathematical audience. The 2009 BMC is being held for the first time outside the UK, in Galway, Ireland!
Plenary Speakers: David Eisenbud (Berkeley), Ben Green (Cambridge), Ron Graham (San Diego), Rostislav Grigorchuk (Texas A\&M) and Frances Kirwan (Oxford), together with twelve Morning Speakers. A Public Lecture will be held by Tom Koerner (Cambridge). There will be a Special Session on Computational Algebra led by Eamonn O'Brien (Auckland) and Goetz Pfeiffer (Galway) and a Special Session on Analysis led by David Preiss (Warwick), Sean Dineen (Dublin) and Ray Ryan (Galway). There will be opportunities to present talks at various splinter groups.
Information: http://www.maths.nuigalway.ie/bmc2009/; email: James.Ward@nuigalway.ie.
* 19-May 2 Spring School on Fluid Mechanics and Geophysics of Environmental Hazards, Institute for Mathematical Sciences, National University of Singapore, Singapore.
Description: This School is intended to focus on fluid mechanical aspects, and is aimed at students who have already graduated in mathematics, physics or engineering, and who wish to undertake research in this broad area. It is intended to bring students rapidly to current research frontiers in the fluid mechanics of environmental hazards. The School will start with introductory and motivational lectures on the fundamentals of geophysical fluid dynamics, and on geophysical hazard and risk in atmosphere and ocean contexts, and will then focus on four specific environmental hazards: typhoons and tropical cyclones; monsoons and flooding; tsunamis; pollution of atmosphere, ocean and the urban environment.
Information: http://ims.nus.edu.sg/Programs/09fluidss/ index.htm; email: imscec@nus.edu.sg.
* 28-30 CMIS2009 5th Contact Mechanics International Symposium, Technical University of Crete, Chania, Crete, Greece.
Description: Previous contact mechanics symposia of this series have been organized in Lausanne, Switcherland, 1992, Carry Le Rouet, France, 1994, Praia da Consolacao, Portugal, 2001 and Hannover, Germany 2006.
Information: http://www.cmis2009.tuc.gr; email: gestavr@ dpem.tuc.gr.

May 2009
*27-30 17th biennial conference of the Association of Christians in the Mathematical Sciences, Wheaton College, Wheaton, Illinois.
Main speaker: David Bressoud (Macalester College) is the main speaker and will present two talks.
Other invited speakers: James Sellers (Penn State University) and James Bradley (John Templeton Foundation).

Abstracts: Of contributed papers will be accepted for consideration until January 31, 2009.
Organizer: Terry Perciante (Terry. Perciante@wheaton. edu). Information: http://www.acmsonline.org; email: Robert. L.Brabenec@wheaton.edu.

June 2009

* 1-3 Second Global Conference on Power Control and Optimization (PCO-2009), Bali, Indonesia.
Description: The main objective of PCO-09 is to provide a platform for researchers, engineers, practitioners and academicians as well as industrial professionals to present their research results and development activities. This conference, as part of discussing the results, ensures to provide opportunities for delegates to exchange new innovative ideas and application experiences face to face, and to provide a platform where possible entrepreneurs can think of new ventures, or generate research contacts and find global partners for future collaboration.
Deadlines: Paper Submission: 01/02/09. Formal acceptance: (letter with peer review) 01/03/09. Camera Ready Paper: 04/15/09. For paper submission via e-mail: icpco.20@gmail.com. All correspondence should be addressed to the conference secretariat: Chairman Professor Dr. Nader Barsoum, Malaysia; Conference Secretary Pandian Vasant, Malaysia; email: icpco.20@gmail.com; http://www. engedu2.net.
* 1-5 Geometry \& Topology at Muenster 2009, University of Muenster, Muenster, Germany.
Description: The conference will represent a wide variety of topics of current interest in the topology of manifolds, homotopy theory, geometric group theory, low-dimensional topology, symplectic geometry, and non-commutative geometry.
Organizers: Wolfgang Lück (Münster), Ian Hambleton (McMaster), Erik Pedersen (Copenhagen).
Information: http://www.math.ku.dk/~erik/muenster/; email: hambleton@mcmaster.ca.
* 1-28 Statistical Genomics, Institute for Mathematical Sciences, National University of Singapore, Singapore.
Description: The new era of genomic studies has created great opportunities and also posed enormous challenges. To face up the challenges in synergy, it is of great interest to gather together prominent geneticists, statistical geneticists and the like to exchange their views and ideas on the ongoing and future development of genomic studies. The program will provide a platform for them to argue, to debate, and to interact with each other. The program will also provide an opportunity for young researchers and graduate students to learn directly from the authorities of the field and to get inspired for their further research. The program will consist of two workshops, one on Gene Mapping and the other on Genomic Profiling, and a graduate summer school.
Information:http://ims.nus.edu.sg/Programs/genomics09/ index.htm.
* 8-11 25th Nordic and 1 st British-Nordic congress of Mathematicians, University of Oslo, Oslo, Norway.
Description: This is a general mathematical congress arranged by the mathematical societies of Denmark, Finland, Iceland, Norway and Sweden as well as London Mathematical Society and Edinburgh Mathematical Society.
Speakers: There will be 11 main speakers at the congress each giving 50 minutes talks in the morning sessions. In addition there will be 7 parallel special sessions each afternoon. The main speakers and the programs of the special sessions are announced here: http://www. math. uio.no/2009/scientific/. Also mathematicians outside Britain and the Nordic countries are welcome to attend
Information: http://www.math.uio.no/2009/; email: bratteli@math.uio.no.
* 8-19 Recent Developments in Dynamic Equations on Time Scales, University of Wyoming, Laramie, Wyoming.
Description: We will be concerned with a so-called dynamic equation on a time scale (a time scale is just a closed subset of the real numbers). If the time scale is the set of real numbers, then the dynamic equation is a differential equation, while if the time scale is the integers, then the dynamic equation is a difference equation. Hence our
study will be a unification and generalization of these two areas of mathematics. No previous knowledge of time scales will be assumed, but we will particularly be interested in new developments and applications of this area of research. Anyone interested in either differential equations or difference equations will be interested in this 2009 Rocky Mountain Mathematics Consortium Conference.
Speakers: Martin Bohner, Missouri University of Science and Technology, Allan Peterson, University of Nebraska-Lincoln, Chris Ahrendt, University of Nebraska-Lincoln
Sponsors: Rocky Mountain Mathematics Consortium. IMA and NSF Funding possible.
Deadline: For applications/abstracts of talks: April 1, 2009.
Information: A. Duane Porter; adporter@uwyo. edu, Department of Mathematics, University of Wyoming, Laramie, WY 82071. For information about Laramie, http://www.laramie. org/.
* 21-27 2nd Mile High Conference on Nonassociative Mathematics, University of Denver, Denver, Colorado.
Description: This is an international conference on loops, quasigroups, latin squares, nonassociative algebras, applications of nonassociative algebras to physics, and other aspects of nonassociative mathematics.
Main Speakers: Murray Bremner (University of Saskatchewan, Canada); Diane Donovan(University of Queensland, Australia); Richard M. Green (University of Colorado, USA); Ling Long (Iowa State University, USA); Shahn Majid (Queen Mary, UK); Gabor P. Nagy (University of Szeged, Hungary); J. D. Phillips (Wabash College, USA); Ivan Shestakov (University of Sao Paulo, Brazil).
Program and Organizing Committee: Piroska Csorgo (Eotvos Lorand University); Kenneth W. Johnson (Penn State Abington); Michael K. Kinyon (University of Denver); G. Eric Moorhouse (University of Wyoming); Jonathan D. H. Smith (Iowa State University); Petr Vojtechovsky (University of Denver).
Information: Contact: milehigh@math.du.edu; http://www. math.du.edu/milehigh/.
* 23-26 The 33rd Summer Symposium in Real Analysis, Southeastern Oklahoma State University, Durant, Oklahoma.
Description: This conference, jointly sponsored by the host institutions and the Real Analysis Exchange has been held annually since 1978, twice in 1982, and is considered to be the premier conference of its type by members of the real analysis community.
Main Speakers: This years main speakers include Udayan Darji (University of Louisville), Steve Jackson (North Texas University) and Marton Elekes (Eotvos Lorand University, Budapest).
Information: http://www.stolaf.edu/people/analysis; email: humke@stolaf.edu.
* 28-July 25 UA VIGRE: Arizona Summer Program 2009, University of Arizona, Tucson, Arizona.
Description: The 2009 Arizona Summer Program will be an exciting 4 -week research experience for undergraduates in Computational Photonics. There will be a number of lectures given by experts covering computational, mathematical, physical and engineering aspects of the subject accompanied by hands-on computational research experience. Our aim is to expose the role of mathematics in the emerging field of nano-optics, and to provide qualified undergraduates with research experience that promotes learning skills necessary for success in graduate school and in industrial R\&D environments. Students will work on their projects related to the ongoing research at the Arizona Center for Mathematical Sciences (Prof. J.V. Moloney,Director, see http://www.acms.arizona.edu), and R\&D division of the Raytheon Corporation (Dr. P. Kano, senior scientist) in the area of Computational Photonics.
Information: http://math.arizona.edu/~brio/Class/Summer09Info.html; email: brio@math. arizona.edu.
July 2009
* 1-August 31 Mathematical Theory and Numerical Methods for Computational Materials Simulation and Design, Institute for Mathematical Sciences, National University of Singapore, Singapore,
Description: This two-month program will provide a forum for experts from interdisciplinary fields to discuss the various issues and challenges facing the community. It will bring leading international applied and pure mathematicians, physicists, materials scientists and
computational scientists together to review, develop and promote interdisciplinary researches on problems at the interface between mathematics and materials sciences. It will provide a forum to highlight the progress in a broad range of topics, within a coherent theme and with greater emphasis on the mathematical theory and numerical methods for computational materials simulation and design.The program activities will consist of two workshops, a summer school, public lectures, working seminars and collaborative research.
Information: http://ims.nus.edu.sg/Programs/09matheory/ index.htm; email: imscec@nus.edu.sg.
* 6-11 Conference on Algebraic Topology CAT'09, University of Warsaw, Warsaw, Poland.
Description: CAT'09 will be the seventh in a series of quadrennial conferences on algebraic topology organized in Poland since 1985. The aim of the conference is to bring together mathematicians working in different areas of algebraic and geometric topology. The conference will be devoted to a wide spectrum of research in the areas of homotopy theory, topology of manifolds, geometric group theory and homotopy in algebraic geometry. The program will emphasize applications and connections between various fields and is intended to promote exchanges of ideas among mathematicians working in different areas related to algebraic topology.
Information: http://www.mimuw.edu.pl/~cat09/; email: cat09@mimuw.edu.pl.
* 13-16 MULTICONF-09, Orlando, Florida.

Description: The 2009 Multi Conference in Computer Science, Information Technology and Control systems and Computational Science and Computer Engineering (MULTICONF-09) will be held July 13-16 2009. We invite draft paper submissions. The event consists of ten different international conferences. We invite draft paper submissions. The event consists of ten different international conferences.
Information: For more details please visit: http://www. PromoteResearch.org; email: jeedward@yahoo.com.

* 13-17 Permutation Patterns 2009, Dipartmento di Sistemi e Informatica, Università di Firenze, Firenze, Italy.
Description: The topic of the conference is the study of patterns in permutations and words. Conference themes include (but are not limited to) enumeration questions, excluded pattern questions, study of the involvement order, algorithms for computing with permutation patterns, applications and generalizations of permutation patterns, and others.
Information: http://www.dsi.unifi.it/~PP2009/; email: ferrari@dsi.unifi.it.
* 13-18 7th International ISAAC Congress, Imperial College, London, United Kingdom.
Description: The ISAAC congress is a major international conference in analysis, its applications and computation. The primary goal of the congress is to bring together mathematicians working in these fields to discuss the latest progress in the area. The congress will consist of around 20 sessions devoted to different subjects in real, complex, harmonic, spectral and stochastic analysis, linear and non-linear partial differential equations of different types and their computational and applicational aspects. The International Society for Analysis, its Applications and Computation (ISAAC) has been organising the International ISAAC Congress biannually since 1997. The previous congresses took place in the USA (Delaware 1997), Japan (Fukuoka 1999), Germany (Berlin 2001), Canada (Toronto 2003), Italy (Catania 2005) and Turkey (Ankara 2007).
Information: http://www.isaac2009.org; email: j.wirth@imperial.ac.uk.
* 20-31 2009 ESSLLI Student Session, Bordeaux, France.

Description: The 2009 ESSLLI Student Session will take place from July 20 to July 31 in Bordeaux, France, as part of the annual European Summer School in logic, language, and computation. We hereby invite paper submissions from students in the areas of logic and computation, logic and language, and language and computation for presentation in the oral session or in the poster session. All submissions will be reviewed by three experts in the field, and those selected for presentation will be published in the proceedings. The Student Session is an excellent venue to present work in progress, and also to gain experience presenting one's research to a wide audience. As in previous years, Springer is offering 500 Euro in textbooks for the best
paper award, and 250 Euro in textbooks to each of two runners-up. The deadline for submission is February 1, 2009. For more details, please see the full call for papers: http://www.stanford.edu/ ~icard/esslli/call.
Information: http://www.stanford.edu/~icard/esslli/; email: icard@stanford.edu.

August 2009

* 3-8 XVI International Congress on Mathematical Physics (ICMP09), Clarion Congress Hotel Prague, Prague, Czech Republic.
Description: Following the tradition formed over several decades, the triennial congresses of the International Association of Mathematical Physics are the largest mathematical-physics conventions. The ICMP09 will be a major event: New results in the field and future challenges will be discussed, illustrating the richness and vitality of this branch of science. Registration will be open from the begining of 2009. We hope that you will be able to attend and contribute to the success of the meeting. Please indicate your interest by pre-registering on the conference web-site at http://www.icmp09.com/indication-of-interest. A Young Researcher Symposium will be held from July 31-August 1, 2009.
Information: http://www. icmp09.com.
* 10-14 Topological complexity of random sets, American Institute of Mathematics, Palo Alto, California.
Description: This workshop, sponsored by AIM and the NSF, will be devoted to the developing field of random maps between manifolds and their geometric properties.
Information: http://www. aimath.org/ARCC/workshops/randomsets.html; email: ebasor@aimath.org.
* 12-14 18th USENIX Security Symposium, Le Centre Sheraton Hotel Montreal, 1201 Boulevard Rene-Levesque, West Montreal, Quebec H3B 2L7 Canada.
Description: The USENIX Security Symposium brings together researchers, practitioners, system administrators, system programmers, and others interested in the latest advances in the security of computer systems and networks.
Information: http://www.usenix.org/events/sec09/.
*27-29 Ukrainian Mathematical Congress 2009 (Dedicated to the Centennial of Nikolai N. Bogoliubov), Institute of Mathematics of NASU, Kiev (Kyiv), Ukraine.
Sessions: Algebra and Number Theory; Dynamical Systems; Differential Equations and Nonlinear Oscillations; Complex Analysis and Potential Theory; Mathematical Physics; Statistical Mechanics and Quantum Field Theory; Functional Analysis; Numerical Mathematics and Mathematical Problems of Mechanics; Probability Theory and Mathematical Statistics; Approximation Theory and Harmonic Analysis; Topology and Geometry; Applied Mathematical Problems.
Information: http://www.imath.kiev.ua/~congress2009/ en/; email: congress2009@imath.kiev.ua.
*30-September 4 Algebraic Groups and Invariant Theory, Centro Stefano Franscini, Ascona, Switzerland.
Description: The main focus is on recent developments in the theory of semisimple algebraic groups and their Lie algebras.
Topics: W -algebras, invariants of subalgebras, nilpotent orbits, geometric representation theory.
Short courses: V. Ginzburg, A. Joseph, A. Premet.
Organizing Committee: K. Baur (ETH Zurich), A. Premet (Manchester), D. Testerman (EPFL Lausanne)

Plenary speakers to include: Donkin, Duflo, Fauquant-Millet, Kac, Kleshchev, Kostant, Kraft, Littelmann, McNinch, Serre, Vilonen, Wallach.
Financial support: Some financial support is available for young participants and eastern European participants.
Information: http://www.math.ethz.ch/~baur/AGIT/; email: donna.testerman@epfl.ch.

September 2009

[^14]Keynote speakers: C. de Boor (Madison, USA); N. Dyn (Tel-Aviv, IL); G. Meurant (Paris, F); R. Schaback (Goettingen, D); I.H. Sloan (Sydney, AU); N. Trefethen (Oxford, UK); H. Wendland (Brighton, UK); Y. Xu (Eugene OR, USA).
Information: http://www.math.unipd.it/~dwcaa09; email: marcov@math.unipd.it.

* 8-December 11 Long Program: Combinatorics: Methods and Applications in Mathematics and Computer Science, Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California.
Overview: Combinatorics studies discrete objects and their properties. This program will focus specifically on several major research topics in modern Discrete Mathematics and puts an emphasis on the exchange of ideas, approaches and techniques between various areas of Discrete Mathematics and Computer Science and on the identification of new tools from other areas of mathematics which can be used to solve combinatorial problems.
Organizing Committee: Noga Alon, Gil Kalai, Janos Pach, Vera Sos, Angelika Steger, Benjamin Sudakov, Terence Tao.
Application/Registration: An application and registration form is available at http://www.ipam.ucla.edu/programs/cma2009. Applications received by July 27, 2009 will receive fullest consideration. Encouraging the careers of women and minority mathematicians and scientists is an important component of IPAM's mission and we welcome their applications. You may also register and attend without IPAM funding.
Information: http://www.ipam.ucla.edu/programs/ cma2009/; email: sbeggs@ipam.ucla.edu.
*9-16 Combinatorics: Methods and Applications in Mathematics and Computer Science, Tutorials, Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California.
Overview: Tutorials provide an introduction to several major research topics in modern discrete mathematics, including probabilistic methods, extremal problems for graphs and set systems, Ramsey theory, additive number theory, combinatorial geometry, discrete harmonic analysis and more.
Goal: The goal is to familiarize the prospective participants with the techniques which were developed in Combinatorics in the last few decades. Registration for tutorials is free.
Organizing Committee: Noga Alon, Gil Kalai, Janos Pach, Vera Sos, Angelika Steger, Benjamin Sudakov, Terence Tao.
Application/Registration: An application and registration form is available at: http://www.ipam.ucla.edu/programs/cmatut. Applications received by July 29, 2009 will receive fullest consideration. Encouraging the careers of women and minority mathematicians and scientists is an important component of IPAM's mission and we welcome their applications. You may also simply register and attend without IPAM funding.
* 10-12 Quantum topology and Chern-Simons theory, Institut de Recherche Mathématique Avancée, Université de Strasbourg, 7 rue René Descartes, Strasbourg, France.
Description: The meeting is No. 84 in the series "Encounter Between Mathematicians and Theoretical Physicists". The focus is on quantum topology and Chern-Simons theory. There will be survey lectures and specialized talks.
Invited speakers: A. Alekseev (Geneva), J. E. Andersen (Aarhus), F. Costantino (Strasbourg), V. Fock (Strasbourg), S. Garoufalidis (Georgia Tech), R. Kashaev (GenËve), G. Masbaum (Paris 7), K. Noui (Tours), N. Reshetikhin (Amsterdam), B. Schroers (Edinburgh), Teschner (Hamburg), G. Thompson (Trieste).
Organization and information: Gwenael Massuyeau and Athanase Papadopoulos; email: massuyea@math.u-strasbg.fr; papado-poulos@math.u-strasbg.fr.
Information: http://www-irma.u-strasbg.fr/article744. html; email: papadopoulos@math.u-strasbg.fr.

November 2009

* 1-December 31 Financial Mathematics, Institute for Mathematical Sciences, National University of Singapore, Singapore.
Description: This program will be focusing on, but not limited to, the following three areas: 1) the pricing and hedging of environmental and energy-related financial derivatives; 2) risk and robust optimization; 3) optimal stopping and singular stochastic control problems in finance.

-Save the Date-

CLAY RESEARCH Conference

May 4-5, 2009 Cambridge, MA

[venue to be announced]

The Clay Mathematics Institute's annual conference featuring eight lectures on recent research developments and presentation of the Clay Research Awards.

Confirmed speakers
Heisuke Hironaka
Dinakar Ramakrishanan
Kannan Soundararajan

To preview lecture videos and program information from previous conferences and the full 2009 program (tba), see

www.claymath.org/researchconference

These areas form the substance of 3 workshops in the two-month long program. The workshops are intended for researchers working in the specific areas to congregate, cross-pollinate ideas, exchange knowledge, and together advance the mathematical frontiers in publishing and disseminating rigorous pieces of scholastic work.
Information: http://ims.nus.edu.sg/Programs/financialm09/index.htm; email: imscec@nus.edu.sg.

* 2-6 Combinatorics: Topics in Graphs and Hypergraphs, Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California.
Overview: The workshop will focus on several research directions in modern graph and hypergraph theory including Ramsey theory, extremal problems for graphs and hypergraphs and in particular Turan-type questions, extremal set theory and its applications to information theory, computer science and coding theory, algebraic methods in extremal combinatorics, Szemeredi's regularity lemma for graphs and hypergraphs and its application to number theory and property testing.
Organizing Committee: Penny Haxell, Dhruv Mubayi, Vera Sos, Benjamin Sudakov, Jacques Verstraete
Application/Registration: An application and registration form is available at: http://www.ipam.ucla.edu/programs/cmaws3/. Applications received by Sept. 21, 2009 will receive fullest consideration. Encouraging the careers of women and minority mathematicians and scientists is an important component of IPAM's mission and we welcome their applications. You may also register and attend without IPAM funding.
Information: http://www.ipam.ucla.edu/programs/cmaws3/; email: sbeggs@ipam.ucla.edu. Origins
ROBERT TUBBS

Adventures in Group Theory

SECOND EDITION
DAVID JOYNER

What Is a Number?

Mathematical Concepts and Their

This historic and thematic study refutes the received wisdom that mathematical concepts are esoteric and divorced from other intellectual pursuits-revealing them instead as dynamic and intrinsic to almost every human endeavor. $\$ 27.50$ paperback

Rubik's Cube, Merlin's Machine, and Other Mathematical Toys
"If you like puzzles, this is a somewhat fun book. If you like algebra, this is a fun book. If you like puzzles and algebra, this is a really fun book." —MAA Online $\quad \$ 27.50$ paperback

The JOHNS HOPKINS UNIVERSITY PRESS

Ambrican Mathematical Society

2009 Spring AMS
 Sectional Meetings

March 27-29, 2009 (Friday-Sunday)
University of Illinois at UrbanaChampaign, Urbana, IL
(2009 Spring Central Section Meeting)
April 4-5, 2009 (Saturday-Sunday)
North Carolina State University, Raleigh, NC
(2009 Spring Southeastern Section Meeting)
April 25-26, 2009 (Saturday-Sunday)
Worcester Polytechnic Institute,
Worcester, MA
(2009 Spring Eastern Section Meeting)
April 25-26, 2009 (Saturday-Sunday)
San Francisco State University, San Francisco, CA
(2009 Spring Western Section Meeting)

New Publications Offered by the AMS

To subscribe to email notification of new AMS publications, please go to http://www.ams.org/bookstore-email.

Algebra and Algebraic Geometry

Residues and Duality for Projective Algebraic Varieties

 Ernst Kunz, University of Regensburg, Germany with the assistance of and contributions by David A. Cox, Amherst College, MA, and Alicia Dickenstein, University of Buenos Aires, ArgentinaThis book, which grew out of lectures by E. Kunz for students with a background in algebra and algebraic geometry, develops local and global duality theory in the special case of (possibly singular) algebraic varieties over algebraically closed base fields. It describes duality and residue theorems in terms of Kähler differential forms and their residues. The properties of residues are introduced via local cohomology. Special emphasis is given to the relation between residues to classical results of algebraic geometry and their generalizations. The contribution by A. Dickenstein gives applications of residues and duality to polynomial solutions of constant coefficient partial differential equations and to problems in interpolation and ideal membership. D. A. Cox explains toric residues and relates them to the earlier text.
The book is intended as an introduction to more advanced treatments and further applications of the subject, to which numerous bibliographical hints are given.
This item will also be of interest to those working in analysis.
Contents: Local cohomology functors; Local cohomology of noetherian affine schemes; Čech cohomology; Koszul complexes and local cohomology; Residues and local cohomology for power series rings; The cohomology of projective schemes; Duality and residue theorems for projective space; Traces, complementary modules, and differents; The sheaf of regular differential forms on
an algebraic variety; Residues for algebraic varieties. Local duality; Duality and residue theorems for projective varieties; Complete duality; Applications of residues and duality; Toric residues; Bibliography; Index.
University Lecture Series, Volume 47
December 2008, 158 pages, Softcover, ISBN: 978-0-8218-4760-2, LC 2008038860, 2000 Mathematics Subject Classification: 14Fxx, 14F10, 14B15; 32A27, 14M10, 14M25, AMS members US\$31, List US $\$ 39$, Order code ULECT/47

Representation Theory

Zongzhu Lin, Kansas State University, Manhattan, KS, and Jianpan Wang, East China Normal University, Shanghai, People's Republic of China, Editors

Articles in this volume cover topics related to representation theory of various algebraic objects such as algebraic groups, quantum groups, Lie algebras, (finite- and infinite-dimensional) finite groups, and quivers. Collected in one book, these articles show deep relations between all these aspects of representation theory, as well as the diversity of algebraic, geometric, topological, and categorical techniques used in studying representations.
Contents: H. H. Andersen, Sum formulas and Ext-groups; S. Doty, Schur-Weyl duality in positive characteristic; A. Francis and W. Wang, The centers of Iwahori-Hecke algebras are filtered; University of Georgia Vigre Algebra Group, On Kostant's theorem for Lie algebra cohomology; \mathbf{X}. He, G-stable pieces and partial flag varieties; L. Ji, Steinberg representations and duality properties of arithmetic groups, mapping class groups, and outer automorphism groups of free groups; S. Kumar, G. Lusztig, and D. Prasad, Characters of simplylaced nonconnected groups versus characters of nonsimplylaced connected groups; G. Liu, Classification of finite-dimensional basic Hopf algebras according to their representation type; G. Lusztig, Twelve bridges from a reductive group to its Langlands dual; B. J. Parshall and
L. L. Scott, Some new highest weight categories; I. Pop and A. Stolin, Classification of quasi-trigonometric solutions of the classical Yang-Baxter equation; C. M. Ringel, The relevance and the ubiquity of Prüfer modules; A. Savage, Quivers and the Euclidean group; S. Shang and Y. Gao, eu_{2}-Lie admissible algebras and Steinberg unitary Lie algebras; T. Shoji, Lusztig's conjecture for finite classical groups with even characteristic; Y. Su, A survey on quasifinite representations of Weyl type Lie algebras; N. Xi, Maximal and primitive elements in baby Verma modules for type B_{2}; Y.-F. Yao and B. Shu, Irreducible representations of the special algebras in prime characteristic.
Contemporary Mathematics, Volume 478
February 2009, 295 pages, Softcover, ISBN: 978-0-8218-4555-4, LC 2008034291, 2000 Mathematics Subject Classification: 16Gxx, 17Bxx, 20Cxx, 20Gxx; 17B10, 17B20, 17B37, 17B45, 17B56, 20G05, 20G10, 20G42, 20C05, 20C08, 20C30, AMS members US\$71, List US\$89, Order code CONM/478

Applications

Combinatorics on Words

Christoffel Words and Repetitions in Words

Jean Berstel, Université de Marne-la-Vallée, France, Aaron Lauve, Texas A\&M University, College Station, TX, and Christophe Reutenauer and
Franco V. Saliola, Université du Québec à Montréal, QC, Canada

The two parts of this text are based on two series of lectures delivered by Jean Berstel and Christophe Reutenauer in March 2007 at the Centre de Recherches Mathématiques, Montréal, Canada. Part I represents the first modern and comprehensive exposition of the theory of Christoffel words. Part II presents numerous combinatorial and algorithmic aspects of repetition-free words stemming from the work of Axel Thue-a pioneer in the theory of combinatorics on words.
A beginner to the theory of combinatorics on words will be motivated by the numerous examples, and the large variety of exercises, which make the book unique at this level of exposition. The clean and streamlined exposition and the extensive bibliography will also be appreciated. After reading this book, beginners should be ready to read modern research papers in this rapidly growing field and contribute their own research to its development.
Experienced readers will be interested in the finitary approach to Sturmian words that Christoffel words offer, as well as the novel geometric and algebraic approach chosen for their exposition. They will also appreciate the historical presentation of the Thue-Morse word and its applications and the novel results on Abelian repetition-free words.
This item will also be of interest to those working in analysis and number theory.

Titles in this series are co-published with the Centre de Recherches Mathématiques.
Contents: Part I. Christoffel words: Christoffel words; Christoffel morphisms; Standard factorization; Palindromization; Primitive elements in the free group F_{2}; Characterizations; Continued fractions; The theory of Markoff numbers; Part II. Repetitions in words: The Thue-Morse word; Combinatorics of the Thue-Morse word; Square-free words; Squares in words; Repetitions and patterns; Bibliography; Index.
CRM Monograph Series, Volume 27
January 2009, 147 pages, Hardcover, ISBN: 978-0-8218-4480-9, LC 2008036669, 2000 Mathematics Subject Classification: 68R15; 37B10, 11J70, 68W40, AMS members US\$41, List US\$51, Order code CRMM/27

Recent Trends in Cryptography

Ignacio Luengo, Universidad Complutense de Madrid, Spain, Editor

This volume contains articles representing the courses given at the 2005 RSME Santaló Summer School on "Recent Trends in Cryptography". The main goal of the Summer School was to present some of the recent mathematical methods used in cryptography and cryptanalysis. The School was oriented to graduate and doctoral students, as well as recent doctorates. The material is presented in an expository manner with many examples and references.
The topics in this volume cover some of the most interesting new developments in public key and symmetric key cryptography, such as pairing based cryptography and lattice based cryptanalysis.
This item will also be of interest to those working in number theory. This book is copublished by the Real Sociedad Matemática Española and the American Mathematical Society.
Contents: A. Fúster-Sabater, Cellular automata in stream ciphers; T. Helleseth, Linear and nonlinear sequences and applications to stream ciphers; A. Menezes, An introduction to pairing-based cryptography; P. Q. Nguyen, Public-key cryptanalysis; I. E.
Shparlinski, Pseudorandom number generators from elliptic curves.
Contemporary Mathematics, Volume 477
February 2009, 141 pages, Softcover, ISBN: 978-0-8218-3984-3, LC 2008033089, 2000 Mathematics Subject Classification: 94Axx, 94A60, 94A62, 11T71, 14G50, 68P25, 14H52, AMS members US\$39, List US\$49, Order code CONM/477

Discrete Mathematics and Combinatorics

> Combinatorial Geometry and Its Algorithmic Applications
> The Alcalá Lectures

János Pach, Courant Institute of Mathematical Sciences, New York, $N Y$, and Micha Sharir, Tel Aviv University, Israel

Based on a lecture series given by the authors at a satellite meeting of the 2006 International Congress of Mathematicians and on many articles written by them and their collaborators, this volume provides a comprehensive up-to-date survey of several core areas of combinatorial geometry. It describes the beginnings of the subject, going back to the nineteenth century (if not to Euclid), and explains why counting incidences and estimating the combinatorial complexity of various arrangements of geometric objects became the theoretical backbone of computational geometry in the 1980s and 1990s. The combinatorial techniques outlined in this book have found applications in many areas of computer science from graph drawing through hidden surface removal and motion planning to frequency allocation in cellular networks.

Combinatorial Geometry and Its Algorithmic Applications is intended as a source book for professional mathematicians and computer scientists as well as for graduate students interested in combinatorics and geometry. Most chapters start with an attractive, simply formulated, but often difficult and only partially answered mathematical question, and describes the most efficient techniques developed for its solution. The text includes many challenging open problems, figures, and an extensive bibliography.
This item will also be of interest to those working in applications.
Contents: Sylvester-Gallai problem: The beginnings of combinatorial geometry; Arrangements of surfaces: Evolution of the basic theory; Davenport-Schinzel sequences: The inverse Ackermann function in geometry; Incidences and their relatives: From Szemerédi and Trotter to cutting lenses; Crossing numbers of graphs: Graph drawing and its applications; Extremal combinatorics: Repeated patterns and pattern recognition; Lines in space: From ray shooting to geometric transversals; Geometric coloring problems: Sphere packings and frequency allocation; From Sam Loyd and László Fejes Tóth: The 15 puzzle and motion planning; Bibliography; Index.
Mathematical Surveys and Monographs, Volume 152
January 2009, 235 pages, Hardcover, ISBN: 978-0-8218-4691-9, LC 2008038876, 2000 Mathematics Subject Classification: 05C35, 05C62, 52C10, 52C30, 52C35, 52C45, 68Q25, 68R05, 68W05, 68W20, AMS members US\$60, List US\$75, Order code SURV/152

Niels Henrik Abel

Mathematician
Extraordinary
Øystein Ore

This is a story of more than a century ago, about a circle of young scientists, and in particular one among them, a mathematician, Niels Henrik Abel. He is well known to any mathematician of today; indeed, few men have their name associated with so many results and concepts in modern mathematics. This, however, is not the main concern in this book. It is rather the simple story of a scientist, his family and friends, his hopes and sorrows, his triumphs and tragedies. Many great lives, rich in outer events, have inspired biographers. But the profound humanity of a searching soul may provide the background for an equally arresting chronicle-the heart-warming tale of a young man who set out from a little Norwegian town to explore the world of science.

Contents: Family and childhood; At the university; Journey to the continent; The return; Epilogue; Bibliography; Index of names.

AMS Chelsea Publishing, Volume 274
October 2008, 277 pages, Hardcover, ISBN: 978-0-8218-4644-5, LC 73-14693, 2000 Mathematics Subject Classification: 01A70, 01A55, AMS members US\$44, List US\$49, Order code CHEL/274.H

Geometry and Topology

Singularities II

Geometric and Topological Aspects

Jean-Paul Brasselet, Institut de Mathématiques de Luminy-CNRS, Marseille, France, José Luis Cisneros-Molina, Universidad Nacional Autónoma de México, Cuernavaca, Mexico, David Massey, Northeastern University, Boston, MA, José Seade, Universidad Nacional Autónoma de México, Cuernavaca, Mexico, and Bernard Teissier, Institut Mathématique de Jussieu-CNRS, Paris, France, Editors

This is the second part of the proceedings of the "School and Workshop on the Geometry and Topology of Singularities", held in Cuernavaca, Mexico, from January 8 to 26 of 2007, in celebration of the 60th Birthday of Lê Dũng Tráng.
This volume contains fourteen cutting-edge research articles on geometric and topological aspects of singularities of spaces and
maps. By reading this volume, and the accompanying volume on algebraic and analytic aspects of singularities, the reader should gain an appreciation for the depth, breadth, and beauty of the subject and also find a rich source of questions and problems for future study.
Contents: S. Altinok and M. Bhupal, Minimal page-genus of Milnor open books on links of rational surface singularities; D. Chéniot, Homotopical variation; J. L. Cisneros-Molina, Join theorem for polar weighted homogeneous singularities; H. H. Vui and N. T. Thang, On the topology of polynomial functions on algebraic surfaces in $\mathbb{C}^{n} ; \mathbf{H}$. A. Hamm, On theorems of Zariski-Lefschetz type; L. Hernández de la Cruz and S. López de Medrano, Some families of isolated singularities; D. Kerner, On the collisions of singular points of complex algebraic plane curves; L. Meersseman and A. Verjovsky, Sur les variétés LV-M; F. Michel, Jacobian curves for normal complex surfaces; M. Oka, Geometry of pencil of plane curves via Taylor expansions; P. Popescu-Pampu, On the cohomology rings of holomorphically fillable manifolds; R. N. Araújo dos Santos, Uniform (m)-condition and strong Milnor fibrations; M. Shubladze, On the topology of hyperplane singularities of finite codimension; C. Weber, On the topology of singularities.
Contemporary Mathematics, Volume 475
December 2008, 251 pages, Softcover, ISBN: 978-0-8218-4717-6, LC 2008028179, 2000 Mathematics Subject Classification: 14B05, 14E15, 14J17, 32Sxx, 34M35, 35A20, AMS members US\$63, List US\$79, Order code CONM/475

Mathematical Physics

Advances in String Theory

The First Sowers Workshop in Theoretical Physics

Eric Sharpe, Virginia Polytechnic Institute \& State University, Blacksburg, VA, and Arthur Greenspoon, American
Mathematical Society, Ann Arbor, MI, Editors

Over the past decade string theory has had an increasing impact on many areas of physics: high energy and hadronic physics, gravitation and cosmology, mathematical physics and even condensed matter physics. The impact has been through many major conceptual and methodological developments in quantum field theory in the past fifteen years. In addition, string theory has exerted a dramatic influence on developments in contemporary mathematics, including Gromov-Witten theory, mirror symmetry in complex and symplectic geometry, and important ramifications in enumerative geometry.
This volume is derived from a conference of younger leading practitioners around the common theme: "What is string theory?" The talks covered major current topics, both mathematical and physical, related to string theory.
This item will also be of interest to those working in algebra and algebraic geometry.

Titles in this series are co-published with International Press, Cambridge, MA.
Contents: O. J. Ganor, Puff field theory; R. G. Leigh, T.-P. Choy, and P. Phillips, Mottness and strong coupling; A. C. Petkou, Holographic aspects of generalized electric-magnetic dualities; S. R. Das, Null and spacelike singularities and gauge-gravity duality; K. R. Dienes, M. Lennek, D. Sénéchal, and V. Wasnik, Is SUSY natural?; N. Kaloper, Brane induced gravity: Codimension-2; A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe, Local bulk operators in AdS/CFT and the fate of the BTZ singularity; L.-S. Tseng, Heterotic geometry and fluxes; L. Freidel, R. G. Leigh, D. Minic, and A. Yelnikov, On the spectrum of pure Yang-Mills theory; V. Balasubramanian, J. de Boer, S. El-Showk, and I. Messamah, Resolving black hole microstates; A. Tomasiello, Geometry of supersymmetric type II solutions; F. Larsen, Resolving gravitational singularities; E. Sharpe, Recent developments in heterotic compactifications; V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger, Worldsheet instantons and torsion curves.
AMS/IP Studies in Advanced Mathematics, Volume 44
December 2008, 244 pages, Softcover, ISBN: 978-0-8218-4764-0, LC 2008039170, 2000 Mathematics Subject Classification: 81T30, 83E30, AMS members US\$52, List US\$65, Order code AMSIP/44

Fourth Summer School in Analysis and Mathematical Physics

Topics in Spectral Theory and Quantum Mechanics

Carlos Villegas-Blas, Universidad Nacional Autónoma de México, Mexico, Editor

This book consists of three expository articles written by outstanding researchers in mathematical physics: Rafael Benguria, Peter Hislop, and Elliott Lieb. The articles are based on their lectures at the Fourth Summer School in Analysis and Mathematical Physics, held at the Institute of Mathematics, Universidad Nacional Autónoma de Mexico, Cuernavaca in May 2005.
The main goal of the articles is to link the basic knowledge of a graduate student in Mathematics with three current research topics in Mathematical Physics: Isoperimetric inequalities for eigenvalues of the Laplace Operator, Random Schrödinger Operators, and Stability of Matter, respectively.
These well written articles will guide and introduce the reader to current research topics and will also provide information on recent progress in some areas of Mathematical Physics.
This book is co-published with Sociedad Matematica Mexicana.
Contents: R. D. Benguria and H. Linde, Isoperimetric inequalities for eigenvalues of the Laplace operator; P. D. Hislop, Lectures on random Schrödinger operators; E. H. Lieb, Quantum mechanics, the stability of matter and quantum electrodynamics.
Contemporary Mathematics, Volume 476
December 2008, 148 pages, Softcover, ISBN: 978-0-8218-4064-1, LC 2008028976, 2000 Mathematics Subject Classification: 81-02, 82D30, 35P05, 81Q99, AMS members US\$39, List US\$49, Order code CONM/476

Computational

 Geometry of Positive Definite Quadratic FormsPolyhedral Reduction Theories, Algorithms, and Applications

Achill Schürmann, Otto-vonGuericke Universität Magdeburg, Germany

Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices.

Throughout this book, special attention is paid to algorithms and computability, allowing computer-assisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights.
This item will also be of interest to those working in geometry and topology, algebra and algebraic geometry, and applications.

Contents: From quadratic forms to sphere packings and coverings; Minkowski reduction; Voronoi I; Voronoi II; Local analysis of coverings and applications; Polyhedral representation conversion under symmetries; Possible future projects; Bibliography; Index; Notations.

University Lecture Series, Volume 48
January 2009, approximately 162 pages, Softcover, ISBN: 978-0-8218-4735-0, LC 2008042435, 2000 Mathematics Subject Classification: 11-02, 52-02, 11Hxx, 52Bxx, 52Cxx, 90Cxx, 20H05; 11J70, 11R80, 20B25, 20H05, AMS members US\$31, List US\$39, Order code ULECT/48

New AMS-Distributed Publications

Algebra and Algebraic Geometry

K-Theory and Noncommutative Geometry

Guillermo Cortiñas, University of Buenos Aires, Argentina, Joachim Cuntz, University of Münster, Munster, Germany, Max Karoubi, Université Paris VII, France, Ryszard Nest, University of Copenhagen, Denmark, and Charles A. Weibel, Rutgers University, New Brunswick, NJ, Editors

Since its inception 50 years ago, K-theory has been a tool for understanding a wide-ranging family of mathematical structures and their invariants: topological spaces, rings, algebraic varieties and operator algebras are the dominant examples. The invariants range from characteristic classes in cohomology, determinants of matrices, Chow groups of varieties, as well as traces and indices of elliptic operators. Thus K-theory is notable for its connections with other branches of mathematics.
Noncommutative geometry develops tools which allow one to think of noncommutative algebras in the same footing as commutative ones: as algebras of functions on (noncommutative) spaces. The algebras in question come from problems in various areas of mathematics and mathematical physics; typical examples include algebras of pseudodifferential operators, group algebras, and other algebras arising from quantum field theory.
To study noncommutative geometric problems one considers invariants of the relevant noncommutative algebras. These invariants include algebraic and topological K-theory, and also cyclic homology, discovered independently by Alain Connes and Boris Tsygan, which can be regarded both as a noncommutative version of de Rham cohomology and as an additive version of K-theory. There are primary and secondary Chern characters which pass from K-theory to cyclic homology. These characters are relevant both to noncommutative and commutative problems and have applications ranging from index theorems to the detection of singularities of commutative algebraic varieties.
The contributions to this volume represent this range of connections between K-theory, noncommmutative geometry, and other branches of mathematics.

This item will also be of interest to those working in analysis.

A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.

Contents: R. Meyer, Categorical aspects of bivariant K-theory; A. Bartels, S. Echterhoff, and W. Lück, Inheritance of isomorphism conjectures under colimits; H. Emerson and R. Meyer, Coarse and equivariant co-assembly maps; F. Muro and A. Tonks, On K_{1} of a Waldhausen category; M. Karoubi, Twisted K-theory-old and new; C. Voigt, Equivariant cyclic homology for quantum groups; P. C. Rouse, A Schwartz type algebra for the tangent groupoid; J. Cuntz, C^{*}-algebras associated with the $a x+b$-semigroup over \mathbb{N}; W. Werner, On a class of Hilbert C^{*}-manifolds; U. Bunke, T. Schick, M. Spitzweck, and A. Thom, Duality for topological abelian group stacks and T-duality; P. Bressler, A. Gorokhovsky, R. Nest, and B. Tsygan, Deformations of gerbes on smooth manifolds; G. Garkusha and M. Prest, Torsion classes of finite type and spectra; T. Geisser, Parshin's conjecture revisited; C. Weibel, Axioms for the norm residue isomorphism; List of contributors; List of participants.
EMS Series of Congress Reports, Volume 2
October 2008, 454 pages, Hardcover, ISBN: 978-3-03719-060-9, 2000 Mathematics Subject Classification: 19-06, 58-06, 14A22, 14Fxx, 46Lxx, 53D55, 58Bxx, AMS members US\$99, List US\$124, Order code EMSSCR/2

> Crystalline Cohomology of Algebraic Stacks and Hyodo-Kato Cohomology

Martin C. Olsson, University of California, Berkeley, CA

In this text the author uses stack-theoretic techniques to study the crystalline structure on the de Rham cohomology of a proper smooth scheme over a p-adic field and applications to p-adic Hodge theory. He develops a general theory of crystalline cohomology and de Rham-Witt complexes for algebraic stacks and applies it to the construction and study of the (φ, N, G)-structure on de Rham cohomology. Using the stack-theoretic point of view instead of log geometry, he develops the ingredients needed to prove the $C_{\text {st }}$-conjecture using the method of Fontaine, Messing, Hyodo, Kato, and Tsuji, except for the key computation of p-adic vanishing cycles. He also generalizes the construction of the monodromy operator to schemes with more general types of reduction than semistable and proves new results about tameness of the action of Galois on cohomology.
A publication of the Société Mathématique de France, Marseilles (SMF), distributed by the AMS in the U.S., Canada, and Mexico. Orders from other countries should be sent to the SMF. Members of the SMF receive a 30\% discount from list.
Contents: Introduction; Divided power structures on stacks and the crystalline topos; Crystals and differential calculus on stacks; The Cartier isomorphism and applications; De Rham-Witt theory; The abstract Hyodo-Kato isomorphism; The (φ, N, G)-structure on de Rham cohomology; A variant construction of the (φ, N, G)structure; Comparison with syntomic cohomology; Comparison
with log geometry in the sense of Fontaine and Illusie; Bibliography; Index of notation; Index of terminology.
Astérisque, Number 316
September 2008, 412 pages, Softcover, ISBN: 978-2-85629-249-5, 2000 Mathematics Subject Classification: 14F20, 14F30, 14G20, 11G25, Individual member US\$119, List US\$132, Order code AST/316

Trends in Representation Theory of Algebras and Related Topics

Andrzej Skowroński, Nicholas Copernicus University, Torun, Poland, Editor

This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development.
The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen-Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander-Reiten theory, Calabi-Yau triangulated categories, Poincaré duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, and model theory.
This book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.

A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
Contents: S. Ariki, Finite dimensional Hecke algebras; G. Bobiński, C. Riedtmann, and A. Skowroński, Semi-invariants of quivers and their zero sets; I. Burban and Y. Drozd, Maximal Cohen-Macaulay modules over surface singularities; J. F. Carlson, Rank varieties; K. Erdmann and A. Skowroński, Periodic algebras; C. Geiss, B. Leclerc, and J. Schröer, Preprojective algebras and cluster algebras; I. G. Gordon, Symplectic reflection algebras; O. Iyama, Auslander-Reiten theory revisited; P. Jørgensen, Calabi-Yau categories and Poincaré duality spaces; S. Kasjan, Representation types of algebras from the model theory point of view; B. Keller, Calabi-Yau triangulated categories; S. Koenig, A panorama of diagram algebras; H. Lenzing and J. A. de la Peńa, Spectral analysis
of finite dimensional algebras and singularities; M. Reineke, Moduli of representations of quivers; A. Skowroński and K. Yamagata, Selfinjective algebras of quasitilted type; List of contributors.
EMS Series of Congress Reports, Volume 1
September 2008, 722 pages, Hardcover, ISBN: 978-3-03719-062-3, 2000 Mathematics Subject Classification: 16-02, 16Gxx, 03Cxx, 05Exx, 13Axx, 13Cxx, 13Hxx, 14Lxx, 14Mxx, 16Dxx, 16Exx, 16Sxx, 17Bxx, 18Exx, 18Gxx, 20Cxx, 20Gxx, 20Jxx, 32Sxx, 55Pxx, 57Mxx, 81Rxx, AMS members US\$110, List US\$138, Order code EMSSCR/1

Discrete Mathematics and Combinatorics

From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis
Christian Lubich, University of Tübingen, Germany

Quantum dynamics of molecules poses a variety of computational challenges that are presently at the forefront of research efforts in numerical analysis in a number of application areas: high-dimensional partial differential equations, multiple scales, highly oscillatory solutions, and geometric structures such as symplecticity and reversibility that are favourably preserved in discretizations.
This text addresses such problems in quantum mechanics from the viewpoint of numerical analysis, illustrating them to a large extent on intermediate models between the Schrödinger equation of full many-body quantum dynamics and the Newtonian equations of classical molecular dynamics. The fruitful interplay between quantum dynamics and numerical analysis is emphasized.
A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
Contents: Quantum vs. classical dynamics; Reduced models via variational approximation; Numerical methods for the time-dependent Schrödinger equation; Numerical methods for non-linear reduced models; Semi-classical dynamics using Hagedorn wave packets; Bibliography.
Zurich Lectures in Advanced Mathematics, Volume 12
September 2008, 156 pages, Softcover, ISBN: 978-3-03719-067-8, 2000 Mathematics Subject Classification: 65M70, 65Z05, 81-08, AMS members US\$31, List US\$39, Order code EMSZLEC/12

Five-Minute Mathematics

Ehrhard Behrends

Freie Universität Berlin, Germany
This collection of one hundred short essays offers a tour through contemporary and everyday mathematics that is both entertaining and enlightening.

Translated by
 David Kramer

2008; 380 pp; softcover; ISBN: 978-0-8218-4348-2; List Price: US\$35; Member Price: US\$28; Order Code: MBK/53

Classified Advertisements

Positions available, items for sale, services available, and more

CALIFORNIA

UNIVERSITY OF CALIFORNIA, RIVERSIDE Department of Mathematics F. Burton Jones Chair

Applications and nominations are invited for the F. Burton Jones Chair in Pure Mathematics. The appointee will be a person of great distinction, with an international reputation for outstanding research. This prestigious chair was established with the generous endowment by the late emeritus professor, F. Burton Jones.

The holder of the Jones Chair will be expected to play a leading role in the department's research and teaching programs, especially at the graduate level. It is hoped to have the position filled by July 1, 2009.

It is expected that the appointment will be with tenure at the rank of full professor and that the appointee will perform all the duties thereof. Established criteria of the University of California determine rank and salary.

Initial review of applications will begin on December 1, 2008, and will continue until the position is filled.

Curriculum vitae, publication lists, and the names of at least five references are required.

Please send candidate information or any nominations to:

Search Committee

F. Burton Jones Chair

Department of Mathematics
University of California, Riverside

900 University Ave.
Riverside, CA 92521
The University of California, Riverside is an Affirmative Action/Equal Opportunity Employer.

000014

UNIVERSITY OF SOUTHERN CALIFORNIA Department of Mathematics

The University of Southern California Department of Mathematics seeks to fill the following three positions. The start date for all three positions is August 2009.
Tenure-Track Assistant Professorship. Subject area: open. Candidates should have demonstrated excellence in research and a strong commitment to graduate and undergraduate education.
Busemann Assistant Professorship. Subject area: geometry and/or topology. Candidates should demonstrate great promise in research in geometry/topology and evidence of strong teaching. This is a threeyear non-tenure-track appointment with a three-course-per-year teaching load.

Assistant Professor Non-Tenure-Track. Subject area: any field of mathematics of interest to senior members of the department. Candidates should demonstrate great promise in research and evidence of strong teaching. This is a three-year non-tenure-track appointment with a four-course-per-year teaching load.
To apply, please submit the following materials: letter of application and curriculum vitae, including your email address, telephone and fax numbers, pref-
erably with the standardized AMS Cover Sheet. Candidates should also arrange for at least three letters of recommendation to be sent, one of which addresses teaching skills. Applications through MathJobs at http://www.mathjobs.org are preferred. Otherwise, all materials should be mailed to:

Search Committee
Department of Mathematics
College of Letters Arts and Sciences
University of Southern California
3620 Vermont Avenue, KAP 108
Los Angeles, CA 90089-2532.
Review of applications will begin November 15,2008 , and will continue until the positions are filled. Additional information about the USC Department of Mathematics can be found at our website http://www.usc.edu/schools/ college/mathematics. USC strongly values diversity and is committed to equal opportunity in employment. Women and men and members of all racial and ethnic groups are encouraged to apply.

000147

FLORIDA

FLORIDA INTERNATIONAL UNIVERSITY Department of Mathematics

The Department of Mathematics at Florida International University invites applications for one position at open rank to build the research strength of the department and to provide leadership in building towards a Ph.D. program. The field for the

Suggested uses for classified advertising are positions available, books or lecture notes for sale, books being sought, exchange or rental of houses, and typing services.
The 2009 rate is $\$ 110$ per inch or fraction thereof on a single column (oneinch minimum), calculated from top of headline. Any fractional text of $1 / 2$ inch or more will be charged at the next inch rate. No discounts for multiple ads or the same ad in consecutive issues. For an additional \$10 charge, announcements can be placed anonymously. Correspondence will be forwarded.
Advertisements in the "Positions Available" classified section will be set with a minimum one-line headline, consisting of the institution name above body copy, unless additional headline copy is specified by the advertiser. Headlines will be centered in boldface at no extra charge. Ads will appear in the language in which they are submitted.
There are no member discounts for classified ads. Dictation over the telephone will not be accepted for classified ads.
Upcoming deadlines for classified advertising are as follows: February 2009 issue-November 26, 2008; March 2009 issue-December 29, 2008; April 2009
issue-January 29, 2009; May 2009-February 27, 2009; June/July 2009 issueApril 28. 2009; August 2009 issue-May 28, 2009.
U.S. laws prohibit discrimination in employment on the basis of color, age, sex, race, religion, or national origin. "Positions Available" advertisements from institutions outside the U.S. may not be legally bound to conform to these or similar requirements. Details may be found on page 1041 (volume 55).
Situations wanted advertisements from involuntarily unemployed mathematicians are accepted under certain conditions for free publication. Call toll-free 800-321-4AMS (321-4267) in the U.S. and Canada or 401-455-4084 worldwide for further information.
Submission: Promotions Department, AMS, P.O. Box 6248, Providence, Rhode Island 02940; or via fax: 401-331-3842; or send email to c1assads@ams.org. AMS location for express delivery packages is 201 Charles Street, Providence, Rhode Island 20904. Advertisers will be billed upon publication.
position is open. Duties will include mathematical research, teaching, and service. Qualifications include Ph.D. in mathematics and outstanding record in research and teaching. Established record of funded research and successful Ph.D. students is a plus. FIU is a public university with over 37,000 students, http://www.fiu. edu. To apply, send an application letter, a vita, and names and contact information for at least three referees to: Recruitment Committee, Department of Mathematics, Florida International University, Miami, FL 33199. A member of the State University System, FIU is an EE/EO/EA Employer and Institution. Review of applications will start on February 1, 2009, and will continue until the position is filled. For more information, visit the department's website at http://w3.fiu.edu/~math.

ILLINOIS

NORTHWESTERN UNIVERSITY Department of Mathematics Boas Assistant Professor

Applications are solicited for up to three Ralph Boas assistant professorships of three years each starting September 2009. These are non-tenure-track positions with a teaching load of four quarter courses per year. We invite applications from qualified mathematicians in all fields.

Applications should be made electronically at: http://www.mathjobs.org and should include (1) the American Mathematical Society Cover Sheet for Academic Employment, (2) a curriculum vitae, (3) a research statement, and (4) three letters of recommendation, one of which discusses the candidate's teaching qualifications. Inquiries may be sent to: boas@math. northwestern.edu.

The review process starts December 1, 2008. Northwestern University is committed to fostering a diverse faculty; women and minority candidates are especially encouraged to apply. AA/EOE.

000008

NORTHWESTERN UNIVERSITY Department of Mathematics Boas Assistant Professor

Applications are invited for anticipated tenured or tenure-track positions starting September 2009. Priority will be given to exceptionally promising research mathematicians. We invite applications from qualified mathematicians in all fields.

Applications should be made electronically at http://www.mathjobs.org and should include (1) the American Mathematical Society Cover Sheet for Academic Employment, (2) a curriculum vitae, (3) a research statement, and (4) three letters of recommendation, one of which discusses the candidate's teaching qualifications.

Inquiries may be sent to: boas@math. northwestern.edu.

The review process starts December 1, 2008. Northwestern University is committed to fostering a diverse faculty; women and minority candidates are especially encouraged to apply. AA/EOE.

000009

MARYLAND

UNITED STATES NAVAL ACADEMY Mathematics Department

The USNA Mathematics Department anticipates at least one tenure-track position (subject to approval and funding) at the assistant professor level to start in August 2009. See website: http:// www.usna.edu/MathDept/website/ employment. htm 1 for full information. Tel: 410-293-6701; Fax: 410-293-4883; email: chm@usna.edu. The United States Naval Academy is an Affirmative Action/ Equal Employment Opportunity Employer and provides reasonable accommodations to applicants with disabilities.

000007

MICHIGAN

NORTHERN MICHIGAN UNIVERSITY

Mathematics/Computer Science/ Mathematics Education

POSITION TYPE: Department Head, Tenured, Full Professor

DEPARTMENT: Mathematics and Computer Science

DESCRIPTION/REQUIREMENTS: Visit HigherEdJobs.Com or call (906) 2272020

ANNUAL SALARY: Competitive

APPLICATION DEADLINE: Screening will begin December 15, 2008, and continue until the position is filled.

NMU is an AA/EOE.
000006

MISSISSIPPI

UNIVERSITY OF MISSISSIPPI Department of Mathematics

The department of mathematics seeks to fill one tenure-track assistant professor position by August 2009. All candidates should have a Ph.D. by May 2009 (in mathematics or statistics) and outstanding potential in both research and teaching. We seek candidates whose research interests enhance and complement the existing strengths of the department. The successful applicant will teach 6 hours per week and is expected to conduct a vigor-
ous research program. Applicants should complete the application form, cover letter, and CV online at: http://jobs. olemiss.edu. Three letters of recommendation concerning research and at least one concerning teaching, and the applicant's statement on research and teaching must be sent to:

University of Mississippi
Department of Mathematics
Chair of the Search Committee
305 Hume Hall
University, MS 38677, USA
The letters must be submitted directly by the referees. Inquiries about the position may be sent to: mdepart@olemiss.edu.
Screening of applications will begin immediately and will continue until the position is filled. For information about the department and the university see http://www.olemiss.edu.
The University of Mississippi is an EEO/ AA/Title VI/Title IX/Section 504/ADA// ADEA employer.

000010

NEW MEXICO
 UNIVERSITY OF NEW MEXICO Department of Mathematics and Statistics

The Department of Mathematics and Statistics at the University of New Mexico invites applications for a full-time, probationary position leading to a tenure decision at the rank of assistant professor. The department expects to hire a specialist in computational and applied mathematics with a Ph.D. in applied mathematics or a field with a strong mathematical emphasis. For best consideration send application letter, vitae, teaching/research statement, and three reference letters by January 7, 2009, to Applied Math Hiring Committee, Dept. Math. and Stat., MSC03 2150, 1 University of New Mexico, Albuquerque, NM 87131; or submit all but references electronically. The position will remain open until filled. Complete information regarding the posting is located at: http://wws.math.unm.edu/hiring/ AMa.php. UNM's confidentiality policy ("Recruitment and Hiring", Policy \#3210), which includes information about public disclosure of documents submitted by applicants, is located at http://www.unm. edu/~ubppm. University of New Mexico is an EEO/AA employer.

000013

NORTH CAROLINA

WAKE FOREST UNIVERSITY Department of Mathematics

Applications are invited for two tenuretrack positions in mathematics at the assistant professor level beginning August 2009. We seek highly qualified candidates
who have a commitment to excellence in both teaching and research. A Ph.D. in mathematics or a related area is required. Candidates with research interests in number theory, combinatorics, or algebra will receive first consideration. The department has 20 members and offers both a B.A. and a B.S. in mathematics, with an optional concentration in statistics, and a B.S. in each of mathematical business and mathematical economics. The department has a graduate program offering an M.A. in mathematics. A complete application will include a letter of application, curriculum vitae, teaching statement, research statement, graduate transcripts, and three letters of recommendation. Applicants are encouraged to post materials electronically at: http:// www.mathjobs.org. Hard copy can be sent to Stephen Robinson, Wake Forest University, Department of Mathematics, P.O. Box 7388, Winston-Salem, NC 27109. (sbr@wfu.edu, http://www.math.wfu. edu). AA/EO Employer.

000093

OHIO

OHIO WESLEYAN UNIVERSITY Department of Mathematics and Computer Science

Applications are invited for a tenure-track assistant professor position in mathematics to begin in August 2009.

A Ph.D. in mathematics is required with a strong preference for specialization in discrete mathematics or algebra. We seek a new staff member wishing to teach a broad range of undergraduate mathematics courses and to work closely with undergraduates in and out of the classroom. Also important are interest in directing student research projects and developing new courses and activities to enhance the mathematics program. Professional activity and departmental service are expected. The teaching load is three courses each semester. Ohio Wesleyan University is a selective, undergraduate-only liberal arts and sciences institution of 1,850 students located in Delaware, Ohio, a community of 21,000 located 20 miles north of Columbus, Ohio (the state capital, having a population of over $1,000,000$). Please send a letter of application, a statement of teaching and research interests, CV, transcripts (both graduate and undergraduate), and three letters of recommendation to: Professor Jeffrey Nunemacher, Department of Mathematics and Computer Science, Ohio Wesleyan University, 61 S. Sandusky Street, Delaware, OH 43015. To ensure full consideration, applications should be received by January 26, 2009. Further information can be found at: http:// math. owu . edu. The university is strongly committed to diversity and encourages all interested parties, including women and minorities, to apply.

PENNSYLVANIA

UNIVERSITY OF PITTSBURGH Department of Mathematics

The Department of Mathematics at the University of Pittsburgh invites applications for a postdoctoral appointment starting the fall term 2009. The appointment is renewable annually to a maximum of three years. The position is funded jointly by the University of Pittsburgh and a new NSF Research Training Group (RTG) grant on complex biological systems across multiple space and time scales, see http://www.math.pitt.edu/~cbsg/.
The research areas covered by the RTG include (i) the development and analysis of mathematical models and computational algorithms for solving spatio-temporal problems arising in biology and (ii) the applications of these and other methods to problems arising in inflammation and neuroscience.
To be successful, a candidate must demonstrate excellence in research and must also have strong commitment to excellence in teaching at both the undergraduate and graduate levels. Candidates should be willing to work closely with experimentalists and clinicians.

All applications must include the following: (1) a curriculum vita, (2) a personal statement addressing their research agenda, (3) a statement of teaching philosophy, (4) a completed AMS Standard Cover Sheet form and (5) at least three letters of recommendation. Applications should be submitted electronically through http:// www.mathjobs.org. If the candidate is unable to submit electronically, materials may be sent to: Postdoctoral Search Committee in Complex Biological Systems, Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260. Review of completed files will begin on January 10, 2009, and continue until the position is filled.
The University of Pittsburgh is an Affirmative Action, Equal Opportunity Employer. Women and members of minority groups underrepresented in academia are especially encouraged to apply. NSF restrictions require that eligible candidates must be U.S. citizens or permanent residents.

000136

TEXAS

SOUTHERN METHODIST UNIVERSITY Clements Chair of Mathematics

Applications are invited for the Clements Chair of Mathematics to begin in the fall semester of 2009. Preference will be given to senior scholars with outstanding records of research who also have a strong commitment to teaching including an established history of advising Ph.D. theses. Applicants in all areas of applied and
computational mathematics are encouraged. The Department of Mathematics, which offers an active doctoral program in applied and computational mathematics, is in an exciting period of transition having hired four faculty last year. Visit http://www.smu.edu/math for more information about the department.
To apply, send a letter of application with a curriculum vitae, a list of publications, research and teaching statements, and the names of three references (references will not be contacted before receiving approval of the candidate) to: The Faculty Search Committee, Department of Mathematics, Southern Methodist University, P.O. Box 750156, Dallas, Texas, 75275-0156. The Search Committee can be contacted by sending email to mathsearch@mail.smu.edu. (Tel: 214-7682452; Fax: 214-768-2355).

To ensure full consideration for the position, the application must be received by January 9, 2009, but the committee will continue to accept applications until the position is filled. The committee will notify applicants of its employment decision after the position is filled.

SMU, a private university with an engineering school, is situated in a quiet residential section of Dallas. Dallas is home to the University of Texas Southwestern Medical Center and its new Systems Biology Center.
SMU will not discriminate on the basis of race, color, religion, national origin, sex, age, disability or veteran status. SMU is also committed to nondiscrimination on the basis of sexual orientation.

000140

BRAZIL

INSTITUTE FOR PURE AND APPLIED MATHEMATICS (IMPA) Department of Mathematics

The Institute for Pure and Applied Mathematics (IMPA) invites applications for two tenure-track positions in any field of mathematics. IMPA, located in Rio de Janeiro, Brazil, is widely recognized as one of the leading mathematical research centers worlwide. Its main goal is the generation of high-level mathematical research. It also offers graduate level programs at the Ph.D. and MSc. level. Currently, its faculty includes specialists in real and complex dynamical systems, analysis, algebra, geometry, probability, fluid dynamics, optimization, mathematical economics and computer graphics. Applications should be sent to: opening@impa. br until June 30, 2009. Further inquiries should be addressed to the same email address. For information on application submissions, see http://www.impa.br/opencms/pt/ pesquisa/concurso_pesq/opening. htm.

000004

COLOMBIA

UNIVERSIDAD DE LOS ANDES
Department of Mathematics
Faculty and visiting positions 2009
The Department of Mathematics invites applications for positions at the tenuretrack assistant professor level and visiting professor to begin in August 2009. All areas of pure and applied mathematics will be considered but preference will be given to analysis, algebra, differential and algebraic geometry, mathematical physics, probability and statistics. Applicants are required to have a Ph.D. in mathematical sciences and be able to develop a significant research program. A strong commitment to undergraduate and graduate teaching is also required. Duties include courses for undergraduate students in natural sciences, engineering and economics, graduate courses in mathematics, and the eventual supervising of undergraduate, master, or Ph.D. theses. The department offers internationally competitive salaries with start-up grants for research. Proficiency in Spanish is desirable. Please send an AMS standard cover sheet, curriculum vitae, research plan, teaching statement, and three letters of recommendation to:

Faculty Hiring

Department of Mathematics
Universidad de los Andes
A.A. 4976

Bogotá, Colombia
Electronic submission can also be sent to: matema@uniandes.edu.co. Applicants interested in any further information regarding the Mathematics Department at Los Andes please visit the website: http://matematicas.uniandes.edu. co/. Preference will be given to applicants whose applications are submitted by February 11, 2009. Review of applications will continue until positions are filled.

000012

PORTUGAL

INSTITUTO SUPERIOR TÉCNICO

 Department of Mathematics Postdoctoral PositionsThe Center for Mathematical Analysis, Geometry, and Dynamical Systems of the Department of Mathematics of Instituto Superior Técnico, Lisbon, Portugal, invites applications for postdoctoral positions for research in mathematics, subject to budgetary approval. Positions are for one year, with the possibility of extension for a second year upon mutual agreement. Selected candidates will be able to take up their position between September 1, 2009, and January 1, 2010.

Applicants should have a Ph.D. in mathematics, or in a related area relevant to the scientific interests of the faculty of the Center, preferably obtained after

December 31, 2006. They must show very strong research promise in one of the areas in which the mathematics faculty of the center is currently active. There are no teaching duties associated with these positions.
Applicants should send a curriculum vitae; reprints, preprints, and/or dissertation abstract; description of research project (of no more than 1,000 words); and ask that three letters of reference are sent directly to the director at the above address.

To insure full consideration, complete application packages should be received by January 15, 2009. Additional information about the Center and the positions is available at: http://www.math.ist. ut1.pt/cam/.

000011

UNIVERSITY OF COIMBRA Center for Mathematics (CMUC)

The Centre for Mathematics of the University of Coimbra (CMUC) invites applications for one-year postdoctoral research positions, beginning September 2009. The corresponding salary is €1495 per month (tax free).

Applicants should have a Ph.D. in mathematics (preferably obtained after December 31, 2006) and a good command of English.They must show considerable promise in one of the areas of research in which the members of CMUC are currently active. For more information visit http://www.mat.uc.pt/~cmuc.

The deadline for applications is January 31, 2009.

000001

TAIWAN

ACADEMIA SINICA Institute of Mathematics Taiwan, R.O.C.

The Institute of Mathematics, Academia Sinica, is entrusted to promote mathematical research. The institute strives to become a national center of mathematical sciences in Taiwan, as well as an international mathematical institute. Mathematical researchers are welcome to apply for regular positions as well as 2009-2010 postdoctoral positions. Application for regular (resp. postdoctoral) positions completed by Jan. 15, 2009 (resp. May $31,2009)$ will be given full consideration. Interested applicants should have the following materials

1. curriculum vitae
2. doctoral degree certificate
3. description of research
4. copies of representative publications
5. three letters of reference
either sent to:
The Chairman
The Hiring Committee
Institute of Mathematics
Academia Sinica
Nankang 11529,
Taipei, Taiwan
or input to the site: http://www.math. sinica.edu.tw/applicant. For any questions on applications, please contact personne1@math.sinica.edu.tw. For general information about the Inst., please see http://www.math.sinica.edu.tw.

Co-Sponsored Conferences

AAAS Meeting in Chicago Features Mathematics and Applications

The 2009 Annual Meeting of the American Association for the Advancement of Science will be February 12-16, in Chicago, IL. The theme of this year's meeting is "Our Planet and Its Life: Origins and Futures", which is a nod to the fact that 2009 is the 200th anniversary of the birth of Charles Darwin, and the 150th anniversary of the publication of On the Origin of Species by Means of Natural Selection. Many of the symposia sponsored by Section A (Mathematics) are interdisciplinary sessions that fit this theme.
The Annual Meeting is organized into symposia which have three or more speakers, and often a discussant who reflects on the talks that are given. Section A is sponsoring six symposia this year, featuring outstanding expository talks by prominent mathematicians. The six symposia sponsored by Section A this year are:

- The Mathematical Twists and Turns of Data Sets (organized by Robert Ghrist, University of Illinois, UrbanaChampaign)
- Games People Play: Challenges of Applying Mathematics and Computers to Games (organized by Bob Hearn, Dartmouth College)
- Climate and Disease: Quantitative Insights and Interdisciplinary Challenges (organized by Mercedes Pasqual, University of Michigan)
- Green, Gene, Growing Machines: The Evolutionary Shaping of Plant Form (organized by David Baum, University of Wisconsin)
- Mathematical Biology, the New Frontier: Educating the Next Generation (organized by Bonnie Shulman, Bates College)
- Mathematics of Origami: From the Joys of Recreation to the Frontiers of Research (organized by Edward Aboufadel, Grand Valley State, and Patsy Wang-Iverson, The Gabriella and Paul Rosenbaum Foundation)

Other symposia that will be of interest to the mathematical community include:

- New Computing Platforms for Data-Intensive Science
- A New Kind of Scientist: Professional Master's Education and U.S. Competitiveness
- Artificial Cells: Models of the Simplest Life
- The Grid, the Cloud, Sensor Nets, and the Future of Computing
- Big, Small, and Everything in Between: Simulating Our World Using Scientific Computing
- Providing Scientific Advice to the U.S. Congress: Is a New Paradigm Needed?
- The Evolution of Knowledge Production: Exploring

Creativity, Innovation, and Networks

- Earth's History and Future Revealed at the Frontier of Scientific Computing
- K-12 Engineering Education in the United States
- Inquiry or Direct? Research-Based Practices in Science Education
- Interdisciplinary Approaches to the Study of Large-Scale Human Networks
- The Science of Kissing

The above symposia are only a few of the nearly 200 AAAS program offerings in the physical, life, social, and biological sciences. For further information, including the schedule of talks, go to www.aaas.org/meetings.
AAAS annual meetings are the showcases of American science, and they encourage participation by mathematicians and mathematics educators. Section A acknowledges the generous contributions of AMS and MAA for travel support and SIAM for support of media awareness. The AAAS Program Committee is genuinely interested in offering symposia on pure and applied mathematical topics of current interest, and in previous years there have been symposia on subjects such as mathematics and the brain, quantum information theory, the changing nature of mathematical proof, and the mathematical analysis of the performance of baseball players.
The 2010 meeting will be February 18-22 in San Diego. The Steering Committee for Section A seeks organizers and speakers who can present substantial new material in an accessible manner to a large scientific audience. All are invited to attend the Section A Committee business meeting in Chicago on Friday, February 13, 2009, at 7:45 p.m., where we will brainstorm ideas for symposia. In addition, I invite you to send me, and encourage your colleagues to send me, proposals for future AAAS annual meetings.
The following are the members of the Steering Committee for Section A from February 2008 to February 2009:
Chair: William Jaco (Oklahoma State University)
Chair-Elect: Keith Devlin (Stanford University)
Retiring Chair: Carl Pomerance (Dartmouth College)
Secretary: Edward Aboufadel (Grand Valley State University) Members at Large:
Mary Beth Ruskai (Tufts University)
David Isaacson (Rensselaer Polytechnic Institute) Claudia Neuhauser (University of Minnesota) Warren Page (City University of New York)

[^15]
Call for Organizers 2010 MRC Conferences

The American Mathematical Society invites individuals and groups of individuals to serve as organizers of summer conferences of the Mathematics Research Communities program to be held in Snowbird, Utah, in the summer of 2010.

About the Mathematics Research Communities Program

Mathematics Research Communities (MRC), a newlyestablished program of the American Mathematical Society (AMS), nurtures early-career mathematicians-those who are close to finishing their doctorates or have recently finished-and provides them with opportunities to build social and collaborative networks through which they can inspire and sustain each other in their work. The structured program is designed to engage and guide all participants as they start their careers. The program includes one-week summer conferences for each topic; Special Sessions at the national meeting; discussion networks by research topic; ongoing mentoring; and a longitudinal study of early career mathematicians. Those accepted into this program will be fully supported for the summer conference, and will be partially supported for their participation in the following Joint Mathematics Meetings. The summer conferences of the MRC are held in the breathtaking mountain setting of the Snowbird Resort, Utah, where participants can enjoy the natural beauty and a collegial atmosphere. The MRC program is open to individuals who are U.S. citizens as well as to those who are affiliated with U.S. institutions. Women and underrepresented minorities are especially encouraged to participate.

The Division of Meetings and Professional Services of the AMS coordinates the Mathematics Research Communities program, and supports organizers throughout the entire program. Questions about the overall MRC program should be addressed to Ellen J. Maycock, Associate Executive Director, at ejm@ams.org or 401-455-4101.

Summer Conferences

The American Mathematical Society's Meetings and Conferences staff members arrange all the logistics of the summer conferences for the Mathematics Research Com-
munities program. This administrative support allows organizers to focus almost exclusively on providing a high-quality scientific program and enables both organizers and participants to concentrate on the conference and take advantage of the services, venue, and surrounding attractions. The AMS Meetings and Conferences Department provides general information and details online at http://www.ams.org/amsmtgs/mrc.htm7.

The program pays for air transportation for all organizers and participants, as well as room and board for the stay at Snowbird and transportation by van from the Salt Lake City airport to the resort and back. Each organizer receives a stipend of US $\$ 3,000$. Additionally, each organizing committee has the option of hiring a graduate student to assist with work before and during the conference, for a stipend of US $\$ 3,000$. Young mathematicians apply to be participants in the MRC program by March 1, 2010. The organizers of each summer conference choose among these applicants during the month of March 2010, paying special attention to creating a diverse group of participants. Although the main emphasis of the summer conferences is the scientific program, it is important for the organizers to spend time with participants discussing professional development topics, such as the job search, writing grant proposals, giving talks, and other activities.

How To Apply

Members of the MRC Advisory Board and AMS staff members are pleased to provide guidance on the preparation of proposals. Core funding for the MRC program is provided by a grant from the National Science Foundation.

Proposals

The MRC Advisory Board encourages individuals to submit inquiries to ensure sufficient time for feedback. Proposals need to include the following information:
(1) Organizing Committee members, with names and addresses (4-5 for a 40-participant conference, 2-3 for a 20-participant conference);
(2) Scientific narrative addressing the focus, importance and timeliness of the topic, no more than 5 pages long;

About the Cover

Mains'l and spinnaker
This month's cover accompanies the article on mathematical modeling in this issue by Alfio Quarteroni. The image was produced by Nicola Parolini, assistant to Quarteroni, who writes, "The image shows two layers of streamlines at different heights around a gennaker (a gennaker is a modern hybrid between a spinnaker and a genoa) and a main sail of an America's Cup boat. They were computed based on the velocity obtained by the solution of the Reyn-olds-Averaged Navier-Stokes equations (using the software Ansys CFX) which model the air flow around deformable membranes representing the sails. The computational grid had about 15 million elements (tetrahedra) and was built using the mesh generation software Ansys IcemCFD.
"The main objective of this analysis was the maximization of the total driving force as a function of sail trimming by solving the fluid-structure interaction analysis on sails. The simulation converged in 5 coupling iterations, when the difference of forces on both sails with respect to the previous coupling has been found to be less than 0.5%. Each coupling iteration took about 2 hours, running in parallel over 62 processors. The picture highlights the flow structures and the wakes around the sails given one particular set of trimmings among several different possible sailing configurations. The large separation occurring at the gennaker's leading edge reveals that this configuration is not optimal and suggests pulling in the gennaker sheet (that is the cable attached to the gennaker leech-foot corner) which governs the gennaker's angle of attack."

-Bill Casselman, Graphics Editor (notices-covers@ams.org)

(3) Organization of the week of the summer conference.

Preparation and submission guidelines are available at http://www.ams.org/amsmtgs/mrc-proposa1s.htm1. The current MRC Advisory Board members are listed at http://www.ams.org/amsmtgs/mrc-contact.htm1.

Send inquiries and proposals to:
Mathematics Research Communities
American Mathematical Society
by email: mrc2010@ams .org
by mail: 201 Charles Street, Providence, RI 02904
by fax: 401-455-4004

Deadlines for 2010 MRCs

Intent to submit proposal: March 2, 2009
Proposals: April 1, 2009
All individuals who submit proposals will be notified of the decisions before August 3, 2009.

About Snowbird Resort

Situated in a beautiful, breathtaking mountain setting, Snowbird Resort provides an extraordinary environment for the MRC program. The atmosphere is comparable to the collegial gatherings at Oberwolfach and other conferences that combine peaceful natural ambience with stimulating meetings. MRC participants have access to a range of activities such as a tram ride to the top of the mountain, walking and hiking trails in the surrounding mountains, and swimming in heated outdoor pools. Participants also enjoy the simpler pleasures of convening on the patios at the resort to read, work, and socialize. At the conclusion of the day's program colleagues may enjoy informal gatherings to network and continue discussion of the day's sessions over refreshments. Within a half hour of the University of Utah, Snowbird is easily accessible from the Salt Lake City International Airport. For more information about Snowbird Resort, see http://www. snowbird.com

For myself and many others in mathematics, mentoring strong, eager students in small groups is one of the most rewarding things we do. Imagine the opportunity to choose a group of advanced graduate students and beginning postdocs in your field, from around the country, and spend an intense week getting to know them and helping them learn some new and valuable elements of your field.
—David Eisenbud, Chair, MRC Advisory Board
-Ellen J. Maycock
Associate Executive Director Meetings and Professional Services

General Information Regarding Meetings \& Conferences of the AMS

Speakers and Organizers: The Council has decreed that no paper, whether invited or contributed, may be listed in the program of a meeting of the Society unless an abstract of the paper has been received in Providence prior to the deadline.

Although an individual may present only one ten-minute contributed paper at a meeting, any combination of joint authorship may be accepted, provided no individual speaks more than once. An author can speak by invitation in more than one Special Session at the same meeting.

Special Sessions: The number of Special Sessions at an Annual Meeting is limited. Special Sessions at annual meetings are held under the supervision of the Program Committee for National Meetings and, for sectional meetings, under the supervision of each Section Program Committee. They are administered by the associate secretary in charge of that meeting with staff assistance from the Meetings and Conferences Department in Providence. (See the list of associate secretaries on page 199 of this issue.)

Each person selected to give an Invited Address is also invited to generate a Special Session, either by personally organizing one or by having it organized by others. Proposals to organize a Special Session are sometimes solicited either by a program committee or by the associate secretary. Other proposals should be submitted to the associate secretary in charge of that meeting (who is an ex officio member of the program committee) at the address listed on page 199. These proposals must be in the hands of the associate secretary at least seven months (for sectional meetings) or nine months (for national meetings) prior to the meeting at which the Special Session is to be held in order that the committee may consider all the proposals for Special Sessions simultaneously. Special Sessions must be announced in the Notices in a timely fashion so that any Society member who so wishes may submit an abstract for consideration for presentation in the Special Session.

Talks in Special Sessions are usually limited to twenty minutes; however, organizers who wish to allocate more time to individual speakers may do so within certain limits. A great many of the papers presented in Special Sessions at meetings of the Society are invited papers, but any member of the Society who wishes to do so may submit an abstract for consideration for presentation in a Special Session, provided it is submitted to the AMS prior to the special early deadline for consideration. Contributors should know that there is a limit to the size of a single Special Session, so sometimes all places are filled by invitation. Papers submitted for consideration for inclusion in Special Sessions but not accepted will receive consideration for a contributed paper session, unless specific instructions to the contrary are given.

The Society reserves the right of first refusal for the publication of proceedings of any Special Session. If published
by the AMS, these proceedings appear in the book series Contemporary Mathematics. For more detailed information on organizing a Special Session, see www.ams.org/ meetings/specialsessionmanua1.htm1.

Contributed Papers: The Society also accepts abstracts for ten-minute contributed papers. These abstracts will be grouped by related Mathematical Reviews subject classifications into sessions to the extent possible. The title and author of each paper accepted and the time of presentation will be listed in the program of the meeting.

Other Sessions: In accordance with policy established by the AMS Committee on Meetings and Conferences, mathematicians interested in organizing a session at an annual or sectional meeting on employment opportunities inside or outside academia for young mathematicians should contact the associate secretary for the meeting with a proposal by the stated deadline. Also, potential organizers for poster sessions on a topic of choice should contact the associate secretary before the deadline.

Abstracts: Abstracts for all papers must be received by the meeting coordinator in Providence by the stated deadline. Unfortunately, late papers cannot be accommodated.

Submission Procedures: Visit the Meetings and Conferences homepage on the Web at http://www.ams.org/ meetings and select "Submit an abstract".

Site Selection for Sectional Meetings

Sectional meeting sites are recommended by the associate secretary for the section and approved by the Secretariat. Recommendations are usually made eighteen to twentyfour months in advance. Host departments supply local information, ten to fifteen rooms with overhead projectors for contributed paper sessions and Special Sessions, an auditorium with twin overhead projectors and a laptop projector for Invited Addresses, space for registration activities and an AMS book exhibit, and registration clerks. The Society partially reimburses for the rental of facilities and equipment and for staffing the registration desk. Most host departments volunteer; to do so, or for more information, contact the associate secretary for the section.

Meetings \& Conferences of the AMS

IMPORTANT INFORMATION REGARDINGMEETINGS PROGRAMS: AMS Sectional Meeting programs do not appear in the print version of the Notices. However, comprehensive and continually updated meeting and programinformation with links to the abstract for each talk can be found on the AMS website. Seehttp://www.ams.org/meetings/. Final programs for Sectional Meetings will be archived on the AMS website accessible from the statedURL and in an electronic issue of the Notices as noted below for each meeting.

Shanghai, People's Republic of China

Fudan University

December 17-21, 2008
Wednesday - Sunday

Meeting \#1045

First Joint International Meeting Between the AMS and the Shanghai Mathematical Society
Associate secretary: Susan J. Friedlander
Announcement issue of Notices: June 2008
Program first available on AMS website: Not applicable
Program issue of electronic Notices: Not applicable
Issue of Abstracts: Not applicable

Deadlines

For organizers: Expired
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: Expired
The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/ internmtgs.htm1.

Invited Addresses

Robert J. Bryant, University of California Berkeley, Title to be announced.
L. Craig Evans, University of California Berkeley, Title to be announced.

Zhi-Ming Ma, Chinese Academy of Sciences, Title to be announced.

Richard Schoen, Stanford University, Title to be announced.

Xiaoping Yuan, Fudan University, Title to be announced.

Weiping Zhang, Chern Institute, Title to be announced.

Special Sessions

Biomathematics: Newly Developed Applied Mathematics and New Mathematics Arising from Biosciences, Banghe Li, Chinese Academy of Sciences, Reinhard C. Laubenbacher, Virginia Bioinformatics Institute, and Jianjun Paul Tian, College of William and Mary.

Combinatorics and Discrete Dynamical Systems, Reinhard C. Laubenbacher, Virginia Bioinformatics Institute, Klaus Sutner, Carnegie Mellon University, and Yaokun Wu, Shanghai Jiao Tong University.

Differential Geometry and Its Applications, Jianguo Cao, University of Notre Dame, and Yu Xin Dong, Fudan University.

Dynamical Systems Arising in Ecology and Biology, Qishao Lu, Beijing University of Aeronautics \& Astronautics, and Zhaosheng Feng, University of Texas-Pan American.

Elliptic and Parabolic Nonlinear Partial Differential Equations, Changfeng Gui, University of Connecticut, and Feng Zhou, East China Normal University.

Harmonic Analysis and Partial Differential Equations with Applications, Yong Ding, Beijing Normal University, Guo-Zhen Lu, Wayne State University, and Shanzhen Lu, Beijing Normal University.

Integrable System and Its Applications, En-Gui Fan, Fudan University, Sen-Yue Lou, Shanghai Jiao Tong University and Ningbo University, and Zhi-Jun Qiao, University of Texas-Pan American.

Integral and Convex Geometric Analysis, Deane Yang, Polytechnic University, and Jiazu Zhou, Southwest University.

Lie Algebras, Vertex Operator Algebras and Related Topics, Hu Nai Hong, East China Normal University, and Yi-Zhi Huang, Rutgers University.

Nonlinear Systems of Conservation Laws and Related Topics, Gui-Qiang Chen, Northwestern University, and Shuxing Chen and Yi Zhou, Fudan University.

Optimization and Its Application, Shu-Cherng Fang, North Carolina State University, and Xuexiang Huang, Fudan University.

Quantum Algebras and Related Topics, Naihuan N. Jing, North Carolina State University, Quanshui Wu, Fudan University, and James J. Zhang, University of Washington.

Recent Developments in Nonlinear Dispersive Wave Theory, Jerry Bona, University of Illinois at Chicago, Bo Ling Guo, Institute of Applied Physics and Computational Mathematics, Shu Ming Sun, Virginia Polytech Institute and State University, and Bingyu Zhang, University of Cincinnati.

Representation of Algebras and Groups, Birge K. Huis-gen-Zimmermann, University of California Santa Barbara, Jie Xiao, Tsinghua University, Jiping Zhang, Beijing University, and Pu Zhang, Shanghai Jiao Tong University.

Several Complex Variables and Applications, Siqi Fu, Rutgers University, Min Ru, University of Houston, and Zhihua Chen, Tongji University.

Several Topics in Banach Space Theory, Gerard J. Buskes and Qingying Bu, University of Mississippi, and Lixin Cheng, Xiamen University.

Stochastic Analysis and Its Application, Jiangang Ying, Fudan University, and Zhenqing Chen, University of Washington.

Topics in Partial Differential Equations and Mathematical Control Theory, Xiaojun Huang, Rutgers University, Gengsheng Wang, Wuhan University of China, and Stephen S.-T. Yau, University of Illinois at Chicago.

Washington, District of Columbia

Marriott Wardman Park Hotel and Omni Shoreham Hotel

January 5-8, 2009

Monday - Thursday

Meeting \#1046

Joint Mathematics Meetings, including the 115th Annual Meeting of the AMS, 92nd Annual Meeting of the Mathematical Association of America (MAA), annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association for Symbolic Logic (ASL), with sessions contributed by the Society for Industrial and Applied Mathematics (SIAM).
Associate secretary: Bernard Russo
Announcement issue of Notices: October 2008
Program first available on AMS website: November 1, 2008
Program issue of electronic Notices: January 2009
Issue of Abstracts: Volume 30, Issue 1

Deadlines

For organizers: Expired
For consideration of contributed papers in Special Sessions: Expired
For abstracts: Expired

Program Updates

AMS Sessions

The title, description, and panelists for the Committee on Education Panel Discussion on Thursday at 8:30 a.m. are The Future of School Mathematics Education, organized and moderated by William G. McCallum, University of Arizona, with panelists Scott J. Baldridge, Louisiana State University; Daniel Chazan, University of Maryland; Solomon A. Garfunkel, COMAP; and Kristin Umland, University of New Mexico. Two recent conferences in the fall of 2008 addressed the issue of improving school mathematics education. One of these, about the future of high school mathematics, was cosponsored by the University of Maryland's Center for Mathematics Education and Math is More and one, in response to the National Mathematics Advisory Panel report, was cosponsored by CBMS and the U.S. Department of Education. The four panelists, two from each conference, will relate the results of those conferences and discuss the different directions we can and should take.

MAA Sessions

Reunion of College Algebra Workshops Participants, Tuesday, 6:00 p.m.-8:00 p.m., organized by Donald B.

Small, U.S. Military Academy, and William E. Haver, Virginia Commonwealth University. Participants from College Algebra Workshops (PREP, HBCUs, MAA's, etc.) will discuss their efforts to refocus college algebra courses based on their workshop experiences. Topics are expected to include visions, realities, efforts that worked, efforts that did not work, reflections on project work, hurdles encountered, suggestions on how to build support for change, etc. The session will also include discussions and exchanges of class activities, exercises, writing assignments, and tests.

The Minority Chairs Breakfast Meeting is now scheduled for Thursday, 7:00 a.m.-8:45 a.m.

Special Interest Groups of the MAA

SIGMAA on Mathematical and Computational Biology Business Meeting, Tuesday, 6:00 p.m.-7:00 p.m.

Other Organizations

The Claytor-Woodard Lecture at 1:00 p.m. on Saturday will be given by Earl Barnes, Morgan State University, on The Hoffman-Wielandt inequality revisited.

The Cox-Talbot Lecture will be given during the banquet at 7:30 p.m. on Friday by Leon Woodson, Morgan State University, on State of a M.A.D. Union.

Social Events

Early Music Sing, Wednesday, 7:00 p.m.-9:00 p.m. All JMM participants who enjoy a cappella singing of madrigals, motets, and similar art-music choral works of the Renaissance are invited to join us for informal sight-reading and practice of several classic pieces. (No auditions or solo singing required, but we do run through the parts fairly quickly and sing in other languages besides English.) If you are interested in participating, and especially if you would be interested in taking a turn at conducting during the Sing, please get in touch with one of the organizers, John McCleary or Kim Plofker (mccleary@vassar.edu, plofkerk@union.edu), so that we can provide enough copies of the sheet music. We hope to see you there!

Urbana, Illinois

University of Illinois at Urbana-Champaign
March 27-29, 2009
Friday - Sunday

Meeting \#1047

Central Section
Associate secretary: Susan J. Friedlander
Announcement issue of Notices: January
Program first available on AMS website: February 12, 2009
Program issue of electronic Notices: March
Issue of Abstracts: Volume 30, Number 2

Deadlines

For organizers: Expired

For consideration of contributed papers in Special Sessions: Expired
For abstracts: February 3, 2009
The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/ sectiona1.htm1.

Invited Addresses

Jeffrey C. Lagarias, University of Michigan, From Apollonian circle packings to Fibonacci Numbers (Erdős Memorial Lecture).

Jacob Lurie, Massachusetts Institute of Technology, On topological quantum field theories.

Gilles Pisier, Texas A\&M University, Title to be announced.

Akshay Venkatesh, New York University-Courant Institute, Title to be announced.

Special Sessions

Algebra, Geometry and Combinatorics (Code: SS 10A), Rinat Kedem, University of Illinois at Urbana-Champaign, and Alexander T. Yong, University of Minnesota.

Algebraic Methods in Statistics and Probability (Code: SS 3A), Marlos A. G. Viana, University of Illinois at Chicago. Complex Dynamics and Value Distribution (Code: SS 11A), Aimo Hinkkanen and Joseph B. Miles, University of Illinois at Urbana-Champaign.

Concrete Aspects of Real Positive Polynomials (Code: SS 20A), Victoria Powers, Emory University, and Bruce Reznick, University of Illinois at Urbana-Champaign.

Differential Geometry and Its Applications (Code: SS 16A), Stephanie B. Alexander, University of Illinois at Urbana-Champaign, and Jianguo Cao, University of Notre Dame.

Geometric Function Theory and Analysis on Metric Spaces (Code: SS 6A), Sergiy Merenkov, Jeremy Taylor Tyson, and Jang-Mei Wu, University of Illinois at UrbanaChampaign.

Geometric Group Theory (Code: SS 2A), Sergei V. Ivanov, Ilya Kapovich, Igor Mineyev, and Paul E. Schupp, University of Illinois at Urbana-Champaign.

Graph Theory (Code: SS 4A), Alexander V. Kostochka and Douglas B. West, University of Illinois at UrbanaChampaign.

Holomorphic and CR Mappings (Code: SS 9A), John P. D'Angelo, Jiri Lebl, and Alex Tumanov, University of Illinois at Urbana-Champaign.

Hyperbolic Geometry and Teichmuller Theory (Code: SS 18A), Jason Deblois, University of Illinois at Chicago, Richard P. Kent IV, Brown University, and Christopher J. Leininger, University of Illinois at Urbana-Champaign.

Local and Homological Methods in Commutative Algebra (Code: SS 13A), Florian Enescu, Georgia State University, and Sandra Spiroff, University of Mississippi.

Mathematical Visualization (Code: SS 7A), George K. Francis, University of Illinois at Urbana-Champaign, Louis H. Kauffman, University of Illinois at Chicago, Dennis Martin Roseman, University of Iowa, and Andrew J. Hanson, Indiana University.

Nonlinear Partial Differential Equations and Applications (Code: SS 21A), Igor Kukavica, University of Southern California, and Anna L. Mazzucato, Pennsylvania State University.

Number Theory in the Spirit of Erdós (Code: SS 14A), Kevin Ford and A. J. Hildebrand, University of Illinois at Urbana-Champaign.

Operator Algebras and Operator Spaces (Code: SS 8A), Zhong-Jin Ruan, Florin P. Boca, and Marius Junge, University of Illinois at Urbana-Champaign.

Probabilistic and Extremal Combinatorics (Code: SS 5A), Jozsef Balogh and Zoltan Furedi, University of Illinois at Urbana-Champaign.

The Interface Between Number Theory and Dynamical Systems (Code: SS 17A), Florin Boca, University of Illinois at Urbana-Champaign, Jeffrey Lagarias, University of Michigan, and Kenneth Stolarsky, University of Illinois at Urbana-Champaign.

The Logic and Combinatorics of Algebraic Structures. (Code: SS 22A), John Snow, Concordia University, and Jeremy Alm, Illinois College.

Time, Scale, and Frequency Methods in Harmonic Analysis (Code: SS 15A), Richard S. Laugesen, University of Illinois at Urbana-Champaign, and Darrin M. Speegle, St. Louis University.

Topological Dynamics and Ergodic Theory (Code: SS 19A), Alica Miller, University of Louisville, and Joseph Rosenblatt, University of Illinois at Urbana-Champaign.

Topological Field Theories, Representation Theory, and Algebraic Geometry (Code: SS 12A), Thomas Nevins, University of Illinois at Urbana-Champaign, and David Ben-Zvi, University of Texas at Austin.
q-Series and Partitions (Code: SS 1A), Bruce Berndt, University of Illinois at Urbana-Champaign, and Ae Ja Yee, Pennsylvania State University.

Accommodations

Participants should make their own arrangements directly with the hotel of their choice and state that they will be attending the "AMS" or "American Mathematical Society meeting" or "AMS meeting". The AMS is not responsible for rate changes or for the quality of the accommodations.

Illini Union Hotel, Illini Union, 1401 W. Green Street, Urbana, IL 61801; 217-333-1241. Rates start at US $\$ 90$ per night. This hotel is in a building right next door to the Math Department. Continental breakfast is included. The deadline for reservations is March 27, 2009.

Hampton Inn, 1200 W. University Ave., Urbana, IL 61801; 217-337-1100. Rates start at US\$89 per night. The hotel is approximately a 15 -minute walk to the Math Department. Cooked breakfast is included. The deadline for reservations is February 28, 2009.

Historic Lincoln Hotel, 209 S. Broadway, Urbana, IL 61801; 217-384-8800. Rates start at US\$80 per night. The hotel is about a 20 -minute walk (about 1 mile) from the Math Department and there is also bus service. The deadline for reservations is February 26, 2009.

The following three hotels are located next to one another and are approximately 2 miles from the math department. There is public bus service between the hotels and
the math department on Friday (all day); Saturday morning (limited), afternoon and evening; Sunday afternoon.

The UIUC math department will provide additional shuttle service from these three hotels to the AMS meeting on Saturday and Sunday mornings. All three hotels have free shuttle service to the Champaign airport and to the train station.

Hawthorn Suites, 101 Trade Center Drive, Champaign, IL 61820; 217-395-3400. Rates start at US\$92.99. Breakfast is included. Deadline for reservations is March 27, 2009.

Homewood Suites, 1417 S. Neil, Champaign, IL 61820; 217-352-9960. Rates start at US \$119. Breakfast is included. Deadline for reservations is February 27, 2009.

Hilton Garden Inn, 1501 S. Neil, Champaign, IL 61820; 217-352-9970. Rates start at US\$129 per night. Deadline for reservations is February 25, 2009.

Food Service

The university will be officially closed during the time of the meeting due to Spring Break. A list of restaurants will be available at the registration desk. A large number of restaurants and coffee shops are located on Green Street, immediately to the west of Altgeld Hall. A number of (mostly fast food) dining places are available in the basement of the Illini Union. A selected list of restaurants and lunch places in and near campus is available at http://www.visitchampaigncounty.org/locals/ index. php?category=94

Local Information

All the talks will take place in two buildings: Altgeld Hall (the main UIUC math department building) and Noyes Lab. The 50-minute Invited Addresses will be in Altgeld Hall, Room 314. Both Altgeld Hall and Noyes Lab are located next to the Illini Union. A UIUC campus map is available at http://illinois.edu/ricker/CampusMap.

Please visit the webpage maintained by the UIUC Mathematics Department for more local information relating to the meeting: http://www.math.uiuc.edu/ams09.

Other Activities

Book Sales: Stop by the on-site AMS Bookstore and review the newest titles from the AMS, enjoy up to 25% off all AMS publications, or take home an AMS t-shirt! Complimentary coffee will be served courtesy of AMS Membership Services. The AMS Book Exhibit will take place in the Math Library located on the 2nd floor of Altgeld Hall.

AMS Editorial Activity: An acquisitions editor from the AMS book program will be present to speak with prospective authors. If you have a book project that you would like to discuss with the AMS, please stop by the book exhibit.

Parking

On Saturday and Sunday the parking in university parking garages and university parking lots is free (unless the signs indicate otherwise). On Sunday most of the street parking, including university and city parking meters, is free (unless the signs indicate otherwise; note that
short-term red parking meters are never free). There is a university parking garage (lot C7) about one block west of Altgeld Hall at the corner of John Street and 6th street. Additional nearby university parking garages are at the corner of Daniel and Fifth (lot C10), about two blocks west and two blocks south of Altgeld; and the Krannert Center Parking Garage (lot D5), at the corner of Goodwin Avenue and Illinois Street.

Lots C7 and C10 are shown in the map http://www. parking.uiuc.edu/campus_map/map2-3.htm7 (Altgeld Hall is building no. 26 and Illini Union is building no. 23 in this map) and lot D5 is shown in the map http://www. parking.uiuc.edu/campus_map/map2-4.htm7. The main campus parking map is available at http://www. parking.uiuc.edu/campus_map/.

The parking garages C7 and C10 have, at their top, a number of 6 -hour parking meeters that can be used on Friday afternoon.

For Friday parking we recommend the commercial parking lot on Green Street a little over one block west of Altgeld Hall. The entrance to the parking lot is from Green Street (north side), next to the Legends Bar.

Registration and Meeting Information

The registration desk will be located on the third floor of Altgeld Hall in the math department Common Room (Room 321) and will be open from noon to 4:00 p.m. on Friday and 7:30: a.m. to 4:00 p.m. on Saturday; it will not be open Sunday, March 29. Talks will take place in Altgeld Hall and Noyes Lab.

Registration fees: (payable on-site only) US $\$ 40$ for AMS or CMS members; US\$60 for nonmembers; US\$5 for students, unemployed mathematicians, and emeritus members. Fees are payable by cash, check, VISA, MasterCard, Discover, or American Express.

Social Event

The UIUC department of mathematics will host a reception for the AMS meeting participants on Saturday, March 28, 6:15 p.m. to 8:00 p.m. in the South Lounge of Illini Union. Light snacks, refreshments, and wine will be served.

Travel

By Air: Willard Airport (CMI) is located in Champaign county on Route 45 about 6 miles south of campus. Owned and operated by the University of Illinois, the airport is currently served by two carriers, American Eagle (an affiliate of American Airlines) and Northwest Airlink (an affiliate of Northwest airlines). American Airlines has direct flights between Champaign and Chicago O'Hare (ORD) and between Champaign and Dallas Fort Worth (DFW). Northwest has direct flights between Champaign and Detroit (DTW). Taxi service from the Champaign airport to the campus is approximately US $\$ 8$ - $\$ 14$ per person. LEX Express (217-352-6682) runs regular taxi shuttle service from the Champaign airport to town and they usually have a representative available at the airport. Other taxi companies servicing the Champaign airport can be reached at: 217-355-1328, 217-355-3553, 217-367-0000.

Other regional airports served by shuttles to the university campus include Midway airport (MDW) and O'Hare airport (ORD) in Chicago; Central Illinois Regional Airport (BMI) in Bloomington, Illinois; and the Indianapolis Airport (IND). It takes about 2.5-3 hours by car to get from the Chicago area airports to Champaign. The BMI airport is about 50 miles away from Champaign. Plane tickets to BMI are often cheaper and more airlines fly there. The Indianapolis airport is a little closer than the Chicago airports and traffic between Indianapolis and Champaign is usually better.

The Illini Shuttle (http://www.i11inishuttle.com/) runs buses from the Chicago airports to campus, and the LEX shuttle (http://www.lincoln7andexpress.com/) runs buses from the Chicago airports, the Bloomington airport, and the Indianapolis airport. Please make advance reservations when using these shuttle services. When using the LEX shuttle online reservation site, note that the stop right next to the Illini Union and the math department is called "U of I Follets".

Driving: Altgeld Hall is on the southeast corner at the intersection of Green and Wright Streets. The directions below will get you to this intersection. There is a campus map available at http://il1inois.edu/ricker/ CampusMap.

Northbound on I-57 (from Effingham): Exit east at exit 235A onto University Avenue. Continue east for several miles, under the railroad tracks, to 6th Street. Turn right on 6th Street and continue south to Green Street or (one block later) John Street. Altgeld Hall is just one block east of the intersection of 6th and John.

Northbound on I-57 (alternative): Exit east onto University Avenue where eastbound I-72 terminates, go east two miles, turn right onto Neil Street (traffic signal), go south 0.25 miles, turn left onto Green Street (traffic signal), go east seven blocks to Wright Street. (Warning: University Avenue is one-way eastbound in this area, so on the return trip take Church Street, which is two blocks further north.)

Southbound on I-57 (from Chicago): Take exit 235A and proceed as above.

Eastbound on I-72 (from Decatur and Springfield): Continue into Champaign onto University Avenue, go east two miles, turn right onto Neil Street, go south 0.25 miles, turn left onto Green Street (traffic signal), go east seven blocks to Wright Street. (Warning: University Avenue is one-way eastbound in this area, so on the return trip take Church Street, which is two blocks further north.)

Eastbound on I-74 (from Normal, Bloomington, and Peoria): Exit south at Prospect Street (first exit in Champaign), go south two miles, turn left on Green Street (traffic signal), go east to 6th Street.

Westbound on I-74 (from Indianapolis): Exit south on Lincoln Avenue to Green Street and turn right on Green Street (traffic signal), go west 0.5 mile to Wright Street.

Local Transportation: The Champaign-Urbana MTD runs a regular public bus service in the area. A detailed bus schedule and bus maps are available at http://www. cumtd.com/.

Note that the service on weekends and in the evenings is reduced. During the day on Friday bus no. 10 (Gold) can be used for transportation between Illini Union and the three hotels near the intersection of Kirby Avenue and Neil Street (Hawthorn Suites, Homewood Suites, and Hilton Garden Inn). On Friday evening as well as at all times on Saturday and Sunday bus no. 100 (Yellow) can be used for the same purpose. Note that the routes of the buses no. 10 and no. 100 are a little different. The Saturday daytime map and schedule for bus no. 100 (northbound, to campus) are available at http://www.cumtd.com/routeschedules/ ByRoute.aspx?routeID=35\&routegroupID=11 and the corresponding Sunday daytime info is available at http://www.cumtd.com/routeschedules/ByRoute. aspx?routeID=35\&routegroupID=5. The bus stop for bus no. 100 nearest to the three hotels mentioned above is stop (K) in the schedule, at the corner of Kirby and State. The bus stop next to the math department is stop (N), at the corner of Green and Wright.

The Friday daytime eastbound (towards campus) map and schedule for bus no. 10 is available at http://www.cumtd.com/routeschedules/ByRoute. aspx? routeID=21\&routegroupID=1. The nearest stop to the three hotels mentioned above is at the corner of Neil and Kirby.

On Saturday and Sunday mornings the university will provide additional free shuttle bus service from the Hilton Garden Inn to the AMS meeting location.

It is also expected (but not yet definite) that the ZIPCAR service will start operating in the Champaign-Urbana area in the spring 2009 semester. Check for details at http:// www. zipcar. com after January 2009.

Car Rental: Avis is the official car rental company for the sectional meeting in Urbana. All rates include unlimited free mileage. Weekend daily rates are available from noon Thursday to Monday at 11:59 p.m. Rates do not include any state or local surcharges, tax, optional coverages, or gas refueling charges. Renters must meet Avis' age, driver, and credit requirements. For the best available rate and to make a reservation please call Avis at 800-3311600 or go online at http://www.avis.com. Please use the AMS meeting Avis Discount Number J098887.

Weather

In late March, the average high temperature is about 55° and low is approximately 35°. For local UIUC weather, visit http://www.atmos.uiuc.edu/weather/.

Information for International Participants

Visa regulations are continually changing for travel to the United States. Visa applications may take from three to four months to process and require a personal interview, as well as specific personal information. International participants should view the important informationabout traveling to the U.S. found at http://www7. nationalacademies.org/visas/Traveling_to_US. htm1 and http://travel.state.gov/visa/index. htm . If you need a preliminary conference invitation in order to secure a visa, please send your request to wsd@ ams.org.

If you discover you do need a visa, the National Academies website (see above) provides these tips for successful visa applications:

* Visa applicants are expected to provide evidence that they are intending to return to their country of residence. Therefore, applicants should provide proof of "binding" or sufficient ties to their home country or permanent residence abroad. This may include documentation of the following:
- family ties in home country or country of legal permanent residence
- property ownership
- bank accounts
- employment contract or statement from employer stating that the position will continue when the employee returns;
* Visa applications are more likely to be successful if done in a visitor's home country than in a third country;
* Applicants should present their entire trip itinerary, including travel to any countries other than the United States, at the time of their visa application;
* Include a letter of invitation from the meeting organizer or the U.S. host, specifying the subject, location and dates of the activity, and how travel and local expenses will be covered;
* If travel plans will depend on early approval of the visa application, specify this at the time of the application;
* Provide proof of professional scientific and/or educational status (students should provide a university transcript).

This list is not to be considered complete. Please visit the web sites above for the most up-to-date information.

Raleigh, North Carolina

North Carolina State University

April 4-5, 2009
Saturday - Sunday

Meeting \#1048

Southeastern Section
Associate secretary: Matthew Miller
Announcement issue of Notices: January 2009
Program first available on AMS website: February 19, 2009
Program issue of electronic Notices: April 2009
Issue of Abstracts: Volume 30, Number 2

Deadlines

For organizers: Expired
For consideration of contributed papers in Special Sessions: December 16, 2008
For abstracts: February 10, 2009

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/ sectional.htm1.

Invited Addresses

Nathan Dunfield, University of Illinois at UrbanaChampaign, Surfaces in finite covers of 3-manifolds: The virtual Haken conjecture.

Reinhard C. Laubenbacher, Virginia Bioinformatics Institute, Algebraic models in systems biology.

Jonathan C. Mattingly, Duke University, Stochastically forced fluid equations: Transfer between scales and ergodicity.

Raman Parimala, Emory University, Arithmetic of linear algebraic groups over 2-dimensional geometric fields.

Special Sessions

Advancements in Turbulent Flow Modeling and Computation (Code: SS 8A), Leo G. Rebholz, Clemson University, and Traian Iliescu, Virginia Polytechnic Institute and State University.

Algebraic Groups and Symmetric Spaces (Code: SS 19A), Stacy Beun, Cabrini College, and Aloysius Helminck, North Carolina State University.

Applications of Algebraic and Geometric Combinatorics (Code: SS 2A), Seth M. Sullivant, Harvard University, and Carla D. Savage, North Carolina State University.

Applications of Dynamical Systems to Problems in Biology (Code: SS 16A), John E. Franke and James F. Selgrade, North Carolina State University.

Brauer Groups, Quadratic Forms, Algebraic Groups, and Lie Algebras (Code: SS 12A), Eric S. Brussel and Skip Garibaldi, Emory University.

Commutative Rings and Monoids (Code: SS 17A), Scott T. Chapman, Sam Houston State University, and James B. Coykendall, North Dakota State University.

Computational Methods in Lie Theory (Code: SS 10A), Eric Sommers, University of Massachusetts, Amherst, and Molly Fenn, North Carolina State University.

Deferred Correction Methods and their Applications (Code: SS 20A), Elizabeth L. Bouzarth and Anita T. Layton, Duke University.

Enumerative Geometry and Related Topics (Code: SS 7A), Richard L. Rimanyi, University of North Carolina, Chapel Hill, and Leonardo C. Mihalcea, Duke University.

Galois Module Theory and Hopf Algebras (Code: SS 13A), Robert G. Underwood, Auburn University Montgomery, and James E. Carter, College of Charleston.

Geometry of Differential Equations (Code: SS 9A), Thomas A. Ivey, College of Charleston, and Irina A. Kogan, North Carolina State University.

Homotopical Algebra with Applications to Mathematical Physics (Code: SS 3A), Thomas J. Lada, North Carolina State University, and Jim Stasheff, University of North Carolina, Chapel Hill.

Kac-Moody Algebras, Vertex Algebras, Quantum Groups, and Applications (Code: SS 1A), Bojko N. Bakalov, Kailash C. Misra, and Naihuan N. Jing, North Carolina State University.

Low-Dimensional Topology and Geometry (Code: SS 4A), Nathan M. Dunfield, University of Illinois at UrbanaChampaign, John B. Etnyre, Georgia Institute of Technology, and Lenhard Ng, Duke University.

Mathematical Progress and Challenges for Biological Materials (Code: SS 18A), Mansoor A. Haider, North Carolina State University, and Gregory Forest, University of North Carolina, Chapel Hill.

Mathematics of Immunology and Infectious Diseases (Code: SS 14A), Stanca M. Ciupe, Duke University.

Nonlinear Dynamics and Control (Code: SS 11A), Anthony M. Bloch, University of Michigan, Ann Arbor, and Dmitry Zenkov, North Carolina State University.

Numerical Solution of Partial Differential Equations and Applications (Code: SS 15A), Alina Chertock and Zhilin Li, North Carolina State University.

Recent Advances in Symbolic Algebra and Analysis (Code: SS 5A), Michael F. Singer and Agnes Szanto, North Carolina State University.

Rings, Algebras, and Varieties in Combinatorics (Code: SS 6A), Patricia Hersh, North Carolina State University, Christian Lenart, SUNY Albany, and Nathan Reading, North Carolina State University.

Stochastic Dynamics (Code: SS 21A), Yuri Bakhtin, Georgia Institute of Technology, and Scott McKinley and Jonathan C. Mattingly, Duke University.

The Mathematics of Biochemical Reaction Networks (Code: SS 22A), Anne Shiu, University of California Berkeley, Manoj Gopalkrishnan, University of Southern California, and Gheorghe Craciun, University of Wisconsin-Madison.

Special Presentation

The American Mathematical Society sponsors a series of public lectures in mathematics entitled the AMS Einstein Public Lecture in Mathematics. The lectures began in 2005 to celebrate the one-hundredth anniversary of Einstein's annus mirabilis. The Department of Mathematics at North Carolina State University is honored that the AMS has chosen this meeting for the 2009 public lecture. The talk will be given by Michael S. Waterman, University of Southern California, on Saturday, April 4. The title of the talk is Reading DNA sequences: Twenty-first century technology with eighteenth century mathematics. The exact timing and location on campus will be announced at a later date. The public is cordially invited to attend.

Accommodations

Participants should make their own arrangements directly with the hotel of their choice and state that they will be attending the American Mathematical Society (AMS) meeting at North Carolina State University. Rooms have been blocked in the Holiday Inn and The Velvet Cloak Inn which are within walking distance of campus. The AMS is not responsible for rate changes or for the quality of the accommodations. Rates quoted do not include taxes (current tax rate is 12.75%). Hotels have varying cancellation or early checkout penalties; be sure to ask for details when making your reservation.

Holiday Inn-Brownstone Hotel, 1707 Hillsborough St., Raleigh, NC 27605; 919-828-0811; 800-331-7919; 919-8340904 (fax); US\$79/single or double (ask for NCSU/AMS meeting rate); rates include complimentary high speed Internet, 24 -hour fitness center, and seasonal outdoor pool. Ledo Pizza and Pasta is a full service restaurant and bar on site. Property is within walking distance to meeting. The deadline for reservations is March 5, 2009. For further information please visit http://www. brownstonehote1. com. Please be sure to inquire about cancellation or early checkout penalties when making your reservation.

The Velvet Cloak Inn, 1505 Hillsborough St., Raleigh, NC 27605; 919-828-0333; 919-828-2656 (fax); US\$69/ single or double (ask for NCSU/AMS meeting rate); within walking distance to meeting. Bar/lounge on site, as well as indoor heated pool. The deadline for reservations is March 5, 2009. For further information please visit http://www. theve7vetcloak. com. Please be sure to inquire about cancellation or early checkout penalties when making your reservation.

Clarion Hotel, 320 Hillsborough St., Raleigh, NC 27603; 919-832-0501; US\$94/single or double (ask for NCSU rate); located approximately three miles east of campus. For further information please visit http://www. clarionhotel. com.

Ramada Inn Blue Ridge, 1520 Blue Ridge Rd., Raleigh, NC 27607; 919-832-4100; 800-272-6232 (ask for NCSU rate); located approximately three miles west of campus. For further information please visit http://blueridge. pmcproperties.com.

Food Service

There are a number of restaurants adjacent to the campus. A list of these restaurants will be available at the registration desk at the meeting. The student dining halls are located at Fountain Dining Hall (Bldg. 82 on Central Campus) and Clark Dining Hall (Bldg. 106 on Central Campus) and are open on Saturday and Sunday, 10:30 a.m.-8:00 p.m

Local Information/Campus Map

Please visit the website maintained by the Department of Mathematics at http://www.math.ncsu.edu/ and North Carolina State University website at http://www. ncsu. edu. A campus map is found at http://www.ncsu. edu/campus_map/.

Other Activities

Book Sales: Stop by the onsite AMS Bookstore and review the newest titles from the AMS and enjoy up to 25% off all AMS publications, or take home an AMS t-shirt! Complimentary coffee will be served courtesy of AMS Membership Services.

AMS Editorial Activity: An acquisitions editor from the AMS book program will be present to speak with prospective authors. If you have a book project that you would like to discuss with the AMS, please stop by the book exhibit.

Parking

The nearest parking areas can be found on Founders Drive, Lampe Drive, and Stinson Drive. Visitors may park on campus (except in fire lanes and no parking areas) on Saturday and Sunday at no charge. Please refer to the Web address http://www.ncsu.edu/campus_map/north.htm for these street locations.

For parking Monday-Friday, visitors may purchase daily permits for US\$2 per day at the Visitor Information Centers (Main Campus-Stinson Drive). The Main Campus Visitor Booth will issue visitor permits and a map to direct visitors to the Coliseum Parking Deck between Dunn and Cates Avenues if you need to be on campus during these days.

Registration and Meeting Information

The registration desk will be located in Riddick Hall (2401 Stinson Dr., Bldg 39 on campus map) and will be open 7:30 a.m. to 4:00 p.m. on Saturday, and 8:00 a.m. to noon on Sunday. Please refer to http://www.ncsu.edu/ campus_map/north.htm for building locations. Registration fees are US\$40 for AMS or CMS members, US\$60 for nonmembers; and US\$5 for students, unemployed mathematicians, and emeritus members. Fees are payable on site by cash, check, or credit card.

Travel

By Air: The Raleigh-Durham International Airport (RDU), 2400 W. Terminal Blvd., Morrisville, NC, is about twelve miles northwest of the meeting site on campus and is served by most major airlines. A one-way taxi fare to campus from the airport is about $\$ 30$; limo service is about US\$55 per trip at the time this announcement went to press. There is no regularly scheduled shuttle service. Please refer to http://www.rdu.com/groundtrans/ groundtrans.htm for names/contact information and rates.

Driving: Take I-40 East to exit 289 (Raleigh North and East), which becomes Wade Avenue. At third traffic light make right on Faircloth Street, then at first traffic light make left on Hillsborough Street. NCSU will be directly ahead on the right. The Holiday Inn-Brownstone and The Velvet Cloak Inn are less than one mile from NCSU entrance.

Train: There is an AMTRAK station a short taxi ride from campus. See http://www. amtrak. com for schedules and pricing information.

Car Rental

Avis Rent A Car is the official car rental company for the meeting. Depending on variables such as location, length of rental, and size of vehicle, Avis will offer participants the best available rate which can range from $5 \%-25 \%$ discount off regular rates. Participants must use the assigned Meeting Avis Discount Number (J098887) and meet Avis rate requirements to receive the discount. (Rate discounts are available at all corporate and participating licensee locations.) Reservations can be made by calling 800-3311600 or online at http://www. avis. com.

All car rentals include unlimited free mileage and are available to renters 25 years and older. Renters must also meet Avis's driver and credit requirements. Return to the same rental location or additional surcharges may apply. Rates do not include any state or local surcharges, tax, optional coverages, or gas refueling charges.

Weather

Temperatures vary from 65° to $75^{\circ} \mathrm{F}$ in April with night lows dipping to upper 50 's. For the most up-to-date weather information visit http://www.wra1.com/weather/.

Information for International Participants

Visa regulations are continually changing for travel to the United States. Visa applications may take from three to four months to process and require a personal interview, as well as specific personal information. International participants should view the important information about traveling to the U.S. found at http://www7. nationalacademies.org/visas/Traveling_to_US. htm1 and http://travel.state.gov/visa/index. htm . If you need a preliminary conference invitation in order to secure a visa, please send your request to d1s@ ams.org.

If you discover you do need a visa, the National Academies website (see above) provides these tips for successful visa applications:

* Visa applicants are expected to provide evidence that they are intending to return to their country of residence. Therefore, applicants should provide proof of "binding" or sufficient ties to their home country or permanent residence abroad. This may include documentation of the following:
- family ties in home country or country of legal permanent residence
- property ownership
- bank accounts
- employment contract or statement from employer stating that the position will continue when the employee returns;
* Visa applications are more likely to be successful if done in a visitor's home country than in a third country;
* Applicants should present their entire trip itinerary, including travel to any countries other than the United States, at the time of their visa application;
* Include a letter of invitation from the meeting organizer or the U.S. host, specifying the subject, location and dates of the activity, and how travel and local expenses will be covered;
* If travel plans will depend on early approval of the visa application, specify this at the time of the application;
* Provide proof of professional scientific and/or educational status (students should provide a university transcript).

This list is not to be considered complete. Please visit the web sites above for the most up-to-date information.

Worcester, Massachusetts

Worcester Polytechnic Institute

April 25-26, 2009

Saturday - Sunday

Meeting \#1050

Eastern Section

Associate secretary: Steven H. Weintraub
Announcement issue of Notices: February 2009
Program first available on AMS website: March 12, 2009
Program issue of electronic Notices: April 2009
Issue of Abstracts: Volume 30, Number 3

Deadlines

For organizers: Expired
For consideration of contributed papers in Special Sessions: January 6, 2009
For abstracts: March 3, 2009
The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/ sectional.htm1.

Invited Addresses

Octav Cornea, Université de Montréal, Title to be announced.

Fengbo Hang, Courant Institute of New York University, Title to be announced.

Umberto Mosco, Worcester Polytechnic Institute, Title to be announced.

Kevin Whyte, University of Illinois at Chicago, Title to be announced.

Special Sessions

Algebraic Graph Theory, Association Schemes, and Related Topics (Code: SS 8A), William J. Martin, Worcester Polytechnic Institute, and Sylvia A. Hobart, University of Wyoming.

Analysis of Weakly Differentiable Maps with Constraints and Applications (Code: SS 11A), Fengbo Hang, Courant Institute, New York University, and Mohammad Reza Pakzad, University of Pittsburgh.

Discrete Geometry and Combinatorics (Code: SS 5A), Egon Schulte, Northeastern University, and Brigitte Servatius, Worcester Polytechnic Institute.

Effective Dynamics and Interactions of Localized Structures in Schrodinger Type Equations (Code: SS 10A), Fridolin Ting, Lakehead University.

Number Theory (Code: SS 4A), John T. Cullinan, Bard College, and Siman Wong, University of Massachusetts, Amherst.

Quasi-Static and Dynamic Evolution in Fracture Mechanics (Code: SS 6A), Christopher J. Larsen, Worcester Polytechnic Institute.

Real and Complex Dynamics of Rational Difference Equations with Applications (Code: SS 9A), M. R. S. Kulenovic and Orlando Merino, University of Rhode Island.

Scaling, Irregularities, and Partial Differential Equations (Code: SS 7A), Umberto Mosco and Bogdan M. Vernescu, Worcester Polytechnic Institute.

Symplectic and Contact Topology (Code: SS 1A), Peter Albers, Purdue University/ETH Zurich, and Basak Gurel, Vanderbilt University.

The Mathematics of Climate Change (Code: SS 3A), Catherine A. Roberts and Gareth E. Roberts, College of the Holy Cross, and Mary Lou Zeeman, Bowdoin College.

Topological Robotics (Code: SS 2A), Li Han and Lee N. Rudolph, Clark University.

San Francisco, California

San Francisco State University

April 25-26, 2009
Saturday - Sunday

Meeting \#1049

Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: February 2009
Program first available on AMS website: March 12, 2009
Program issue of electronic Notices: April 2009
Issue of Abstracts: Volume 30, Number 3

Deadlines

For organizers: Expired
For consideration of contributed papers in Special Sessions: January 6, 2009
For abstracts: March 3, 2009
The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/ sectional.htm1.

Invited Addresses

Yehuda Shalom, University of California Los Angeles, Title to be announced.

Roman Vershynin, University of California Davis, Title to be announced.

Karen Vogtmann, Cornell University, Title to be announced.

Efim Zelmanov, University of California Los Angeles, Title to be announced.

Special Sessions

Advances in the Theory of Integer Linear Optimization and its Extensions (Code: SS 7A), Matthias Koeppe and Peter Malkin, University of California Davis.

Algebra and Number Theory with Polyhedra (Code: SS 11A), Matthias Beck, San Francisco State University, and Christian Haase, Freie Universität Berlin.

Applications of Knot Theory to the Entanglement of Biopolymers (Code: SS 10A), Javier Arsuaga, San Francisco State University, Kenneth Millett, University of California Santa Barbara, and Mariel Vazquez, San Francisco State University.

Aspects of Differential Geometry (Code: SS 9A), David Bao, San Francisco State University, and Lei Ni, University of California San Diego.

Banach Algebras, Topological Algebras and Abstract Harmonic Analysis (Code: SS 1A), Thomas V. Tonev, University of Montana-Missoula, and Fereidoun Ghahramani, University of Manitoba.

Concentration Inequalities (Code: SS 3A), Sourav Chatterjee, University of California Berkeley, and Roman Vershynin, University of California Davis.

Geometry and Topology of Orbifolds (Code: SS 6A), Elizabeth Stanhope, Lewis \& Clark University, and Joseph E. Borzellino, California State University San Luis Obispo.

Lie Group Actions, Teichmüller Flows and Number Theory (Code: SS 12A), Jayadev Athreya, Yale University, Yitwah Cheung, San Francisco State University, and Anton Zorich, Rennes University.

Matroids in Algebra and Geometry (Code: SS 8A), Federico Ardila, San Francisco State University, and Lauren Williams, Harvard University.

Nonlinear Dispersive Equations (Code: SS 4A), Sebastian Herr, University of California Berkeley, and Jeremy L. Marzuola, Columbia University.

Nonlinear Partial Differential Equations (Code: SS 13A), Igor Kukavica, Amjad Tuffaha, and Mohammed Ziane, University of Southern California.

Recent Progress in Geometric Group Theory (Code: SS 2A), Seonhee Lim and Anne Thomas, Cornell University.

Waco, Texas

Baylor University

October 16-18,2009
Friday - Sunday

Meeting \#1051

Central Section
Associate secretary: Susan J. Friedlander
Announcement issue of Notices: August 2009
Program first available on AMS website: September 3, 2009
Program issue of electronic Notices: October 2009
Issue of Abstracts: Volume 30, Number 4

Deadlines

For organizers: March 17, 2009
For consideration of contributed papers in Special Sessions: June 30, 2009
For abstracts: August 25, 2009

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/ sectional.htm7.

Invited Addresses

David Ben-Zvi, University of Texas at Austin, Title to be announced.

Alexander A. Kiselev, University of Wisconsin, Title to be announced.

Michael C. Reed, Duke University, Title to be announced.

Igor Rodnianski, Princeton University, Title to be announced.

Special Sessions

Commutative Algebra: Module and Ideal Theory (Code: SS 4A), Lars W. Christensen, Texas Tech University, Louiza Fouli, University of Texas at Austin, and David Jorgensen, University of Texas at Arlington.

Dynamic Equations on Time Scales: Analysis and Applications (Code: SS 1A), John M. Davis, Ian A. Gravagne, and Robert J. Marks, Baylor University.

Lie Groups, Lie Algebras, and Representations (Code: SS 6A), Markus Hunziker, Mark Sepanski, and Ronald Stanke, Baylor University.

Mathematical Models of Neuronal and Metabolic Mechanisms (Code: SS 3A), Janet Best, Ohio State University, and Michael Reed, Duke University.

Numerical Solutions of Singular or Perturbed Partial Differential Equation Problems with Applications (Code: SS 2A), Peter Moore, Southern Methodist University, and Qin Sheng, Baylor University.

Topological Methods for Boundary Value Problems for Ordinary Differential Equations (Code: SS 5A), Richard Avery, Dakota State University, Paul W. Eloe, University of Dayton, and Johnny Henderson, Baylor University.

University Park, Pennsylvania

Pennsylvania State University

October 24-25, 2009
Saturday - Sunday

Meeting \#1052

Eastern Section
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: August 2009
Program first available on AMS website: September 10, 2009
Program issue of electronic Notices: October 2009
Issue of Abstracts: Volume 30, Number 4

Deadlines

For organizers: March 24, 2009

For consideration of contributed papers in Special Sessions: July 7, 2009
For abstracts: September 1, 2009
The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/ sectional.htm1.

Invited Addresses

Michael K. H. Kiessling, Rutgers University, Title to be announced.

Kevin R. Payne, Universita degli di Milano, Title to be announced.

Laurent Saloff-Coste, Cornell University, Title to be announced.

Robert C. Vaughan, Penn State University, Title to be announced.

Boca Raton, Florida

Florida Atlantic University

October 30 - November 1, 2009
Friday - Sunday

Meeting \#1053

Southeastern Section
Associate secretary: Matthew Miller
Announcement issue of Notices: August 2009
Program first available on AMS website: September 17, 2009
Program issue of electronic Notices: October 2009
Issue of Abstracts: Volume 30, Number 4

Deadlines

For organizers: March 30, 2009
For consideration of contributed papers in Special Sessions: July 14, 2009
For abstracts: September 8, 2009
The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/ sectional.htm7.

Invited Addresses

Spyros Alexakis, Princeton University, Title to be announced.

Kai-Uwe Bux, University of Virginia, Title to be announced.

Dino J. Lorenzini, University of Georgia, Title to be announced.

Eduardo D. Sontag, Rutgers University, Title to be announced.

Special Sessions

Commutative Ring Theory (Code: SS 3A), Alan Loper, Ohio State University, and Lee C. Klingler, Florida Atlantic University.

Concentration, Functional Inequalities, and Isoperimetry (Code: SS 2A), Mario Milman, Florida Atlantic University, Christian Houdre, Georgia Institute of Technology, and Emanuel Milman, Institute for Advanced Study.

Constructive Mathematics (Code: SS 1A), Robert Lubarsky, Fred Richman, and Martin Solomon, Florida Atlantic University.

Riverside, California

University of California
November 7-8, 2009
Saturday - Sunday

Meeting \#1054

Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: September 2009
Program first available on AMS website: September 24, 2009
Program issue of electronic Notices: November 2009
Issue of Abstracts: Volume 30, Number 4

Deadlines

For organizers: April 6, 2009
For consideration of contributed papers in Special Sessions: July 21, 2009
For abstracts: September 15, 2009
The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/ sectional.htm1.

Invited Addresses

Christopher Hacon, University of Utah, Title to be announced.

Birge Huisgen-Zimmerman, University of California Santa Barbara, Title to be announced.

Jun Li, Stanford University, Title to be announced.
Joseph Teran, University of California Los Angeles, Title to be announced.

Special Sessions

Algebraic Geometry (Code: SS 1A), Christopher Hacon, University of Utah, and Ziv Ran, University of California Riverside.

Fluid Mechanics (Code: SS 5A), James Kelliher and Qi Zhang, University of California Riverside.

History and Philosophy of Mathematics (Code: SS 4A), Shawnee L. McMurran, California State University San Bernardino, and James J. Tattersall, Providence College.

Noncommutative Geometry (Code: SS 2A), Vasiliy Dolgushev and Wee Liang Gan, University of California Riverside.

Representation Theory (Code: SS 3A), Vyjayanthi Chari, Wee Liang Gan, and Jacob Greenstein, University of California Riverside.

San Francisco, California

Moscone Center West and the San Francisco Marriott

January 13-16, 2010

Wednesday - Saturday
Joint Mathematics Meetings, including the 116th Annual Meeting of the AMS, 93rd Annual Meeting of the Mathematical Association of America (MAA), annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association for Symbolic Logic (ASL), with sessions contributed by the Society of Industrial and Applied Mathematics (SIAM).
Associate secretary: Matthew Miller
Announcement issue of Notices: October 2009
Program first available on AMS website: November 1, 2009
Program issue of electronic Notices: January 2010
Issue of Abstracts: Volume 31, Issue 1

Deadlines

For organizers: April 1, 2009
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Lexington, Kentucky
 University of Kentucky

March 27-28, 2010
Saturday - Sunday
Southeastern Section
Associate secretary: Matthew Miller
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced Issue of Abstracts: To be announced

Deadlines

For organizers: August 28, 2009
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

St. Paul, Minnesota

Macalester College

April 10-11, 2010
Saturday - Sunday
Central Section
Associate secretary: Susan J. Friedlander
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced Issue of Abstracts: To be announced

Deadlines

For organizers: September 10, 2009
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Albuquerque, New Mexico

University of New Mexico

April 17-18, 2010
Saturday - Sunday
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines

For organizers: September 17, 2009
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Hoboken, New Jersey

New Jersey Institute of Technology
May 22-23, 2010
Saturday - Sunday
Eastern Section
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced Issue of Abstracts: To be announced

Deadlines

For organizers: November 23, 2009
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Berkeley, California

University of California Berkeley

June 2-5, 2010

Wednesday - Saturday
Eighth Joint International Meeting of the AMS and the Sociedad Matem\ática Mexicana.
Associate secretary: Susan J. Friedlander
Announcement issue of Notices: February 2010
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced Issue of Abstracts: To be announced

Deadlines

For organizers: To be announced
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Notre Dame, Indiana

Notre Dame University

September 18-19, 2010
Saturday - Sunday
Central Section
Associate secretary: Susan J. Friedlander
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced Issue of Abstracts: To be announced

Deadlines

For organizers: February 19, 2010
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Los Angeles, California

University of California Los Angeles
October 9-10, 2010
Saturday - Sunday
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced Issue of Abstracts: To be announced

Deadlines

For organizers: March 10, 2010
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

New Orleans, Louisiana

New Orleans Marriott and Sheraton New Orleans Hotel

January 5-8, 2011

Wednesday - Saturday
Joint Mathematics Meetings, including the 117th Annual Meeting of the AMS, 94th Annual Meeting of the Mathematical Association of America, annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association for Symbolic Logic (ASL), with sessions contributed by the Society for Industrial and Applied Mathematics (SIAM).
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: October 2010
Program first available on AMS website: November 1, 2010
Program issue of electronic Notices: January 2011
Issue of Abstracts: Volume 32, Issue 1

Deadlines

For organizers: April 1, 2010
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Statesboro, Georgia

Georgia Southern University

March 12-13, 2011

Saturday - Sunday
Southeastern Section
Associate secretary: Matthew Miller
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced Issue of Abstracts: To be announced

Deadlines

For organizers: August 12, 2010
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Boston, Massachusetts

John B. Hynes Veterans Memorial Convention Center, Boston Marriott Hotel, and Boston Sheraton Hotel

January 4-7, 2012

Wednesday - Saturday
Joint Mathematics Meetings, including the 118th Annual Meeting of the AMS, 95th Annual Meeting of the Mathematical Association of America, annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association for Symbolic Logic (ASL), with sessions contributed by the Society for Industrial and Applied Mathematics (SIAM).
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: October 2011
Program first available on AMS website: November 1, 2011
Program issue of electronic Notices: January 2012
Issue of Abstracts: Volume 33, Issue 1

Deadlines

For organizers: April 1, 2011
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

San Diego, California

San Diego Convention Center and San Diego Marriott Hotel and Marina

January 9-12, 2013

Wednesday - Saturday
Joint Mathematics Meetings, including the 119th Annual Meeting of the AMS, 96th Annual Meeting of the Mathematical Association of America, annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association for Symbolic Logic (ASL), with sessions contributed by the Society for Industrial and Applied Mathematics (SIAM).
Associate secretary: Susan J. Friedlander
Announcement issue of Notices: October 2012
Program first available on AMS website: November 1, 2012
Program issue of electronic Notices: January 2012
Issue of Abstracts: Volume 34, Issue 1

Deadlines

For organizers: April 1, 2012
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Baltimore, Maryland

Baltimore Convention Center

January 15-18, 2014
Wednesday - Saturday
Joint Mathematics Meetings, including the 120th Annual Meeting of the AMS, 97th Annual Meeting of the Mathematical Association of America, annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association for Symbolic Logic, with sessions contributed by the Society for Industrial and Applied Mathematics (SIAM).
Associate secretary: Matthew Miller
Announcement issue of Notices: October 2013
Program first available on AMS website: November 1, 2013
Program issue of electronic Notices: January 2013
Issue of Abstracts: Volume 35, Issue 1

Deadlines

For organizers: April 1, 2013
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

San Antonio, Texas

Henry B. Gonzalez Convention Center and
Grand Hyatt San Antonio

January 10-13, 2015

Saturday - Tuesday
Joint Mathematics Meetings, including the 121st Annual Meeting of the AMS, 98th Annual Meeting of the Mathematical Association of America, annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association of Symbolic Logic, with sessions contributed by the Society for Industrial and Applied Mathematics (SIAM).
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: October 2014
Program first available on AMS website: To be announced
Program issue of electronic Notices: January 2015
Issue of Abstracts: To be announced

Deadlines

For organizers: April 1, 2014
For consideration of contributed papers in Special Sessions: To be announced
For abstracts: To be announced

Presenters of Papers

Washington, District of Columbia; January 5-8, 2009

Numbers following the name indicate the speaker's position on the program. \diamond Joint Invited Lecturer, •AMS Invited Lecturer, 。MAA Invited Lecturer, \square AWM Emmy Noether Lecturer, ■ NAM Invited Lecturer, \diamond ASL Invited Lecturer, 』SIAM Invited Lecturer, * Special Session Speaker, -Graduate Student, «Undergraduate Student

Bardzell, M.
* Barford, P. 692
Bargagliotti, A. E. 1155
Barker, D. 952
* Barker, W. 975
■ Barnes, E. R. 1682
- Barrus, M. D. 1137
- Barrus, M. D. 1368
* Bars, I. 1206
Bartelt, M. 1617
Barton, S. M. 1345
* Baryshnikov, Y. 789
Barzilai, H. 391
* Bass, H. 725
* Basu, S. 295
Batakci, L. 660
\& Battista, N. 216
Bauldry, W. C. 397
* ${ }^{\text {Baxter, B. } 720 ~}$
- Bayazit, D. 1306
- Bayazit, N. 882
Bazant, M. Z. 1611
* Bazzoni, S. 1489
* Beanland, K. J. 498
Beaugris, L. M. 1381
Beaver, S. F. 1371
* Bebernes, J. 1008
- Beck, K. A. 1049
* Beck, M. 51
¢ Behrend, S. J. 581
* Beier, J. C. 33
Beineke, J. 1323
Belcastro, S.-M. 401
* Belcastro, S.-M. 1204
Belding, J. V. 435
* Bell, J. P. 747
* Bell, J. P. 763
Belnap, J. K. 1662
Belock, J. A. 406
Belogay, E. 855
Belogay, E. 1097
* Bendersky, M. 994
Beneteau, C. 873
* Beneteau, C. 1709
* Benkart, G. 991
* Bennett, A. G. 734
Bennie, B. 1378
* Benoist, Y. 694

Benzel, S. 1627
Benziger, J. 1612
Berard, Jr., A. D. 163
Berg, J. D. 1644
Berger, H. 1893
Berger, L. A. 1645
* Bergman, G. M. 484
* Bergner, J. 1226
* Berliner, A. H. 1784
Bernard, G. 1066
¢ Berrizbeitia, A. 356
- Besse, I. 820
Bezandry, P. H. 560
* Bezdek, A. 755
* Bezdek, K. 75
Bhargava, S. 355
Bhatta, D. 1064
Bice, M. D. 1355
Bieri, J. A. 126
Bilisoly, R. 140
Bimbo, K. 1437
* Birgen, M. 985
* Biringer, I. 531
* Bisch, D.
* Biswas, A. 1767
4Blanda, S. A. 133
Blankenship, R. L. 1292
* Blass, A. 745
Bloch, W. G. 147
* Blumensath, A. 1182
Blyth, R. D. 1975
Bocea, M. 1655
¢ Bodea, C. A. 1904
* Boden, H. U. 1739
* Bodine, E. J. 1778
Bodner, B. L. 1586
Boersma, S. 1118
Boersma, S. 1119
* Bogart, T. C. 1023
* Boller, J. D. 1696
Boman, E. C. 1386
* Bona, J. L. 1821
Bonacich, P. 419
* Bond, S. D. 1827
Bonsangue, M. V. 373
Bookman, J. 731
Bostic, J. W.

Bouchat, R. R. 1046	Calvert, W. 1440	* Clark, D. A. 518
Boucher, R. 664	* Camenga, K. A. 728	- Clark, E. L. 1288
Bourchtein, A. 1030	* Cameron, J. 761	Clark, J. W. 1963
Bouthellier, P. R. 669	- Campbell, K. J. 1314	* Clark, R. E. 1733
Bouthellier, P. R. 696	* Campbell, K. J. 1464	* Clay, A. J. 1819
Bovell, C. R. 638	Canak, I. 1901	* Cleary, S. 1146
Bovell, C. R. 1603	* Caprau, C. L. 519	* Clemens, J. D. 235
Bowers, S. 1569	Carlson, N. A. 574	- Clough, C. 1912
- Bowlin, G. S. 1843	* Carlsson, G. 785	- Cobbs, L. 208
- Bowling, S. A. 1446	* Carneiro, E. 779	Cohen, M. M. 1845
* Bowman, D. 1463	Carpenter, J. P. 665	* Cohn, H. 508
* Boyer, R. P. 281	Carter, C. W. 438	Collins, K. L. 894
* Boylan, M. 76	* Cartwright, N. A. 741	* Colonna, F. 1711
Braddy, L. 416	Castillo-Chavez, C. 427	Comar, T. D. 652
Braden, L. S. 1634	* Castillo-Chavez, C. .. 1007	Comar, T. 910
Bradley, R. C. 551	Catalano, M. T. 1336	-Condori, A. A. 340
* Bradley, R. E. 1684	Catalano, M. 939	Connors, M. 646
\& Bradshaw, Z. 325	Catepillan, X. 1973	Connors, M. 851
Braescu, L. 1069	Catrina, F. 614	* Constantine, D. 308
- Branco, J. R. 625	Caulfield, M. J. 148	Cook, S. V. 1353
Brandt, H. 9	Caulfield, M. J. 1104	* Cooke, R. L. 1175
¢ Brantner, J. N. 1838	* Cautis, S. 1259	- Cooper, B. J. 1557
Braunstein, J. L. 1369	Cavaretta, A. S. 1623	Cooper, C. N. 1309
* Braverman, M. 466	4Cayco Gajic, N. A. 1028	Corn, P. 1315
* Bray, W. O. 777	* Cenzer, D. 227	* Cortez, R. 311
- Breiner, C. 1667	Cha, B. 1310	Coughlin, H. 1357
- Brett, A. 1144	Chakraborty, S. 1077	* Coykendall, J. 1194
* Bringmann, K. 74	Chamberland, M. 920	* Craciun, G. 1785
- Brisbin, A. 814	* Chamberland, M. 1006	- Craddock, M. R. 339
- Broad, S. E. 541	Chan, D. M. 811	* Crannell, A. 1004
* Brock, J. 793	* Chan, O.-Y. 48	Cranston, D. W. 895
\& Brockman, G. 1871	* Chan, R. H. 287	Crass, S. 927
* Broker, R. 505	* Chandra, J. 44	* Crass, S. 970
Brooks, C. D. 204	Charlwood, K. E. 1395	* Crawford, M. 969
* Brown, J. A. 1820	* Charters, P. 22	Crawley, J. W. 1354
- Brown, J. H. 331	Chartier, T. 403	Crisman, K.-D. 1132
- Brown, J. S. 349	Chavey, D. P. 1950	* Crisman, K.-D. 1490
* Brown, M. 1695	* Chazan, D. I. 984	- Crowell, S. 678
Brown, S. A. 859	Che, Z. 320	\diamond Csima, B. 1649
* Brualdi, R. A. 1786	- Chen, C. 619	* Cui, J. 66
- Bruder, A. 1429	- Chen, D. 201	* Cui, S. 221
* Bruff, D. 730	* Chen, I.-K. 1777	* Culler, M. 1740
Bryan, K. M. 1988	* Chen, J.-P. J. 1472	Cullinan, J. 366
- Bryant, L. 1047	* Chen, J. 255	Cushing, J. M. 171
- Bryant, S. 558	Chen, L. 601	* Cushing, J. M. 1215
Brzenk, R. M. 394	* Chen, L. 85	Cutler, J. 1140
Brzenk, R. M. 1350	- Chen, Q. 800	\& Dabbs, K. 1993
* Bubenik, P. 786	-Chen, S.-J. 102	* Dabkowski, M. K. 1818
- Bulanova, A. S. 1653	* Chen, Y. 455	Dai, J. 1590
* Bulatov, A. A. 1185	* Cheng, Y. 63	* Dai, W. 24
* Bumby, R. T. 960	Cherif, C. 1641	- Daly, D. 1540
- Bunge, R. 1844	* Cherlin, G. L. 744	- D'Ambroise, J. 1674
Burch, K. J. 1377	* Chifan, I. 57	* Daniele, P. 1247
Burke, M. M. 897	Childs, K. M. 1352	* Danilova, A. 1510
Burkhead, E. G. 824	* Chinburg, T. 1761	D'Antonio, L. A. 1606
Burks Jr., R. E. 869	Choi, J. 1297	Darken, B. 415
Burks Jr., R. E. 1573	* Chong, C. T. 225	Darken, B. 1123
\& Burmeister, T. E. 718	Chopp, D. L. 166	* Dashti, S. A. 230
Burns, A. M. 1947	* Chopp, D. 309	Dastrange, N. 197
Burroughs, E. A. 1108	* Chorlay, R. G. 1172	- Davis, C. 440
* Burstein, R. D. 59	* Chou, C.-S. 486	- Dawkins, P. C. 860
* Buser, P. 774	* Chowdhury, A. 270	DeAlba, L. M. 1380
- Buyukadali, C. 41	- Christensen, J. G. 103	Dean, M. H. 1890
CadwalladerOIsker, T. 1941	* Chubb, J. 1816	- Dean, N. 1164
- Caffarelli, L. A. 1161	- Chudnovsky, M. 215	* De Angelis, V. 454
Caffentzis, D. J. 697	- Chun, C. B. 1850	Debnath, J. 1564
* Caflisch, R. E. 304	- Church, T. 1882	Debnath, J. 1958
* Cain, J. W. 69	- Cibotaru, F. D. 1537	Deckelman, S. M. 866
* Calderbank, R. 249	Cintron-Arias, A. 812	Decker, J. I. 1331
Calegari, D. 1084	- Cipra, J. A. 843	Decker, R. J. 1099
* Callender, H. L. 474	- Ciungu, L. C. 1635	Decker, R. J. 1422

346	.
Goins, G. 914	Hale, P. L. 375
Gold, B. 1445	Haley, J. M. 1308
Goldberg, T. E. 116	* Halfpap, J. 1722
^ Golden, K. M. 715	- Hall, B. E. 834
* Goldenberg, P. 724	* Hall, N. S. 1690
* Goldman, W. M. 1744	- Hall, N. W. 437
Gonchigdanzan, H. .. 1124	Hall, T. G. 1398
Gong, S. 838	Hall-Seelig, L. L. 1312
Gonzalez Tokman, C.I. 1083	Halvorsen, K. T. 1156
Goodman, V. 1295	Hammack, R. 1851
* Goodstein, J. R. 1176	Hamman, K. 1117
Goodwin, D. M. 1286	Hammond, D. K. 160
* Gordon, C. M. 530	* Hampton, C. R. 1810
Gordon, S. P. 650	* Hampton, M. 1494
Gordon, S. P. 1328	- Hanchin, T. G. 1620
Gordy, M. B. 1301	* Handlovicova, A. 288
Gorman, J. A. 389	* Hannasch, D. 218
* Goroff, D. L. 1811	4 Hannoun, D. M. 1996
* Gothen, P. 1743	* Harbater, D. 1759
Gottesman, D. 4	Harker, H. 1952
Grabarnik, G. Y. 334	Harkleroad, L. 399
\square Graham, F. C. 714	Harnish, S. H. 142
Gray, J. E. 1085	Harnish, S. H. 400
Gray, S. 913	¢ Harrington, J. 360
Green, P. 1773	Harris, J. M. 404
Greene, J. R. 1054	¢ Harris, K. 368
Greene, M. 1962	Harris, Q. W. 642
Greenfield, G. R. 1587	* Harvey, D. M. 1492
Greeno, C. L. 878	Hassi, M.-L. 1372
Greeno, C. L. 1577	* Hastings, H. M. 263
Greenwald, S. J. 434	Hathaway, D. K. 1365
Greenwell, R. N. 433	Hathaway, D. K. 1581
Gries, D. 1102	* Hatley, J. 721
Grimaldi, R. P. 1608	\& Hauze, J. D. 1972
Groetsch, C. W. 627	Haver, B. 1566
Groth, R. E. 1107	Hay, C. 908
* Grout, J. 1491	Hayden, P. 3
* Grout, J. 1781	* Haynes, G. S. 966
* Grove, E. A. 71	He, T.-X. 1036
Growney, J. 1946	- He, X. 1033
Grundman, H. G. 369	* Helenius, F. W. 29
* Gryc, W. E. 497	Helleloid, G. 1139
* Gu, D. 791	Helms, J. W. 145
Guadarrama, Z. 1956	* Henderson, D. W. 971
- Guan, Y. 1538	Henderson, J. R. 1126
* Gudi, T. 64	* Henderson, J. 296
* Guerzhoy, P. 1016	Henle, J. M. 547
- Gui, L. 1642	Henriksen, M. 1293
* Gukov, S. 525	* Hensley, D. 959
Gunatillake, G. 105	Henson, S. M. 170
Gunsul, P. A. 584	* Herbera, D. 767
- Guntel, B. J. 1551	Herman, E. P. 151
* Gunzburger, M. 1527	Herman, E. P. 1959
* Guo, X. 1787	Herman, R. L. 804
Gurski, K. F. 1832	* Herrmann, D. L. 1199
* Guruswami, V. 27	* Herrmann, D. 1702
Gutekunst, T. M. 1541	* Herzog, I. 764
* Guy, R. K. 956	Hetzler, S. 681
- Guy, R. T. 1897	Hetzler, S. 931
Haas, R. 926	* Heubo, O. K. 1484
Habre, S. S. 1348	Heyer, L. 940
- Hackman, M. E. 122	Hiatt, C. S. 132
Haddad, C. N. 871	* Hickernell, F. J. 67
Haddad, C. 909	- Hickmann, K. S. 803
* Hadjiliadis, O. 1789	Higdon, W. M. 108
Hagedorn, T. R. 380	Higgins, R. J. 1415
Hagedorn, T. R. 841	Hilbert, S. 704
Hageman Smith, W. .. 1290	* Hill, D. 989
Haghighi, A. M. 557	* Hill, M. A. 999
Haines, M. J. 407	Hillyard, C. 1115

Mabrouk, S. L. 1966
Macauley, M. 1910
Maciel, J. 1258

* Mackaay, M. 1258
Madison, B. 907
* Maggioni, M. 783
* Magid, A. D. 533
Magidin, A. 1875
Magoun, A. D. 671
- Maki, K. L. 125
* Makowsky, J. A. 1179
- Malagon, A. 1678
* Malagon, A. 28

Maldonado, A. 645
Maleki, A. A. 206

* Malkevitch, J. 972

Malone, C. M. 647

* Mangahas, J. 794
* Manganiello, F. 25
* Mapes, S. 1274

Marchand, R. J. 1382

- Margulis, G. 214
- Margulis, G. 716
* Marino, S. 265

Marion, B. 688
Marion, B. 899
Markkanen, T. J...... 1637
Markus, T. 1411

* Marotta, S. M. 1716

Marquez, B. R. 1610

* Marrongelle, K. A. 449
* Martelli, M. U. 1519

Martin, C. D. 1056

- Martin, J. H. 862

Martin, J. W. 1913

* Martin, M. J. 1707

Martinez Garza, C. ... 1434

* Martini, H. 240
* Martinsson, G. 784
* Masri, R. 1018
* Massengo Mophou, G. 1459
* Massey, W. A. 739

Masso, M. 815
Mastroberardino, A. . 1628

- Mathison, H. R. 1111

Matos, C. A. 1287

- Matthews, K. E. 653
- Matthews, K. E. 1120

Mauch, E. K. 1979

* Mauldin, R. D. 462

Mauro, D. W. 1848
Mawhinney, K. J. 412

- Mawi, H. 1320

Maxin, D. 819

* May, J. P. 1224
- May, L. B. 801

May, M. 386

* Mayer, J.
445
- Mazur, J. D. 1530
* Mazurek, R. 481
- McAdoo, B. 806

McBurney, S. 1948
4 McCaffrey, K. L. 876

* McCallum, W. G. 447

McCarthy, M. L. 1419
McCarthy, M. 919
McDevitt, T. 1633

* McDonald, J. J. 1504
* McDonald, M. P. 1801

4McDonough, A. 542
4 McGehee, C. 1080

* McGovern, W. W. 1486

McGowan, J. F. 1570
McGuire, H. W. 685

- McIntosh, C. A. 1847

McKee, R. 1430
McKelvey, R. W. 428

* McLarty, C. 1177
* Mc Laughlin, J. G. 1467

McLaughlin, P. H. 207
McLean, J. T. 1969
McLean, T. B. 668
McLean, T. B. 901
McLoud-Mann, J. C. .. 1134
McLoughlin, M. P. 1285

* McLoughlin, M. P. 1701

McMurdy, K. 370

* \& McNamara, J. E. 223
* McRae, F. A. 274
- McSweeney, J. K. 559

Meade, D. B. 849
$\begin{array}{lr}\text { Meadows, A. } 900 \\ \text { Meadows, A. } & 1961\end{array}$

- Mecham, T. 1876

Meeker, B. F. 421

* Meel, D. E. 732
- Megna, L. C. 94

Mejeur, A. 1989
Mellodge, P. 1624

* Melville, D. J. 1469
* Mendoza, R. 1794

Menéndez, J. 1391
Mercer, P. R. 198

* Merino, O. 1143

Mesa, V. 1660

- Meshes, J. 591
* Messano, B. 1518
* Meyerovitch, T. 461
* Miasnikov, A. 1149

Michael, T. 858

* 4 Michaud, N. L. 717
* Michel, V. 1249
* Mickens, R. E. 1461
- Mikkelson, R. 1053
- Militzer, E. R. 588
* Miller, A. D. 1806

Miller, D. J. 594
Miller, J. E. 1559

* Miller, J. S. 464

Miller, J. 946
Miller, J. 947

* Miller, R. L. 269
* Miller, R. 1814
- Miller-Sims, L. 1917

Milligan, T. W. 1965
Mills, D. 361

* Miña-Díaz, E. 1480

Miner, M. 886
Miner, M. 1342
Minton, G
1448
Minton, R. 633
Mir, E. 161
\diamond Mirzakhani, M. 1162

* Mitchell, A. G. 248

Mitchell, L. H. 1050
Moazzam, M. 184

* Moen, K. A. 778
* Mohapatra, R. N. 1268

Molitierno, J. J. 1128

* Moll, V. H. 737
- Molle, H. M. 1555

Momeni, A. 621
Monks, K. G. 1103

* Monks, M. J. 510
* Montes-Rodriguez, A. 1705

Montgomery, M. W. 345
Monticino, M. G. 1089

* Moore, G. W. 1651

Moore, J. 1356
Moore, J. 1580

- Moore, K. C. 861

Moore, L. 917
Moore, L. 918

- Moore, M. 1558

4 Moore, S. H. 607

* Moorhouse, J. 1481
\diamond Moosa, R. 962
* de Mora, M. 980
* Morava, J. 1231

Morgan, F. 117

* Morosanu, G. 1272
* Morris, D. W. 307
* Morrison, S. 521
* Morrison, S. 1736
* Mortenson, E. 1019

Moseman, E. 322

* Mossinghoff, M. J. 279
- Muche, T. A. 92
«Mudrock, J. A. 605
Muir, C. 881
Muir, Jr., J. R. 593
Muir, S. 585
* Mulay, S. B. 1196

Mulcahy, C. 405
Mulcahy, C. 870
Mullen, R. 708
Muller, K. 1326

* \subset Muller, T. B. 965
* Mummert, P. P. 1717

Munteanu, L. 1657

- Murphy, K. C. 129
Murphy T.
932

Murphy, T. 932

* Mustafaev, Z. 239
Muthuvel, K. 199
* Myasnikov, A. 746

Nadler, E. 1086
Nadler, E. 1833

* Naibo, V. 780
* Nam, N. 89
* Nam, N. 1254
* Namazi, H. 798
* Naples, S. R. 722
- Narayan, A. 1829

Narayan, D. 911

* Nash, S. G. 1526

Nashed, M. Z. 191
$*$ Nashed, M. Z. 1255

* Nashed, M. Z. 1255

Navaratna, C. N. 99

* Navas, A. 1521

Nava-Yazdani, E. 1619
Neidinger, R. D. 699

* Neilan, M. 489

Nelson, P. 943

* Nelson, V. N. 1776
* Nesetril, J. 1181

Nester, D. K. 711

* 4 Newkirk, E. S. 220

* Perepelitsa, M. 36
* Pereverzev, S. V. 1251
- Perez, H. 1423 Perovich, D. K. 1406
Perry, A. B. 190
Perry, A. B. 853
* Persily, N. A. 1802
Pesek, J. D. 1981
* Pestov, V. G. 232
- Peters, E. 1666
* Peterson, C. 1276
$\begin{array}{r}\text { Peterson, E. } 1101 \\ \\ \hline\end{array}$
* Peterson, E. 1748
- Peterson, I. 1665
- Peterson, V. J. 1669
* Pfeiffer, H. 1265

4 Pflueger, N. K. 1853
-Phan, C. 348

* Phat, V. N. 88
Phili, C. 185
- Phillips, D. L. 436
- Phillips, R. D. 1864
* Picavet, G. 1487
* Picavet-L'Hermitte, M. 1190

Pierce, A. E. 1565

* Pildes, R. 1798

Pile, A. L. 1561
$*$ Pinsky M A

* Pinsky, M. A. 781
* Piotrowski, A. 1721

Pitzer, A. 906
Pivarski, M. A. 202

* Plofker, K. 978
* Poeschl, C. 1252

Polhill, J. B. 328

* Poltoratski, A. 1479

Pomerance, C. 1400

* Ponce-Escudero, M. .. 1710

Poodiack, R. D. 150

* Popa, M. 756

Poplin, P. 883

* Popovici, C. 294

| Potocka, K. 1598 |
| :--- | ---: |
| Prado, L. M. |

$\begin{array}{ll}\text { Prado, L. M. } 595 \\ \text { Prajitura, G. T. } & 106\end{array}$

* Pramanik, M. 1014

Prapavessi, D. 925
Prapavessi, D. 1594
Presser K,
Presser, K. J. 848
Previato, E. 1316

* Previato, E. 773
* Previato, E. 1758

Prevost, S. 643

* Price, G. L. 757

Rossi, P. S. 1609
Rossman, B. 1186

* Rouse, J. 514
- Rowland, E. S. 321

Rozenhart, P. 507
$\begin{array}{ll}\text { Roznowski, J. } 941 \\ \text { Rubalcaba, R. R. } & 609\end{array}$

* Rubin, B. 1244

Rublein, G. 1359

* Rudloff, B. 100
* Rudolph, D. J. 226

245

Ruiz, J. M. 1319

* Russell, E. D. 302
- Russell, E. D. 1715
- Russell, H. M. 1679

Russo, B. 333

* Ryan, N. C. 516

Rychtar, J. 942
Rychtar, J. 1999
Sabeti, R. 1278

* Sacker, R. J. 1212

Saff, E. B. 742
Safford-Ramus, K. 887
Saha, K. K. 1860

* Saito, M. 81
- Salceanu, P. L. 423
- Salerno, A. J. 358
* Saltman, D. J. 478
* Sambandham, M. 40

Samuels, C. L. 357
Sanacory, F.
341
Sanchis, G. R. 662
Sandefur, J. 729

* Sandifer, C. E. 1685
- Sanjeewa, R. 180
* Santhanam, R. 1497

4Sapp, S. 563

* Sarig, O. 195
- Sarnak, P. 429
* Saunders, B. D. 1755
* Savvopoulou, A. K. ... 1010
* Sayit, H. 1512

Schaal, D. 710
Schaffer, K. 402
Scheinerman, D. C. 362
Scheinerman, E. R. 890
Schiefelbein, J. 944
Schield, M. 1358
Schlaerth, J. 1241
«Schlatter, E. 548

, J.	77
- Simeonova, L. B.	1921
Simmons, C. K.	188
¢ Simmons, S. C.	1927
Simoson, A. J.	1955
* Simpson, S. G.	224
* Sindi, S. S.	1517
* Singer, A.	305
Sinko, A. C.	599
* Sirbu, M.	1513
Sivasundaram, S.	1417
* Skachek, V.	253
Skansi, S.	1435
* Skoug, D.	494
* Slavin, L.	775
Sloujitel, J	1374
* Smale, S.	782
¢ Small, B.	100
Small, D.	930
- Smith, B. B.	1043
Smith, C. M.	684
Smith, C.	1383
- Smith, C.	1846
- Smith, D. C.	1915
* Smith, G. E.	1169
* Smith, H. L.	1516
Smith, J. P.	1583
Smith Risser, H.	644
¢Snively, E. E. ..	1842
- Snopce, I.	205
- Snyder, J. E.	832
* Snyder, J. M.	1804
* ¢ Snyder, L	967
So, S. S.	578
So, W.	1051
* Solecki, S.	468
* Solomon, D. R.	1813
* Sommese, A.	1275
- Song, G.	1032
4 Song, I.	173
Song, Q.	1303
* Sottile, F.	49
* Sottile, F.	502
* Sottile, F.	1024
- Sottile, F.	1168
* Sparling, G.	1209
* Spatzier, R. J.	695
* Spatzier, R. J.	1694
Spickler, D.	702
* Spiller, E. T.	56
- Srinivasan, R.	805
- Srinivasan, V. R.	1916
Staecker, P. C.	1879
* Stan, F.	278
* Starbird, M.	1703
Starr, C. L.	1605
¢Stawasz, N.	1393
* Stawiska, M. S.	1723
* Steinwandt, R.	1233
* Stephens, T. D.	19
* Stephenson, K.	1720
Steven, S.	539
* Stoikov, S. F.	1511
Stout, R. H.	155
Straley, H. W.	1347
- Strawbridge, E. M	1681
Strigul, N. S.	2000
\diamond Strogatz, S.	2015
Stuart, J.	. 701
Stuart, J.	949
Stull, J. C.	1896

* Sturmfels, B. 10	* Turaev, V.
Su, C. 1919	* Turner, L. E. 1689
* Su, H.-J. 1279	* Turner, P. R. 1264
- Su, Z. 573	Tysse, J. E. 2014
¢Suazo, L. R. 1658	* Ullman, D. H. 1797
- Suckale, J. 527	- Ultman, S. K. 1562
Sullivan, B. D. 2013	- Um, K. W. 624
Sullivan, M. M. 651	- Unver, A. K. 618
Sulsky, D. 1409	* Ushakov, A. V. 1236
Sun, L. 1027	\diamond Väänänen, J. 1664
¢Sun, Y. 367	Vakalis, I. 1396
Sundheim, P. A. 1055	* Van Brummelen, G. R. 977
Suzuki, J. A. 189	Vandenbussche, J. R. . 596
Suzuki, J. A. 1364	* Vander Meulen, K. N. 1779
Suzuki, J. A. 1949	- Vanderpool, R. E. 1920
* Swanepoel, K. J. 241	Van Fleet, P. J. 698
* Swanson, I. 1200	Van Fleet, P. 872
Swinyard, C. A. 1444	Van Steirteghem, B. ... 210
- Szabo, C. 1977	* Vaš, L. 766
* Szczepański, A. F. 1205	- Vasilic, A. 809
* Szegedy, B. 1180	- Vasilic, A. 1680
Szydlik, J. E. 1935	* Vatsala, A. S. 45
Szydlik, S. D. 1607	Veenstra, T. B. 378
* Szyld, D. B. 487	Vega, O. 543
Szymanski, A. 579	¢Velingker, A. A. 610
Tabak, E. G. 1410	* Venema, G. A. 973
Tadesse, A. 583	* Venuti, S. M. 21
Tahvonen, O. I. 424	* Veraart, L. 1792
* Taimina, D. 1202	* Verma, R. U. 1270
\&Takeshita, T. Y. 1433	Vermesi, B. K. 561
- Talley, J. R. 1663	VerNooy, S. 1604
- Talley, J. R. 1673	* Verschelde, J. 503
* Tamasan, A. 1253	* Vignoli, A. 1514
* Tan, S. P. 1745	* Villard, G. 1752
- Tania, N. 1677	Vinceková, E. 1906
* Tanner, J. 303	Vincent, K. M. 1122
Tannouri, A. E. 1321	* Vindas, J.
¢Tannouri, C. A. 712	- Vish, N. G. 1900
Tatarinova, T. V. 98	\diamond Visser, A. 1683
Tavakoli, K. 592	* Vitulli, M. A. 1726
- Taylor, M. R. 620	* Vladimirsky, A. 310
Taylor, S. A. 1554	* Voisei, M. D. 1271
Taylor, W. D. 836	* Volberg, A. L. 1478
Teboh-Ewungkem, M. I. 90	VonRenesse, C. 885
* Teitelbaum, M. S. 1808	Vulis, M. 38
Teng, Z. 818	- Wade, J. 1837
Tesemma, M. S. 1048	Waggoner, M. 703
- Therkelsen, R. K. 1905	Wagner, J. D.
Thibodeaux, J. J. 1995	Wagner, W. M. 439
Thieme, H. R. 168	Wakefield, T. P. 144
* Thomas, D. M. 1515	* Walker, B. J. 1498
* Thompson, A. 797	Walker, K. 120
* Thompson, S. E. 735	Wallace, S. D. 1552
Thoren, E. 123	Walls, G. L. 1880
* Thornquist, H. K. 1824	¢Walpole, M. C. 1983
Thornton, K. 1615	Walter, M. E. 392
- Tiron, R. 127	Walton, D. B. 1997
* Tomczak-Jaegermann, N. 1	- Wang, C. 247
Tong, Z. 889	- Wang, F. 827
Tongen, A. 1453	Wang, J. 1830
- Tonic, V. 1668	- Wang, J. 1865
* Tornquist, A. 229	* Wang, L.-L. 492
* Torres, M. 259	Wang, L. 344
* Torres, R. H. 1015	Wang, M.-J. 1579
* Trager, B. 501	- Wang, X. 606
* Tragoonsirisak, P. 1775	Wangberg, A. 880
* Trivisa, K. 35	Wangberg, A. 937
¢Tshishiku, B. M. 608	* Wanner, T. 787
- Tsinnajinnie, B. 1600	Warne, D. P. 1630
Tsishchanka, K. I. 1322	* Watson, L. 523
¢Tsutsui, T. 17	* Webster, B. 125

Webster, J. 506	* Yaskin, V. 1245
Wei, J. 1869	Yasskin, P. B. 410
* Weil, W. 238	Yasskin, P. 924
Weinberg, A. D. 1447	- Yates, R. B. 342
* Weinberger, S. 194	- Ye, J. 611
* Weintraub, S. H. 1171	* Yekhanin, S. 23
Weiss, H. 425	- Yielding, A. A. 1057
Weldon, L. M. 95	Yingst, A. Q. 829
* Wentworth, R. A. 1746	Yocco, L. S. 1333
West, E. 383	* Yorke, J. A. 300
* West, I. H. 42	* Yorke, J. A. 1213
West, R. 1330	* Yoshinobu, S. T. 1698
West, R. 1361	Youmbi, N. N. 203
* Westdickenberg, M. ... 258	*Young, M. P. 1020
- Whitacre, I. 661	* Young, R. C. 37
- Whitacre, I. 1939	Young, Y. 676
- Whitcher, U. A. 1532	Younger, J. 945
White, J. A. 666	* 4 Youngs, N. 964
Whittinghill, D. C. 847	Yousef, M. 162
* Wiegand, R. 1192	Yu, G. 1135
* Wiegand, S. 1731	* Yu, J. 1022
Wieman, R. E. 1291	Zachary, W. W. 335
* Wiggins, A. D. 759	* Zafrullah, M. 1193
Wijesiri, G. S. 178	Zarhin, Y. 176
Wildstrom, D. J. 323	* Zariphopoulou, T. 1000
* Wiley, S. 1219	Zarnowski, R. 874
¢ Wilhelm, M. 93	- Zemlyanova, A. 1671
* Williams, G. B. 771	- Zeng, S. 1029
¢Wilson, C. A. 1376	Zerr, R. J. 1960
* Wilson, R. 979	Zhang, C. 842
Winfield, C. J. 1928	Zhang, G. 822
- Winkler, P. 689	* Zhang, G. 1457
¢ Winston, E. M. 549	Zhang, H. 821
Winter, D. J. 864	* Zhang, J. J. 762
Wiseman, J. 1073	* Zhang, Q. 515
Witherspoon, S. 765	* Zhang, Q. 1256
* Wolfe, J. L. 16	Zhang, W. 1922
* Wolff, P. 1240	Zhang, Y. 1629
Wong, R. 709	* Zhao, L. 990
Wood, B. 1970	* Zheng, B. 65
- Wood, P. M. 1839	* Zheng, Y. 256
Woodburn, C. J. 1039	- Zhu, H. 1035
Woodrow III, G. V. 1095	- Zhu, M. 1870
■ Woodson, L. 1455	* Zieve, M. 1760
- Wooster, R. D. 1857	* Zitkovic, G. 1509
* Wootton, A. D. 1762	Zollinger, E. A. 1626
Wovchko, P. K. 1379	* Zorin, D. 475
- Wright, T. J. 364	Zullo, H. 935
Wu, H. J. 576	* Zwegers, S. 509
* Wu, L. 271	
Wu, Q. 181	
- Wu, Q. 324	
* Wu, W. 1280	
* Xambó-Descamps, S. . 770	
* Xiang, Q. 1754	
* Xie, X. 1766	
- Xie, Z. 802	
* Xing, H. 1788	
* Xing, Y. 488	
* Xu, Y. 1473	
* Yackel, C. 1197	
* Yakubu, A.-A. 1217	
* Yamada, I. 291	
- Yan, D. 1925	
- Yan, H. 597	
Yanev, G. P. 556	
* Yang, D. 1159	
* Yang, X. 485	
Yankosky, B. 379	
Yao, H. 1599	
Yarema, C. H. 1106	

Program of the Sessions

Washington, District of Columbia, January 5-8, 2009

Saturday, January 3

AMS Short Course on Quantum Computation and
Quantum Information (Part I)
8:00 Am - 5:00 pm
Organizer: Samuel J. Lomonaco, University of
Maryland Baltimore County
8:00am Registration.
9:00am A Rosetta Stone for quantum computing.
(1)Samuel Lomonaco, University of Maryland Baltimore County
10:15am Break.
10:45am Quantum algorithms.
(2) Peter Shor, Massachusetts Institute of Technology
2:00pm Concentration of measure effects in quantum
(3) information.
Patrick Hayden, McGill University
3:15pm Break.
3:45pm Quantum error correction and fault tolerance.
(4)Daniel Gottesman, Perimeter Institute
MAA Short Course on Data Mining and New Trends in
Teaching Statistics (Part I)
8:00 am - 4:00 pm
Organizer: Richard D. De Veaux, Williams College
8:00am Registration
9:00am Math is music-statistics is literature. What are the
(5) challenges of teaching statistics, and why is it
different from mathematics?
Richard D. De Veaux, Williams College

1:00pm What does the math-based introductory course look
(7) like in 2009? How do we merge mathematical concepts into the introductory course for the math/science student? How does statistical programming fit in?
Richard D. De Veaux, Williams College
2:30pm
2:45рм
Oven to modeling. Regression and ANOVA.
(8) Overview: How much to teach the first semester. Richard D. De Veaux, Williams College

Sunday, January 4

AMS Department Chairs Workshop

8:00 Ам - 6:30 Рм

MAA Board of Governors

8:00 Ам - 6:00 PM

MAA Ancillary Workshop

```
8:30 Ам - 5:00 PM
```

Teaching introductory data analysis through modeling.
Presenter: Daniel Kaplan, Macalester College

AMS Short Course on Quantum Computation and

 Quantum Information (Part II)$\left.\left.\begin{array}{rl}\text { 9:00 AM - 5:00 PM } & \\ & \text { Organizer: } \\ \text { Sanuel J. Lomonaco, University of } \\ \text { Maryland Baltimore County }\end{array}\right\} \begin{array}{rl}\text { 9:00AM } & \text { Riemannian geometry of quantum computation. } \\ \text { (9) } & \text { Howard Brandt, U. S. Army Research Laboratory }\end{array}\right\}$

The time limit for each AMS contributed paper in the sessions is ten minutes. The time limit for each MAA contributed paper varies. In the Special Sessions the time limit varies from session to session and within sessions. To maintain the schedule, time limits will be strictly enforced. For papers with more than one author, an asterisk follows the name of the author who plans to present the paper at the meeting.

Papers flagged with a solid triangle ($\boldsymbol{(}$) have been designated by the author as being of possible interest to undergraduate students.
Abstracts of papers presented in the sessions at this meeting will be found in Volume 30, Issue 1 of Abstracts of papers presented to the American Mathematical Society, ordered according to the numbers in parentheses following the listings.

2:00pm	Quantum knots and mosaics.
(11)	Samuel Lomonaco, University of Maryland
3:15pm	Baltimore County
3:45pm	Panel Discussion: The Grand Mathematical
	Challenge for Quantum Computation and Quantum
	Information.

MAA Short Course on Data Mining and New Trends in Teaching Statistics (Part II)

```
9:00 Ам - 4:00 PM
    Organizer: Richard D. De Veaux, Williams College
    9:00am Introduction to data mining, Part I: What is data
    (12) mining? How does it differ from statistics? What are
    the problems and techniques in data mining?
    Richard D. De Veaux, Williams College
    10:30am Break.
    10:45am Introduction to data mining, Part II: Five lessons
    (13) learned from data mining.
    Richard D. De Veaux, Williams College
    1:00Pm Introduction to data mining, Part III: The methods
    (14) and algorithms of data mining.
    Richard D. De Veaux, Williams College
    2:30pm Break.
    2:45pm Introduction to data mining, Part IV: Practical data
    (15) mining: Case studies.
    Richard D. De Veaux, Williams College
```

AMS Council
1:30 PM - 10:00 PM
Joint Meetings Registration
3:00 PM - 7:00 PM

Monday, January 5

Joint Meetings Registration

7:30 ам - 4:00 Pм
AMS-MAA-SIAM Special Session on Research in Mathematics by Undergraduates, I

8:00 Aм - 10:50 ам
Organizers: Darren A. Narayan, Rochester Institute of Technology Jacqueline A. Jensen, Sam Houston State University
Carl V. Lutzer, Rochester Institute of Technology
Vadim Ponomarenko, San Diego State University
Tamas Wiandt, Rochester Institute of Technology
8:00am Frames: Surgeries, dilation, and robustness.

- (16) Preliminary report.

Jennifer L. Wolfe*, Rachael L. Tomasino, Eileen L. Radzwion and Sara P. Rimer, Central Michigan University (1046-15-90)
8:30am The minimum semidefinite rank of a graph.

- (17) Taiji Tsutsui*, Hiram College, Hiram OH, and Rachel Ellen Cranfill, Harvey Mudd College (1046-15-91)

9:00am A numerical and analytical study of modeling

- (18) techniques for microstructure evolution. M. R. Atkins, George Mason University (1046-35-103)
9:30am Understanding and predicting materials properties
- (19) from phase-field simulations. Preliminary report. Thomas Dean Stephens, George Mason University (1046-35-101)
10:00am Vector invariants of elementary Abelian p-Groups.
- (20) Preliminary report. Aaron B. Adcock, Texas Tech University, Lubbock TX (1046-13-22)
10:30am Mathematical modeling, analysis and computation
- (21) of a fluid-structure interaction problem with applications. Preliminary report. Sarah Minerva Venuti*, Kevin Kelbaugh and Padmanabhan Seshayer, George Mason University (1046-65-66)

AMS Special Session on Recent Trends in Coding Theory, I

8:00 ам - 10:50 Ам

Organizers:	Gretchen L. Matthews, Clemson
	University
	Judy L. Walker, University of Nebraska

8:00Am Generalizing binary quadratic residue codes.
(22) P. Charters, University of Texas at Austin (1046-11-645)
8:25Am Locally decodable codes.
(23) Sergey Yekhanin, Microsoft Research (1046-68-951)
8:50am Iterative subspace pursuit decoding of weighted
(24) euclidean superimposed codes.

Wei Dai* and Olgica Milenkovic, University of Illinois at Urbana-Champaign (1046-68-1510)
9:15am On algebraic constructions of codes for random

- (25) linear network coding.

Felice Manganiello*, Elisa Gorla and Joachim Rosenthal, Zurich University (1046-94-854)
9:40am Further analysis of codes based on permutations.
(26) Christine A. Kelley, University of Nebraska-Lincoln (1046-94-1960)
10:05am Coding theory and Pseudorandomness.
(27) Venkatesan Guruswami, University of Washington \& Carnegie Mellon University (1046-05-1085)

AMS Special Session on Representation Theory of Lie Algebras and Algebraic Groups, I

8:00 AM - 10:50 ам
Organizers: David G. Taylor, Roanoke College
Terrell L. Hodge, Western Michigan University
Daniel K. Nakano, University of Georgia
8:00am Killing forms of Lie algebras.
(28) Audrey Malagon, Emory University (1046-17-72)

8:30am Freudenthal triple systems by root system methods.
(29) Fred W. Helenius, Emory University (1046-17-80)

9:00am Filtrations of Weyl modules. Preliminary report.
(30) Brian Parshall, University of Virginia
(1046-20-1137)
9:30am Cohomology of algebraic, quantum, and finite
(31) groups.

Leonard L. Scott, The University of Virginia (1046-20-1149)

10:00am Cohomology of finite-dimensional quantized
 (32) enveloping algebras: The mixed case. Christopher M. Drupieski, University of Virginia (1046-20-1224)
 10:30ам Combinatorics of crystal bases for certain
 (33) Demazure modules.
 Julie C. Beier, Mercer University (1046-17-445)
 AMS Special Session on Nonlinear Partial Differential Equations and Applications, I
 8:00 AM - 10:50 Aм
 Organizers: Gui-Qiang G. Chen, Northwestern University
 Cleopatra C. Christoforou, University of Houston
 8:00am Compensated compactness and the
 (34) multi-dimensional Euler equations.
 James Glimm, State University of New York at Stony Brook (1046-35-257)
 8:30am On the dynamics of multicomponent reactive flows.
 (35) Konstantina Trivisa, University of Maryland (1046-35-1186)
 9:00am Instantaneous boundary tangency and cusp
 - (36) formation in two-dimensional fluid flows.
 Misha Perepelitsa*, Vanderbilt University, and
 David Hoff, Indiana University (1046-35-636)
 9:30am On shock-free periodic solutions for the Euler
 (37) equations.
 Robin C. Young*, University of Massachusetts, Amherst, and J. Blake Temple, University of California, Davis (1046-35-1619)
 10:00am Stability of Newtonian rotating white dwarf stars.
 (38) Tao Luo*, Georgetown University, and Joel
 Smoller, University of Michigan, Ann Arbor (1046-35-677)
 10:30am Local well-posedness of a dispersive Navier-Stokes
 (39) system.
 C. David Levermore* and Weiran Sun, University of Maryland, College Park (1046-35-1209)

AMS Special Session on Stochastic, Large-Scale, and Hybrid Systems with Applications, I

```
8:00 ам - 10:50 ам
Organizers: Aghalaya S. Vatsala, University of Louisiana at Lafayette G. S. Ladde, University of South Florida K. Ramachandran, University of South Florida
8:00am Numerical solution of hybrid fractional differential
(40) equations. Preliminary report.
S. Pederson and M. Sambandham*, Morehouse College (1046-65-435)
8:30am On periodic solutions of quasilinear differential
(41) equations with piecewise constant argument of generalized type in critical case.
Cemil Buyukadali*, Middle East Technical
University, and Marat Akhmet, Middle East Technical University (1046-34-850)
9:00am Existence of solutions for systems of differential
(42) equations with impulses with application to ecological models.
Ianna H. West, Nicholls State University (1046-34-1152)
9:30am On random network dynamics. Preliminary report.
(43) Andrzej Korzeniowski, The University of Texas at Arlington (1046-60-1277)
```

10:00am Cooperative/competitive dynamics in social
(44) networks. Preliminary report.

Jagdish Chandra*, The George Washington University, and G. S. Ladde, University of South Florida (1046-34-472)
10:30am Fractional differential and integral equations of
(45) Riemann-Liouville versus Caputo type. Preliminary report.
Aghalaya S. Vatsala, University of Louisiana at Lafayette (1046-34-490)

AMS Special Session on Experimental Mathematics, I

```
8:00 ам - 10:50 ам
```

Organizers: Tewodros Amdeberhan, Tulane University
Luis A. Medina, Tulane University
Victor H. Moll, Tulane University
8:00AM Towards a classification of periodic orbits of

- (46) particular fractal billiards.

Michel L. Lapidus and Robert G. Niemeyer*, University of California, Riverside (1046-37-945)
8:30Am Towards a proof of the q-TSPP conjecture.

- (47) Christoph Koutschan, RISC, Johannes Kepler University, Linz, Austria (1046-05-1749)
9:00am Some divisibility properties for Stirling numbers of
- (48) the second kind. Preliminary report.

O-Yeat Chan*, Dalhousie University, and Dante
Manna, Virginia Wesleyan College (1046-11-1271)
9:30am Experimentation at the frontier of reality in
(49) Schubert calculus. Preliminary report.

Frank Sottile, Texas A\&M University
(1046-14-1705)
10:00am Enumeration schemes for barred permutation
(50) patterns. Preliminary report.

Lara K. Pudwell, Valparaiso University (1046-05-936)
10:30am Grid graphs, Gorenstein polytopes, and domino

- (51) stackings.

Matthias Beck*, San Francisco State University,
Christian Haase, Freie Universität Berlin, and
Steven Sam, MIT (1046-05-837)

AMS Special Session on Heavy-Tailed Behavior: Theory and Applications

```
8:00 ам - 10:50 ам
```

Organizers: Thomas B. Fowler, Noblis Incorporated
Marty Fischer, Noblis Incorporated
Denise Masi, Noblis Incorporated
John F. Shortle, George Mason University
8:00am Lévy stable laws.
(52) John P. Nolan, American University (1046-60-1157)

8:35am Approximations for the waiting time distribution in
(53) an $M / G / 1$ queue with heavy tails.

Mariana Olvera-Cravioto*, Columbia University, and Peter W. Glynn, Stanford University (1046-60-587)
9:10AM Emergence of heavy-tailed behavior and the

- (54) failure of the central limit theorem due to hypercorrelation.
Thomas B. Fowler, Noblis, Incorporated (1046-60-560)

9:45am Simulation techniques and numerical methods for
(55) analyzing systems with heavy-tailed distributions. John F. Shortle*, George Mason University, Martin J. Fischer and Denise M. B. Masi, Noblis, Inc. (1046-90-819)
10:20am Constructing a risk map for pyroclastic flows: Using

- (56) simulations and data to predict rare events. Elaine T. Spiller, Marquette University (1046-86-1659)

AMS Special Session on Von Neumann Algebras, I

AMS Special Session on Mathematics of Computation, I

AMS Special Session on Difference Equations, I
8:00 ам - 10:50 ам
Organizer: Michael Radin, Rochester Institute of Technology
8:00am Open problems and conjectures in difference

- (68) equations. Preliminary report.

Gerasimos E. Ladas, University of Rhode Island (1046-39-171)
8:30am Local asymptotic stability and difference equations
(69) of arbitrary finite order.

John W. Cain, Virginia Commonwealth University (1046-39-87)
9:00am On Riccati difference equations with periodic

- (70) coefficients.
E. A. Grove, Y. Kostrov*, G. Ladas, University of Rhode Island, and S. Schlutz, Providence College (1046-39-646)
9:30Am Analyzing and comparing the boundedness nature
- (71) of the positive solutions of two autonomous and two non-autonomous rational difference equations. Preliminary report.
Edward A. Grove, University of Rhode Island (1046-39-640)
10:00am Dynamics of certain periodic nonlinear delay
(72) difference equations.
V. L. Kocic, Xavier University of Louisisana (1046-39-571)
10:30am On reduction of order of difference equations.
(73) H. Sedaghat, Virginia Commonwealth University (1046-39-153)

AMS Special Session on Automorphic and Modular

 Forms in Number Theory, I```
8:00 ам - 10:50 Ам
```

Organizers: Ken Ono, University of Wisconsin-Madison
Amanda Folsom, University of Wisconsin-Madison
Sharon A. Garthwaite, Bucknell University
8:00AM Rank-crank type PDE and non-holomorphic Jacobi
(74) forms. Preliminary report.

Kathrin Bringmann, Universitaet Koeln (1046-11-1251)
8:30ам Overpartitions and class numbers of binary
(75) quadratic forms.

Jeremy Lovejoy*, CNRS, LIAFA, Universite Paris 7, and Kathrin Bringmann, University of Cologne (1046-11-1196)
9:00AM Recent work on Maass and modular forms.
(76) Matt Boylan, University of South Carolina (1046-11-1909)
9:30am The unbounded denominator property of
(77) noncongruence modular forms.

Chris A. Kurth and Ling Long*, Iowa State University (1046-11-391)
10:00am Jacobi forms over complex quadratic fields via the
(78) cubic Casimir operators. Preliminary report. Olav K. Richter*, University of North Texas \& RWTH Aachen University (Germany), Kathrin Bringmann, University of Cologne (Germany), and Charles H. Conley, University of North Texas (1046-11-423)
10:30am Gaussian hypergeometric functions.
(79) Robert Osburn, University College Dublin (1046-11-1635)

AMS Special Session on Topological Methods in Applied Mathematics, I

| 8:00 | AM |
| :---: | :---: |
|  | Organizer: Yongwu Rong, George Washington University |
| $\begin{array}{r} \text { 8:00Ам } \\ (80) \end{array}$ | Dynamical systems over graphs: The relationship between graph topology and dynamics. <br> Reinhard C. Laubenbacher*, Abdul S. Jarrah, Virginia Bioinformatics Institute, and Alan Veliz-Cuba, Virginia Polytechnic Institute and State University (1046-37-1326) |
| $\begin{array}{r} 8: 30 \mathrm{AM} \\ (81) \end{array}$ | Knot theoretical methods for RNA-template guided DNA recombinations. <br> Angela Angeleska, Natasa Jonoska, and Masahico Saito*, University of South Florida (1046-57-521) |
| $\begin{aligned} & \text { 9:00am } \\ & -\quad(82) \end{aligned}$ | Strategies for DNA recombination using assembly graphs. <br> A. Angeleska*, N. Jonoska and M. Saito, University of South Florida (1046-00-652) |
| $\begin{array}{r} 9: 30 \mathrm{AM} \\ -\quad(83) \end{array}$ | A transition polynomial for signed Feynman diagrams. Preliminary report. <br> Kerry Luse*, Trinity (Washington) University, and Yongwu Rong, The George Washington University (1046-57-1385) |
| $\begin{array}{r} 10: 00 \mathrm{Am} \\ (84) \end{array}$ | Computation of the Alexander-Conway polynomial on the chord diagrams of singular knots. Sana Raoof, Harvard College (1046-92-1145) |
| $\begin{array}{r} 10: 30 \mathrm{AM} \\ (85) \end{array}$ | A fast algorithm for homology groups in 3D cubical space. <br> Li Chen*, University of the District of Columbia, and Yongwu Rong, George Washington University (1046-57-1203) |

## AMS Special Session on the Role of Generalized Maximal Monotonicity Frameworks in Optimization and Control Theory with Applications, I

8:00 AM - 10:50 Aм
Organizer: Ram U. Verma, International Publications

8:00am Kalman filtering of measure driven processes in
(86) Hilbert space.
N. U. Ahmed, SITE, University of Ottawa (1046-93-285)
9:00am Optimal impulse control in currency markets when
(87) interventions affect rates.

Alec N. Kercheval*, Florida State University, and Juan F. Moreno, State of Wisconsin Investment Board (1046-49-689)
10:00am Global stabilization of nonlinear switched

- (88) time-delay systems via matrix inequalities. Preliminary report.
Vu Ngoc Phat, Institute of Mathematics, Hanoi, Vietnam (1046-93-463)
10:30am Subgradients of marginal functions in parametric (89) optimization.

Boris Mordukhovich, Wayne State University, and Nguyen Mau Nam*, University of Texas-Pan American (1046-49-35)

AMS Session on Biology, I

## 8:00 ам - 10:55 ам

8:00am Mathematical model to quantify the impact of the

- (90) recovery rate on the dynamics and transmission of malaria in a changing population: Case of Cameroon.
Miranda Ijang Teboh-Ewungkem, Lafayette College (1046-92-714)
8:15Am The effect of temperature on transient population
- (91) dynamics: A case study using the pea aphid (Acyrthosiphon pisum). Preliminary report.
Joan P. Lubben*, Brigitte Tenhumberg, and
Richard Rebarber, University of Nebraska-Lincoln (1046-92-1053)
8:30am Circular splicing language and maximal prefix
(92) code. Preliminary report.

Tilahun Abay Muche, University of South Florida (1046-92-1100)
8:45am The mating game: A game theoretic analysis of the
(93) mating sign behavior in the honeybee.
M. Wilhelm*, J. Rychtar, O. Rueppell, and M. Chhetri, UNCG (1046-92-1269)
9:00am Effect of the abiotic environment on preening in
(94) glaucous-winged gulls (Larus glaucescens), Part I.

Lynelle M. Weldon, Shandelle M. Henson, James
L. Hayward, Libby C. Megna*, Andrews University, and Joseph G. Galusha, Walla Walla University (1046-92-821)
9:15am Effect of the abiotic environment on preening in (95) glaucous-winged gulls (Larus glaucescens), Part II. Lynelle M. Weldon*, Shandelle M. Henson, James L. Hayward, Libby C. Megna, Andrews University, and Joseph G. Galusha, Walla Walla University (1046-92-823)
9:30am Break
9:45am The modeling of retinal ganglion cell (RGC) axons and its convexity properties. Preliminary report. Kai-Bin Fu, Texas A\&M University (1046-92-1335)
10:00am Dynamical behavior of a one-island,

- (97) selection-migration model with partial dominance. Preliminary report.
Jordan West Bostic*, North Carolina State
University, James H. Roberds, USDA Forest Service, Southern Research Station, and James F. Selgrade, North Carolina State University (1046-92-1338)
10:15am Kullback-Leibler Markov Chain Monte Carlo - A new
- (98) algorithm for finite mixture analysis and its application to gene expression data.
Tatiana Valerievna Tatarinova*, Loyola Marymount University, and Alan Schumitzky, University of Southern California (1046-92-1421)
10:30am Radio-telemetry under malfunctioning receivers.
(99) Channa N. Navaratna*, Indiana University of Pennsylvania, and Menaka B. Navaratna, Florida Gulf Coast University (1046-92-1428)
10:45am Nonlinear dynamics of a simple microvascular
- (100) network. Preliminary report.

David Gardner, Yiyang Li and Benjamin
Small*, Franklin W. Olin College of Engineering (1046-00-1672)

## AMS Session on Operator Theory

## 8:00 ам - 10:55 ам

8:00am Group Bundle Duality.
(101) Geoff R. Goehle, Dartmouth College (1046-47-566)

8:15am Vertex operator algebras and integrable system.
(102) Shr-Jing Chen, Rutgers University (1046-47-241)

|  | Uncertainty principles from representations of Lie groups. <br> Jens Gerlach Christensen, Louisiana State University (1046-47-1643) |
| :---: | :---: |
| $\begin{array}{r} 8: 45 \mathrm{AM} \\ (104) \end{array}$ | Lacunary orbits for multiplication operators in $C[0,1]$ and $L_{p}[0,1], 1 \leq p \infty$. <br> Aderaw Workneh Fenta, Arkansas State University (1046-46-1570) |
| $\begin{array}{r} 9: 00 \mathrm{AM} \\ (105) \end{array}$ | Hermitian weighted composition operators on weighted Hardy spaces. <br> Carl C. Cowen, Indiana University - Purdue University, Indianapolis, Gajath Gunatillake*, American university of Sharjah, and Eungil Ko, Ewha Women's University, Seoul, Korea (1046-47-207) |
| $\begin{array}{r} 9: 15 \mathrm{AM} \\ \bullet \quad(106) \end{array}$ | Irregularity of orbits of operators. Preliminary report. <br> Gabriel T. Prajitura, SUNY Brockport (1046-47-1055) |
| 9:30am | Break |
| $\begin{array}{r} 9: 45 \mathrm{AM} \\ (107) \end{array}$ | $n$-contractivity and $k$-hyponormality of some Bergman-like weighted shifts. Preliminary report. Gregory Adams and George R. Exner*, Bucknell University (1046-47-1448) |
| $\begin{array}{r} 10: 00 \mathrm{Am} \\ (108) \end{array}$ | On the numerical range of a class of composition operators on $H^{2}$. Preliminary report. <br> William M. Higdon, University of Indianapolis (1046-47-462) |
| $\begin{array}{r} 10: 15 \mathrm{AM} \\ (109) \end{array}$ | On the index solvability for variational inequalities with (S)-mappings. <br> Dan D. Pascali, Courant Institute, New York University (1046-47-846) |
| $\begin{array}{r} 10: 30 \mathrm{am} \\ (110) \end{array}$ | Inequalities and operator means. Mohammad Khadivi* and Mokhtar Aouina, Jackson State University (1046-47-922) |
| $\begin{array}{r} 10: 45 \mathrm{Am} \\ (111) \end{array}$ | A refined Luecking's theorem and finite-rank products of Toeplitz operators on the Bergman space. <br> Trieu L. Le, University of Waterloo (1046-47-1170) |

## AMS Session on Differential Geometry

```
8:00 AM - 10:55 AM
```

    8:00am On the volume of meromorphic vector fields on
    (112) Riemann surfaces. Preliminary report.
        Amine Fawaz, The University of Texas of the
        Permian Basin (1046-53-201)
    8:15Am The topology of low-dimensional cohomogeneity one
(113) manifolds. Preliminary report.
Corey A. Hoelscher*, Rutgers University, and Shari
Ultman, Oregon State University (1046-53-673)
8:30am On the classification of low-dimensional fixed point
(114) homogeneous Riemannian manifolds with
nonnegative sectional curvature. Preliminary report.
Fernando Galaz-Garcia, University of Maryland,
College Park (1046-53-1098)
8:45am The higher flows of harmonic maps.
(115) Michael S. Gagliardo, Jacksonville University
(1046-53-1315)
9:00am A convexity theorem for the real part of a Borel
(116) invariant subvariety.
Timothy E. Goldberg, Cornell University
(1046-53-1148)
9:15Am Isoperimetric balls in cones over tori.
(117) Frank Morgan, Williams College (1046-53-583)
9:30am Break

9:45am Folded toric four-manifolds. Preliminary report.
(118) Christopher R. Lee, University of Illinois at Urbana-Champaign (1046-53-1802)
10:00am Connections and parallel transport. Preliminary

- (119) report.

Florin Dumitrescu, Pennsylvania State University (1046-53-1117)
10:15AM Connected components of strata of quadratic
(120) differentials over Teichmuller space. Katharine Walker, University of Michigan (1046-53-1827)
10:30am Some CR-submanifolds of low Chen-type in complex
(121) space forms. Preliminary report. Ivko Dimitric, Pennsylvania State University Fayette (1046-53-2028)
10:45am Screw-motion invariant minimal surfaces.
(122) Michelle E. Hackman, Indiana University (1046-53-217)

## AMS Session on Quantum Theory and Fluid Mechanics

```
8:00 ам - 10:55 ам
```

8:00am Linear instability criteria for Euler's equation: Two (123) classes of perturbations. Preliminary report. Elizabeth Thoren, The University of Texas at Austin (1046-76-322)
8:15AM A hybrid particle-continuum (DSMC-SPDE) algorithm (124) for dense fluid flows.

Aleksandar Donev*, Lawrence Livermore National Laboratory, Alejandro L. Garcia, Dept. Physics \& Astronomy, San Jose State Univ., and Berni J. Alder, Lawrence Livermore National Laboratory (1046-76-1402)
8:30am Human tear film dynamics with an overset grid (125) method.

Kara L. Maki*, Richard J. Braun, University of Delaware, William D. Henshaw, Lawrence Livermore National Laboratory, and P. Ewen King-Smith, The Ohio State University (1046-76-1581)
8:45am Dynamics of edge-flames in micro-channels.

- (126) Preliminary report. Joanna A. Bieri, Northwestern University (1046-76-1824)
9:00Am Unstable internal waves.
(127) Roxana Tiron*, Roberto Camassa, University of North Carolina at Chapel Hill, Ann Almgren, LBL Laboratories, Berkeley, and Amber Sallerson, University of North Carolina at Chapel Hill (1046-76-1964)
9:15am Falling spheres in stratified fluids.
(128) Roberto Camassa, Joyce T. Lin* and Richard M. McLaughlin, University of North Carolina at Chapel Hill (1046-76-1597)
9:30am Break
9:45am Vacuum and bound state calculations in point form
- (129) quantum field theory.

Kevin C. Murphy, The University of Iowa (1046-81-1724)
10:00am Lieb-Robinson bound on the anharmonic lattice.
(130) Hillel M. Raz, University of California Davis (1046-81-1870)
10:15am Differential geometry on a renormalization bundle.
(131) Susama Agarwala, Johns Hopkins University (1046-81-270)
10:30am Quantum traces in quantum Teichmüller Theory.
(132) Preliminary report.

Christopher Scott Hiatt, The University of Texas of the Permian Basin (1046-81-556)

## 10:45am Multiparty quantum states with nearly maximal - (133) stabilizer. <br> Stephanie A. Blanda, Lebanon Valley College (1046-81-808)

MAA Session on Mathematics and the Arts, I
8:00 АМ - 10:55 АМ
Organizer: Douglas E. Norton, Villanova University
8:00Am How a medieval troubadour became a

- (134) mathematical figure. Preliminary report. Michael P. Saclolo, St. Edward's University (1046-J1-1997)
8:20Am Mathematics of salsa dancing.
- (135) Christine von Renesse and Volker Ecke*, Westfield State College (1046-J1-431)
8:40Am Modeling voice-leading in music: The special role of
- (136) the bass voice. Preliminary report.

James R. Hughes* and Brandon Metz, Elizabethtown College (1046-J1-1754)
9:00am Using music to demonstrate group theory.

- (137) Preliminary report.

Vicky Williams Klima, Appalachian State University (1046-J1-818)
9:20am A mathematics \& music course for liberal arts

- (138) majors.

Kurt E. Ludwick, Salisbury University (1046-J1-1926)
9:40am The MAA Curriculum Foundations Project: A report

- (139) from the workshop on mathematics and the arts and implications for the undergraduate mathematics curriculum.
Susan L. Ganter*, Clemson University, Joanne Caniglia, Kent State University, and William Haver, Virginia Commonwealth University (1046-J1-585)
10:00am Which Edgar Allan Poe story is his most
- (140) quintessential? A word analysis using Galois lattices of formal concepts.
Roger Bilisoly, Central Connecticut State University (1046-J1-672)
10:20am The calculus of the Quinto Acuto and gothic
- (141) architecture.

Mike Huber, Muhlenberg College (1046-J1-194)
10:40am Art from the margins: Questions raised by artistic

- (142) patterns illustrating FLT.

Stephen H. Harnish, Bluffton University (1046-J1-2018)

## MAA General Contributed Paper Session, I

```
8:00 ам - 10:55 ам
```

Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: Timothy RedI, University of Houston-Downtown
Robert D. Poodiak, Norwich University
Michael J. Caulfield, Gannon University
Jennifer Wagner, Washburn University
8:00Am Lobb's generalization of Catalan's parenthesization

- (143) problem.

Thomas Koshy, Framingham State College (1046-Z1-620)
8:15am Verifying Huppert's Conjecture for ${ }^{2} G_{2}\left(q^{2}\right)$.
(144) Thomas Philip Wakefield, Slippery Rock University (1046-Z1-466)

8:30am An interdisciplinary project for statistics and

- (145) physics. Preliminary report.

Josh W. Helms* and Rodney Sturdivant, United States Military Academy (1046-Z1-1356)
8:45AM Evaluating communication skills in a modern

- (146) algebra course. Preliminary report.

Jennifer D. Wagner, Washburn University (1046-Z1-228)
9:00am Discontinuous open maps from $\mathbb{R}^{n}$ onto $\mathbb{R}^{n}$.
(147) William Goldbloom Bloch, Wheaton College (1046-Z1-1218)
9:15Am Apportioning seats in the U.S. House of

- (148) Representatives.

Michael J. Caulfield, Gannon University (1046-Z1-347)
9:30AM Development and analysis of a new course in

- (149) computational mathematics with MATLAB at the University of Houston-Downtown.
Timothy A. RedI, University of Houston-Downtown (1046-Z1-1083)
9:45AM The power of five.
- (150) Robert D. Poodiack, Norwich University (1046-Z1-1834)
10:00am Which is better: Homework or quizzes? Preliminary
- (151) report.

Edwin P. Herman, University of Wisconsin, Stevens Point (1046-Z1-1370)
10:15AM Loop decompositions of circulations in strongly

- (152) connected digraphs. Preliminary report.

Michael J. Adams* and Jonathan D. Vollmer, Truman State University (1046-Z1-776)
10:30AM Universal cycles of classes of restricted words.

- (153) Arielle M. Leitner*, California State University, Chico, and Anant Godbole, East Tennessee State University (1046-Z1-529)
10:45am Discriminating graphs of third degree polynomial - (154) functions.

Lucio M.G. Prado*, BMCC - The City University of New York, and Abdramane Serme, BMCC- The City University of New York (1046-Z1-1449)

## MAA General Contributed Paper Session, II

8:00 AM - 10:40 ам
Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: Rachel Schwell, Central Connecticut State University
David Hammond, Ecole Polytechnique Federale de Lausanne
Thomas Lominac, Virginia Military Institute
8:00AM Developing modern algebra and perspectives on the

- (155) nature of mathematics in Victorian England.

Richard H. Stout, Gordon College (1046-Z1-1733)
8:15AM Testing the effects of predictors data generated by
(156) non-identity link functions of the singe-index model: A Monte Carlo approach.
Rebecca S. Patterson, University of Louisville, and Larry Wayne Lewis*, Spalding University (1046-Z1-924)
8:30Am Math mistakes that make the news. Preliminary

- (157) report.

Heather A. Lewis, Nazareth College
(1046-Z1-1573)
8:45am Foundations of mathematics, Survivor!

- (158) Deborah A. Koslover, University of Texas at Tyler (1046-Z1-1775)

9:00am Using online discussions in an

- (159) introductory/intermediate algebra course. Sarah L. Mabrouk, Framingham State College (1046-Z1-2051)
9:15Am Wavelets on graphs via spectral graph theory.
(160) David K. Hammond*, Pierre Vanderghynst, Ecole Polytechnique Federale de Lausanne, and Remi Gribonval, IRISA-INRIA Rennes (1046-Z1-1237)
9:30am Incorporating mathematics into a study abroad
(161) experience.

Ellen Mir, Elon University (1046-Z1-335)
9:45am The modified Moore method versus the traditional

- (162) one: A case study. Preliminary report. Mahmoud Yousef*, Shing S. So and David Ewing, University of Central Missouri (1046-Z1-1279)
10:00am A research project for a beginning mathematics
- (163) student.

Anthony D. Berard, Jr., King's College (1046-Z1-601)
10:15am Elementary central limit theorems via mathematical - (164) induction.

Mark H. Inlow, Rose-Hulman Institute of Technology (1046-Z1-1165)
10:30am Bite-sized exams: A tale of two pre-calcs.
(165) Rachel Schwell, Central Connecticut State University (1046-Z1-1722)

## SIAM Minisymposium on Mathematical Modeling of

 Natural Resources, I```
8:00 Ам - 10:50 ам
```

Organizer: Catherine A. Roberts, College of the Holy Cross
8:00am A multi-species model for bacterial biofilms used in
(166) waste water treatment.
David L. Chopp, Northwestern University (1046-92-509)
8:30am Metapopulation models in tick-borne disease
(167) transmission modeling.

Holly D. Gaff*, Old Dominion University, and Elsa Schaefer, Marymount University (1046-92-357)
9:00Am The persistence of ranavirus in salamanders with
(168) ephemeral larval habitats. Preliminary report. Horst R. Thieme* and Thanate Dhirasakdanon, Arizona State University (1046-92-505)
9:30am Deterministic and stochastic juvenile-adult models
(169) with application to amphibians.

Azmy S. Ackleh*, Keng Deng and Qihua Huang, University of Louisiana at Lafayette (1046-92-554)
10:00am Modeling "stay/flee" conflict situations in animal

- (170) behavior: Poisson regression and differential equations. Preliminary report.
Shandelle M. Henson*, Andrews University, and James L. Hayward, Andrews University (1046-92-502)
10:30am Evolutionary reversals in competitive interactions:
- (171) Experimental occurrences and model explanations using Darwinian dynamics. Preliminary report. J. M. Cushing*, Rosalyn Rael, University of Arizona, Thomas L. Vincent, University of Arizona, and R. F. Costantino, University of Arizona (1046-92-510)

AMS Session on Algebraic and Analytic Geometry
8:15 AM - 10:55 Am
8:15AM Algebraic density property of homogeneous spaces.
(172) Fabrizio Donzelli* and Shulim Kaliman, University of Miami, Coral Gables, Florida (1046-14-1121)
8:30am On 3-dimensional tiling. Preliminary report.

- (173) Injun Song*, Eu Kyum Kim and Hum Kum, Korea Advanced Institute of Science and Technology (1046-14-1617)
8:45am Structure of Riemann-Roch G-modules for
(174) $y^{m}=x^{p}-x \operatorname{over} G F(p)$.

Darren Glass, Gettysburg College, W. David Joyner* and Amy Ksir, US Naval Academy (1046-14-1756)
9:00Am Group operation on the Jacobian of singular
(175) hyperelliptic curves. Preliminary report.

Enver Ozdemir, University Of Maryland, College Park (1046-14-1494)
9:15am Prym varieties of trigonal curves.
(176) Yuri Zarhin, Pennsylvania State University (1046-14-1522)
9:30am Break
9:45am A linear algebraic proof of Demailly and Skoda's

- (177) theorem.

Yisha Peng, Zhejiang University (1046-14-1179)
10:00am Theta functions for small genus curves with
(178) automorphisms.
G. Sujeeva Wijesiri, Oakland University (1046-14-991)
10:15Am Degree even coverings of elliptic curves by genus 2
(179) curves.

Nejme Gjika*, University of Vlora, Albania, and Miftar Ramosaco, University of Vlora, Albania. (1046-14-695)
10:30AM Determining equations of families of cyclic curves.
(180) Rakinawasan Sanjeewa, Oakland University (1046-14-857)
10:45am Computing fundamental units in bicyclic
(181) biquadratic global fields.

Qingquan Wu, University of Calgary
(1046-11-1030)

AMS Session on History

8:15 AM - 10:55 Am

8:15Am How history of mathematics can help education of

- (182) mathematics. Preliminary report.

Saeed Seyed Agha, I.H.University (1046-01-27)
circumference").
Mohammad K. Azarian, University of Evansville (1046-01-649)
8:45am Mathematician or physician? Preliminary report.

- (184) Mohammad Moazzam, Salisbury University (1046-01-1270)
9:00am Ioannis Carandinos and the Ionian Academy.
- (185) Preliminary report.

Christine Phili, National Technical University Athens (1046-01-1566)
9:15am Determining the determinant: The early years.
(186) Daniel E. Otero, Xavier University (1046-01-1693)

9:30am Connections between the genesis of mathematics

- (187) and writing in ancient Mesopotamia in 3100 B.C. and the neuroscience of learning mathematics today. Preliminary report.
Alexander G. Atwood, SUNY Suffolk County
Community College (1046-01-2003)

9:45am Boole and Hamilton: An unanswered question.

- (188) Preliminary report.

Charlotte K. Simmons, University of Central Oklahoma (1046-01-1574)
10:00am a history of college algebra in the United States

- (189) during the Nineteenth Century.

Jeff A. Suzuki, Brooklyn College (1046-01-753)
10:15am Webster's "Arithmetick in Epitome" and other

- (190) eighteenth century English arithmetic books.

Andrew B. Perry, Springfield College
(1046-01-1750)
10:30am Landmarks and trails in the development of

- (191) differential calculus in normed and function spaces.
M. Zuhair Nashed, University of Central Florida (1046-01-1918)
10:45am A new look at the convergence of a famous
- (192) sequence. Preliminary report.

Mihaela Dobrescu, Christopher Newport University (1046-40-1825)

AMS Special Session on The Mathematics of
Information and Knowledge, I
9:00 ам - 10:45 ам
Organizers: Ronald R. Coifman, Yale University James G. Glimm, SUNY at Stony Brook Peter W. Jones, Yale University Stephen Smale, Toyota Institute
9:00am Scales and geometry in data sets.
(193) Peter W. Jones, Yale University (1046-65-1292)

10:00am Homological methods for the study of data sets.
(194) Shmuel Weinberger, University of Chicago (1046-55-2129)

AMS Special Session on Group Actions on Homogeneous Spaces and Applications, I

9:00 Aм - 10:40 ам
Organizers: Dmitry Y. Kleinbock, Brandeis University
Gregory A. Margulis, Yale University Hee Oh, Brown University
9:00am The generic points for the horocycle flow on \mathbb{Z}^{d}
(195) covers.

Omri Sarig*, The Pennsylvania State University, and
B. Schapira, Universite Picardie Jules Verne (1046-37-245)
10:00am Volume entropy and measure of maximal entropy
(196) of hyperbolic buildings. Preliminary report.

Francois Ledrappier, University of Notre Dame, and Seonhee Lim*, Cornell University (1046-37-1544)

MAA Minicourse \#1 1: Part A

9:00 Aм - 11:00 ам
Planning and teaching mathematics capstone courses for preservice secondary school teachers.
Organizers: Edward F. Aboufadel, Grand Valley State University
Richard Hill, Michigan State University
Bruce E. Sagan, Michigan State University
Sharon Senk, Michigan State University
Natasha M. Speer, Michigan State University

Rebecca Walker, Grand Valley State University

MAA Minicourse \#1: Part A

9:00 Aм - 11:00 Aм
Discrete models in biology and simulations.
Organizers: Saber N. Elaydi, Trinity University
Huseyin Kocak, University of Miami
David Ribble, Trinity University

MAA Minicourse \#6: Part A

9:00 Aм - 11:00 Aм

Teaching with clickers and classroom voting.
Organizers: Derek Bruff, Vanderbilt University
Kelly Cline, Carroll College
Mark Parker, Carroll College
Holly Zullo, Carroll College

AMS Session on Analysis

9:00 AM - 10:55 AM

9:00am A generalization of the mean value theorem for (197) integrals. Preliminary report.

Nasser Dastrange, Buena Vista University (1046-26-654)
9:15am Error terms for Steffensen's, Young's, and

- (198) Chebychev's Inequalities.

Peter R. Mercer, Buffalo State College (1046-26-1265)
9:30am Iterations of Darboux Functions.
(199) Kandasamy Muthuvel, University of Wisconsin-Oshkosh (1046-26-1499)
9:45Am A generalization of an unpublished theorem of

- (200) Wiener.
J. Marshall Ash*, DePaul University, Sergey Tikhonov, Scuola Normale Superiore, and James
Tung, DePaul University (1046-42-2118)
10:00am Radon-Nikodym Theorem for hyper-measures.
(201) Mark Burgin, University of California, Los Angeles, Dongxin (Tony) Chen* and Alan Krinik, California State Polytechnic University, Pomona (1046-28-1563)
10:15am Large time heat kernel asymptotics for Riemannian
(202) polytopal complexes and finitely generated groups of isometries. Preliminary report.
Melanie Anne Pivarski, Texas A\&M University (1046-58-1804)
10:30am Idempotent probability measures on a locally
(203) compact semihypergroups.

Norbert N. Youmbi, Saint Francis University (1046-43-879)
10:45Am Extensions to the theory of local regularization for
(204) solving linear Volterra inverse problems. Preliminary report.
Cara D. Brooks*, Rose-Hulman Institute of Technology, and Patricia K. Lamm, Michigan State University (1046-45-1484)

AMS Session on Topological Groups

9:00 AM - 10:40 Aм

9:00am Pro-p groups of rank 3 and the question of
(205) Iwasawa. Ilir Snopce, Binghamton University (1046-22-1303)

$\begin{array}{r} 9: 15 \mathrm{AM} \\ (206) \end{array}$	Caratheodory approch in Haar measure. Preliminary report. Amir A. Maleki, Howard University (1046-22-1343)
$\begin{array}{r} 9: 30 \mathrm{AM} \\ (207) \end{array}$	On maximal ideals of compact connected mobs. Preliminary report. Phoebe Ho McLaughlin*, Shing S. So, University of Central Missouri, and Haohao Wang, Southeast Missouri State University (1046-22-1766)
$\begin{array}{r} 9: 45 \mathrm{AM} \\ (208) \end{array}$	Infinite towers of cocompact lattices in Kac-Moody groups. Preliminary report. Lisa Carbone and Leigh Cobbs*, Rutgers University (1046-22-1130)
$\begin{array}{r} \text { 10:00ам } \\ \square \quad(209) \end{array}$	Decompositions of various compact symmetric spaces. Robyn Brooks, Trinity University, Derek Habermas, State University of New York at Potsdam, Karol Koziol*, New York University, and Kirsten Trickey, Clarkson University (1046-22-1525)
$\begin{array}{r} 10: 15 \mathrm{Am} \\ (210) \end{array}$	Equivariant degenerations of spherical modules for groups of type A. Preliminary report. Stavros Papadakis, CAMGSD, Insituto Superior Tecnico, and Bart Van Steirteghem*, Medgar Evers College (CUNY) (1046-22-1865)
$\begin{array}{r} 10: 30 \mathrm{AM} \\ (211) \end{array}$	Topologies that are defined by forcing sequences of real numbers to converge to zero. Preliminary report. Jon W. Short*, Sam Houston State University, and T. Christine Stevens, Saint Louis University $(1046-22-1994)$

MAA Career Fair
9:00 ам - 11:00 ам
All students in the process of earning Bachelor's, Master's, or Ph.D. degrees are invited to participate.
Organizer: Robert W. Vallin, MAA

MAA-Young Mathematicians' Network Panel Discussion

```
9:00 ам - 10:20 ам
```

Finding your $n^{\text {th }}$ job (for n greater than or equal to 2).

Organizers: Joshua D. Laison, Willamette University
Aaron Luttman, Clarkson University
Raluca M. Gera, Naval Post Graduate School

MAA Special Presentation

9:00 AM - 10:20 AM

National Science Foundation programs supporting learning and teaching in the mathematical sciences. Organizers: Henry Warchall, NSF/DMS

Karen A. Marrongelle, NSF/DRL
Daniel P. Maki, NSF/DUE
Ginger H. Rowell, NSF/DUE
Elizabeth J. Teles, NSF/DUE
Lee L. Zia, NSF/DUE

Student Hospitality Center

9:00 Ам - 5:00 Рм

MAA Special Presentation

9:30 AM - 10:30 Aм
ICME-11 in retrospect.
Organizers: Martha J. Siegel, Towson University William G. McCallum, University of Arizona

MAA Department Liaisons Meeting

9:30 Aм - 11:00 Aм

AMS Invited Address

10:05 ам - 10:55 ам
(212) Advances in advancing interfaces: Building semiconductors, inkjet plotters, medical scanners, and robotic devices.
James Sethian, University of California, Berkeley (1046-35-09)

AMS-MAA Invited Address

11:10 AM - NOON

(213) Stability, consistency, and convergence: Modern variations on a classical theme.
Douglas N. Arnold, University of Minnesota, Minneapolis (1046-65-14)

Exhibits and Book Sales

12:15 PM - 5:30 Рм

Come to the Grand Opening at 12:15!

AMS Colloquium Lectures: Lecture I

1:00 PM - 2:00 PM

(214) Homogeneous dynamics and number theory I. Gregory Margulis, Yale University (1046-37-02)

MAA Invited Address

2:15 PM - 3:05 рм

(215) Perfect graphs-Structure and recognition. Maria Chudnovsky, Columbia University (1046-A0-11)

AMS-MAA-SIAM Special Session on Research in Mathematics by Undergraduates, II

2:15 PM-6:30 PM
Organizers: Darren A. Narayan, Rochester Institute of Technology
Jacqueline A. Jensen, Sam Houston State University
Carl V. Lutzer, Rochester Institute of Technology
Vadim Ponomarenko, San Diego State University
Tamas Wiandt, Rochester Institute of Technology
2:15pm Spectrally accurate initial data for numerical - (216) relativity.

Nicholas Battista* and Anthony Harkin, Rochester Institute of Technology (1046-35-944)
$\left.\begin{array}{ll}\text { 2:45pm } & \begin{array}{l}\text { A network theoretic approach to hyperspectral } \\ \text { image classification. } \\ \text { Ryan Lewis* and Anthony Harkin, Rochester }\end{array} \\ \text { Institute of Technology (1046-91-1115) }\end{array}\right\}$

AMS-ASL Special Session on Logic and Dynamical Systems, I

2:15 PM - 6:10 PM

$$
\begin{array}{ll}
\text { Organizer: } & \begin{array}{l}
\text { Stephen G. Simpson, Pennsylvania } \\
\text { State University }
\end{array}
\end{array}
$$

2:15PM Symbolic dynamics and degrees of unsolvability.
(224) Stephen G. Simpson, Pennsylvania State University (1046-03-292)
2:35pm Complex dynamics and Turing degrees. Preliminary (225) report.
C. T. Chong, National University of Singapore (1046-03-1162)
2:55pm Using orbit equivalence as a model for ergodic (226) systems.

Daniel J. Rudolph, Colorado State University (1046-37-705)
3:15PM Decidability of countable closed subshifts.

- (227) Preliminary report.

Douglas Cenzer* and S. Ali Dashti, University of Florida (1046-03-710)
3:35pm Generic isometries and measure-preserving
(228) homeomorphisms are conjugate to their powers. Christian Rosendal, University of Illinois at Chicago (1046-03-716)
3:55pm The classification problem for separable von

- (229) Neumann factors.

Asger Tornquist, University of Toronto (1046-03-724)

4:15pm Computable dynamics of real functions. Preliminary

- (230) report.
S. Ali Dashti* and Douglas Cenzer, University of Florida (1046-03-786)
4:35pm Bernoulli actions of property (τ) groups. Preliminary (231) report.

Scott Schneider, Rutgers University (1046-03-976)
4:55 PM Matrix models for discrete and topological groups.
(232) Vladimir G. Pestov, University of Ottawa, Ontario, Canada (1046-03-1104)
5:15PM Computability in ergodic theory.
(233) Jeremy Avigad, Carnegie Mellon University (1046-03-1123)
5:35pm Proof mining in topological dynamics.
(234) Philipp Gerhardy, Universitetet i Oslo (1046-03-1219)
5:55PM The isomorphism problem for subshifts.
(235) John D. Clemens, Penn State University (1046-03-1523)

AMS Special Session on Convex and Discrete

 Geometry, I| 2:15 PM - 6:05 pm | |
| ---: | :--- |
| | Organizers: Wlodzimierz Kuperberg, Auburn |
| University | |
| Valeriu Soltan, George Mason | |

AMS Special Session on Recent Trends in Coding Theory, II

2:15 PM - 6:50 PM
Organizers: Gretchen L. Matthews, Clemson University
Judy L. Walker, University of Nebraska

$\begin{array}{r} 2: 40 \mathrm{PM} \\ (245) \end{array}$	Efficient list decoding of explicit codes with optimal redundancy. Atri Rudra, University at Buffalo, The State University of New York (1046-68-464)
	Trellis pseudocodewords. Deanna Dreher, University of Nebraska (1046-94-1612)
$\begin{array}{r} 3: 30 \mathrm{PM} \\ -\quad(247) \end{array}$	LDPC codes and Ramanujan graphs. Chenying Wang, Penn. State Univ. (1046-15-1807)
	On right-regular graphs for cascaded LDPC codes. Abigail G. Mitchell, University of Zürich (1046-94-2012)
$\begin{array}{r} 4: 20 \mathrm{pm} \\ (249) \end{array}$	Golay, Heisenberg and Weyl. Preliminary report. Robert Calderbank, Princeton University (1046-94-465)
	On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes. Mark F. Flanagan*, University of Zurich, Switzerland, Enrico Paolini, University of Bologna, Italy, Marco Chiani, DEIS, University of Bologna, Italy, and Marc P.C. Fossorier, ETIS ENSEA / UCP / CNRS UMR-8051, Cergy Pontoise, France (1046-94-841)
$\begin{array}{r} 5: 40 \text { PM } \\ -\quad(251) \end{array}$	Enumerating pseudo-codewords in fundamental cones. Min Lu, University Park, PA (1046-94-1490)
$\begin{gathered} \text { 6:05pm } \\ (252) \end{gathered}$	Extrinsic tree decoding of LDPC codes. Eric Thomas Psota, University of Nebraska-Lincoln (1046-94-1540)
$\begin{array}{r} \text { 6:30pM } \\ (253) \end{array}$	Polytope representations for linear-programming decoding of nonbinary linear codes. Mark F. Flanagan, Universitat Zurich, Vitaly Skachek*, Claude Shannon Institute, University College Dublin, Eimear Byrne and Marcus Greferath, University College Dublin (1046-94-685)

AMS Special Session on Nonlinear Partial Differential Equations and Applications, II

2:15 PM - 6:05 PM

Organizers: Gui-Qiang G. Chen, Northwestern University
Cleopatra C. Christoforou, University of Houston
2:15pm Self-Similar multidimensional conservation laws: An (254) excursion into linear equations.

Nedyu I. Popivanov, Sofia University, and Barbara Lee Keyfitz*, Fields Institute and the Ohio State University (1046-35-424)
2:45pm Transonic flows past wedges governed by full Euler (255) equations.
G.-Q. Chen, Northwestern University, J. Chen*, University of Houston, and M. Feldman, University of Wisconsin, Madison (1046-35-555)
3:15pm Mixed type problems and semi-hyperbolic waves in
(256) two-dimensional compressible Euler systems.

Yuxi Zheng, Penn State (1046-35-516)
3:45pm Transonic shocks of multi-dimensional compressible
(257) flow through divergent nozzles with arbitrary cross-sections.
Myoungjean Bae* and Mikhail Feldman, University of Wisconsin-Madison (1046-35-411)
4:15PM Optimal transport for the system of isentropic Euler (258) equations.

Michael Westdickenberg, Georgia Institute of Technology (1046-35-641)

4:45pm On the structure of solutions of multidimensional (259) systems of conservation laws. Monica Torres, Purdue University (1046-35-669)
5:15pm Large-data solution of the Cauchy problem for a
(260) model system for singular shocks.

Michael Sever, The Hebrew University of Jerusalem (1046-35-174)
5:45pm Shock reflection, free boundary problems, and
(261) degenerate elliptic equations.
Gui-Qiang Chen, Northwestern University, and Mikhail Feldman*, University of Wisconsin-Madison (1046-35-663)

AMS Special Session on Recent Advances in Mathematical Modeling in Medicine

2:15 PM - 6:05 PM

Organizers: David Chan, Virginia Commonwealth University
John W. Cain, Virginia Commonwealth University
Rebecca A. Segal, Virginia
Commonwealth University
2:15pm Oscillations of calcium, metabolism, and insulin

- (262) secretion in pancreatic beta-cells.

Arthur S. Sherman, National Institutes of Health (1046-34-863)
2:45pm Statistical geometry of pancreatic islets.

- (263) Harold M. Hastings*, Hofstra University, and Bruce S. Schneider, Office of Cellular, Tissue, and Gene Therapies (1046-92-1728)
3:15pm Tubuloglomerular feedback signal transduction in a
(264) compliant thick ascending limb.

Anita T. Layton, Duke University (1046-92-438)
3:45pm A methodology for performing global uncertainty
(265) and sensitivity analysis in systems biology.

Simeone Marino*, Ian B. Hogue, Christian J. Ray and Denise E. Kirschner, University of Michigan Medical School (1046-34-1639)
4:15PM Mathematical modeling in nasal drug delivery and

- (266) surgery. Preliminary report.
J. S. Kimbell*, J. D. Schroeter and G. J. M. Garcia, The Hamner Institutes for Health Sciences (1046-92-1940)
4:45pm Mathematical modeling of blood-flow interaction
- (267) with deformable arterial wall with applications in medicine. Preliminary report.
Javed I. Siddique*, Daniel M. Anderson and Padmanabhan Seshaiyer, George Mason University (1046-65-76)
5:15pm Optimal control model for cancer chemotherapy
(268) subject to drug resistance.

Daniel L. Kern, University of Nevada, Las Vegas (1046-92-1815)
5:45pm Optimal intervention strategies for a cholera (269) outbreak.

Rachael L. Miller*, Suzanne Lenhart, University of Tennessee, and Elsa Schaefer, Marymount University (1046-34-409)

AMS Special Session on Stochastic, Large-Scale, and Hybrid Systems with Applications, II

2:15 PM - 5:35 PM

Organizers: Aghalaya S. Vatsala, University of Louisiana at Lafayette
G. S. Ladde, University of South Florida
K. Ramachandran, University of South Florida
2:15pm Perturbation of a gradient temperature field due to - (270) the presence of two spheres. Preliminary report. Abhinandan Chowdhury, University of Louisiana at Lafayette (1046-35-1305)
2:45pm Nonlinear stochastic modeling and statistic
(271) analysis. Preliminary report.

Ling Wu^{*} and Gangaram S. Ladde, University of South Florida (1046-60-1254)
3:15pm Behrens Fisher's distribution for selecting genes
(272) and its application in cancer classification. Nabin K. Shrestha* and K. M. Ramachandran, University of South Florida (1046-62-1572)
3:45pm Hybrid dynamic inequalities under random
(273) perturbations and applications. Preliminary report. Gangaram S. Ladde, University of South Florida (1046-93-1307)
4:15pm Generalized quasilinearization for differential
(274) equations with causal operators. Preliminary report. Farzana A. McRae*, The Catholic University of America, J. Vasundhara Devi, GVP Institute for Advanced Studies, Visakhapatnam, India, and Zahia Drici, Illinois Wesleyan University (1046-34-1853)
4:45pm Fixed-point theorems for differential equations with
(275) causal operators. Preliminary report.

Zahia Drici*, Illinois Wesleyan University, Farzana A. Mcrae, The Catholic University of America, and Vasundhara J. Devi, G.V.P. Institute for Advanced Studies, Visakhapatnam, India (1046-34-1700)
5:15pm A multi-time-scale analysis of biochemical reaction (276) networks.

Chang Hyeong Lee, Worcester Polytechnic Institute (1046-92-1968)

```
AMS Special Session on Experimental Mathematics, II
2:15 PM - 5:35 PM
    Organizers: Tewodros Amdeberhan, Tulane
                University
                Luis A. Medina, Tulane University
        Victor H. Moll, Tulane University
    2:15pm On the greatest common divisor of an}-1\mathrm{ and
- (277) b
        Joseph H. Silverman, Brown University
            (1046-11-361)
    2:45pm Algorithmic proofs for special function identities.
- (278) Flavia Stan, RISC, Johannes Kepler University, Linz,
        Austria (1046-33-1638)
    3:15PM Isodiametric problems for equilateral polygons.
    3:15PM Isodiametric problems for equilateral polygons
        Carolina and Davidson College (1046-52-1511)
    3:45pm Break
    4:15pm New formulas for Euler log-trigonometric integrals.
    (280) Preliminary report.
        Olivier Oloa, University of Versailles
        (1046-33-1183)
    4:45PM Asymptotics and zeros for polynomials from
    (281) combinatorics.
        Robert P. Boyer*,Drexel University, and William M.
        Y. Goh, University of Science and Technology of
        China (1046-05-276)
    5:15pm Asymptotics of Bernoulli, Euler, and Strodt
- (282) polynomials.
        Timothy B. Flowers* and Neil J. Calkin, Clemson
        University (1046-33-404)
```

AMS Special Session on Algebraic Structures in Knot Theory

```
2:15 PM - 5:55 PM
        Organizers: Sam Nelson, Claremont McKenna
                    College
                    Alissa S. Crans, Loyola Marymount
                University
    2:15pm Set-theoretic Yang-Baxter operators and their
    (283) deformations.
        Michael Eisermann, Institut Fourier, Université
        Grenoble (1046-57-960)
    3:15PM Embedded Khovanov homology and skein modules
    (284) of three manifolds.
        Charles Frohman, The University of Iowa
        (1046-57-131)
    4:15pm Oriented state sums for the Jones polynomial.
    (285) Louis H. Kauffman, University of Illinois at Chicago
        (1046-57-839)
    5:15PM Twisted Blanchfield pairings.
    (286) Jonathan A. Hillman, The University of Sydney,
        Daniel S. Silver* and Susan G. Williams, University
        of South Alabama (1046-57-626)
```


AMS Special Session on Nonsmooth Analysis in Inverse and Variational Problems, I

2:15 PM - 6:10 PM

Organizers: M. Zuhair Nashed, University of Central Florida
Otmar Scherzer, University of Innsbruck
2:15pm Missing data recovery by tight-frame algorithms with flexible wavelet shrinkage. Raymond H. Chan, The Chinese University of Hong Kong (1046-65-959)
2:45pm Finite volume scheme for the nonlinear tensor
(288) anisotropic diffusion.

Olga Drblikova, Angela Handlovicova*, and Karol Mikula, Slovak University of Technology, Bratislava, Slovakia (1046-65-987)
3:15pm On singularity reconstruction in thermoacoustic
(289) tomography. Preliminary report.

Yulia Hristova, Peter Kuchment*, and Linh Viet
Nguyen, Texas A\&M University (1046-35-926)
3:45pm Convergence rates in regularization when the
(290) solutions are nonsmooth with respect to forward operators.
Bernd Hofmann, Chemnitz University of Technology, Chemnitz/Germany (1046-47-154)
4:15PM Minimum-variance pseudo-unbiased reduced-rank

- (291) estimator and its applications.

Isao Yamada* and Tomasz Piotrowski, Tokyo Institute of Technology (1046-41-1541)
4:45PM On weakly bounded noise in ill-posed, non-quadratic
(292) minimization problems. Preliminary report. P. P. B. Eggermont*, University of Delaware, and M. Z. Nashed, University of Central Florida (1046-47-985)
5:15PM Regularization of quasi variational inequalities.

- (293) Akhtar A. Khan* and Baasansuren Jadamba, Rochester Institute of Technology (1046-49-1066)
5:45PM The derivation of a heterogeneous plate theory
(294) from nonlinear elasticity.

Cristina Popovici, North Dakota State University (1046-49-98)

2:15 PM - 6:05 PM	
	Organizer: Michael Radin, Rochester Institute of Technology
$\begin{array}{r} 2: 15 \mathrm{PM} \\ (295) \end{array}$	Global behavior of solutions to $x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}$ with non-negative parameters when prime period-two solutions exist. Sukanya Basu* and Orlando Merino, University of Rhode Island (1046-39-219)
$\begin{array}{r} 2: 45 \mathrm{PM} \\ (296) \end{array}$	Positive solutions for systems of three-point nonlinear discrete boundary value problems. Johnny Henderson*, Baylor University, Sotiris K. Ntouyas and Ioannis K. Purnaras, University of Ioannina (1046-39-30)
$\begin{array}{r} 3: 15 p \\ -\quad(297 \end{array}$	Adiabatic invariants for 2D linear dynamic systems on time scales. Preliminary report. Gro Hovhannisyan, Kent State University (1046-34-291)
$\begin{array}{r} 3: 45 \mathrm{pm} \\ (298) \end{array}$	A bimodal system. Preliminary report. Candace Marie Kent* and Hassan Sedaghat, Virginia Commonwealth University (1046-39-605)
$\begin{array}{r} 4: 15 \mathrm{PM} \\ -\quad(299) \end{array}$	Trends and oscillations in the dynamics of linear vs. non-linear difference equation models describing populations. Preliminary report. Tamara E. Awerbuch-Friedlander, Harvard School of Public Health (1046-92-1551)
$\begin{array}{r} 4: 45 \mathrm{PM} \\ -\quad(300) \end{array}$	Modeling HIV outbreaks: The male to female prevalence ratio in the core population. James A. Yorke, Univ. of Maryland (1046-34-933)
$\begin{array}{r} 5: 15 \mathrm{PM} \\ (301) \end{array}$	Dynamic classification of escape time Sierpinski curve Julia sets. Robert L. Devaney, Boston University $(1046-37-324)$
$\begin{array}{r} 5: 45 \mathrm{PM} \\ (302) \end{array}$	The complex dynamics of singularly perturbed rational maps. Elizabeth D. Russell, Boston University (1046-37-631)
AMS Special Session on The Mathematics of Information and Knowledge, II	
2:15 PM - 6:15 PM	
	Organizers: Ronald R. Coifman, Yale University James G. Glimm, SUNY at Stony Brook Peter W. Jones, Yale University Stephen Smale, Toyota Institute
$\begin{array}{r} 2: 15 \mathrm{PM} \\ \times \quad(303) \end{array}$	Phase transition phenomenon in sparse approximation. Jared Tanner*, University of Edinburgh, and David L. Donoho, Stanford University (1046-52-2082)
$\begin{array}{r} 3: 15 \mathrm{PM} \\ (304) \end{array}$	Accelerated computational methods for fluid and plasma dynamics. Russel E. Caflisch, IPAM, UCLA (1046-76-1789)
$\begin{array}{r} 4: 15 \mathrm{PM} \\ (305) \end{array}$	Structure determination through eigenvectors of sparse operators. Amit Singer, Princeton University (1046-92-2130)
5:00pm	Discussion

AMS Special Session on Group Actions on Homogeneous Spaces and Applications, II

2:15 PM - 5:55 PM

Organizers:	Dmitry Y. Kleinbock, Brandeis
	University
	Gregory A. Margulis, Yale University
	Hee Oh, Brown University

2:15PM Weakly commensurable arithmetic groups, with
(306) applications to locally symmetric spaces. Andrei Rapinchuk, University of Virginia (1046-22-148)
4:15PM Locally symmetric subspaces of locally symmetric (307) spaces.

Vladimir Chernousov, University of Alberta, Canada, Lucy Lifschitz, University of Oklahoma, and Dave Witte Morris*, University of Lethbridge, Canada (1046-22-1366)
5:15pm On compact Clifford-Klein forms of
(308) $S L_{n-2}(\mathbb{R}) \backslash S L_{n}(\mathbb{R})$. Preliminary report. David Constantine, University of Michigan (1046-37-704)

AMS Special Session on Tracking Moving Interfaces in Complex Phenomena, I

2:15 PM - 6:00 PM

Organizer: James A. Sethian, University of
California Berkeley
2:15pm Simulating 3D fatigue crack growth.
(309) David Chopp, Northwestern University (1046-35-1097)
3:15PM Causality, dimensionality, efficiency.
(310) Alex Vladimirsky, Cornell University (1046-35-1102)
4:15pm Regularized Stokeslets and other elements with
(311) applications to biological flows.

Ricardo Cortez, Tulane University (1046-35-1105)
5:15pm Coupling cut cell methods and level set methods in
(312) cellular signaling.

David Adalsteinsson, Univ. North Carolina, Chapel Hill (1046-35-1106)

MAA Minicourse \#12: Part A

2:15 PM-4:15 PM

SNAP Math Fairs in elementary education.
Organizers: Andrew C.-F. Liu, University of Alberta Tanya Thompson, ThinkFun, Inc.

MAA Minicourse \#2: Part A

2:15 PM-4:15 PM

Using GeoGebra to create activities and applets for visualization and exploration.
Organizer: Michael K. May, Saint Louis University
MAA Minicourse \#7: Part A
2:15 PM - 4:15 PM
A Game Theory path to quantitative literacy.
Organizers: David L. Housman, Goshen College Richard A. Gillman, Valparaiso University

AMS Session on Combinatorics, I

2:15 PM - 6:10 PM
2:15pm The Biplanar crossing number of
(313) $\quad C_{k} \times C_{l} \times C_{2 m} \times P_{n}$. Preliminary report. Joshua K. Lambert, North Dakota State University (1046-05-81)

2:30pm Fully orientability of graphs with at most one

- (314) dependent arc.

Hsin-Hao Lai, Ko-Wei Lih*, Academia Sinica, and Li-Da Tong, National Sun Yat-sen University (1046-05-223)
2:45pm Tiling bijections via finite automata.

- (315) Katherine P. Benedetto, Univ. of North Carolina, Chapel Hill, and Nicholas A. Loehr*, Virginia Tech (1046-05-376)
3:00pm The r-reduced cutting numbers of cycles, sequences
- (316) of cycles and graphs. Preliminary report.

Brad Bailey*, Dianna Spence, and John Holliday, North Georgia College \& State University (1046-05-446)
3:15pm Progress on the skew Hadamard difference set

- (317) existence problem.

Carlos Harold Salazar-Lazaro, Caltech (1046-05-495)
3:30Рм Some combinatorial problems over finite Euclidean
(318) and non-Euclidean graphs.

Anh Vinh Le, Harvard University (1046-05-532)
3:45PM Random difference graphs and their properties.

- (319) Elizabeth Perez Reilly* and Edward R.

Scheinerman, The Johns Hopkins University (1046-05-721)
4:00pm Forcing faces in plane bipartite graphs.
(320) Zhongyuan Che*, Penn State University, Beaver Campus, and Zhibo Chen, Penn State University, McKeesport Campus (1046-05-1048)
4:15pm Pattern avoidance in binary trees.

- (321) Eric S. Rowland, Rutgers University (1046-05-546)

4:30PM Other critical exponents in coordinate percolation.
(322) Preliminary report.

Elizabeth Moseman, US Military Academy, West Point (1046-05-588)
4:45pm On sums of permutations and sequences with

- (323) distinct terms. Preliminary report.
D. Jacob Wildstrom, University of Louisville (1046-05-593)
5:00pm Graph model for pattern recognition in text.
(324) Qin Wu*, Cun-Quan Zhang and Eddie Fuller, West Virginia University (1046-05-734)
5:15pm Minimum cycle bases of direct products of complete
- (325) graphs.

Zachary Bradshaw, Virginia Commonwealth University (1046-05-737)
5:30pm A forest formula for the antipode in incidence Hopf
(326) algebras.

Hillary Einziger, The George Washington University (1046-05-746)
5:45pm The clique number of $\Gamma\left(\mathbb{Z}_{p^{n}}(\alpha)\right)$.

- (327) Omar A. AbuGhneim*, Jordan University, Emad E. AbdAlJawad, Al-Zaytoonah Private University, and Hasan AI-Ezeh, Jordan University (1046-05-763)
6:00pm Paley partial difference sets in groups with order
(328) not a prime power.

John Bowen Polhill, Bloomsburg University of Pennsylvania (1046-05-794)

AMS Session on Functional Analysis and Operator Algebras

```
2:15 PM - 5:55 PM
```

2:15pm Generalizations of triangular algebras.
(329) Mohan Ravichandran, University of New Hampshire (1046-47-1917)

2:30Рm The projective unitary group is algebraically (330) determined polish group.

Alexandru Gabriel Atim*, University of South Carolina Lancaster, and Robert R. Kallman, University of North Texas (1046-46-1678)
2:45pm Proper actions of groupoids on C^{*}-algebras.
(331) Preliminary report.

Jonathan Henry Brown, Dartmouth College (1046-47-244)
3:00pm Quasi-multipliers and algebrizations of operator
(332) spaces.

Masayoshi Kaneda, The University of Mississippi (1046-46-2044)
3:15PM On projective rigidity of Banach spaces.
(333) Matthew Neal, Denison University, and Bernard Russo*, University of California Irvine (1046-46-1930)
3:30pm Non-commutative majorant ergodic theorem for
(334) sub-sequences.

Genady Ya Grabarnik* and Larisa Shwartz, IBM TJ Watson Research Center (1046-46-1611)
3:45pm Constructive representation of the Feynman
(335) operator calculus in Banach spaces. Woodford W. Zachary* and Tepper L. Gill, Howard University (1046-46-437)
4:00pm Break
4:15PM Shifts on product spaces E X F. Preliminary report.
(336) Minakshisundaram Rajagopalan, Tennessee State University (1046-46-307)
4:30pm Smooth and extreme points in Marcinkiewicz
(337) function spaces.

Anna Kamińska and Anca M. Parrish*, University of Memphis (1046-46-835)
4:45PM The Corona Theorem for infinitely many functions
(338) on the multiplier algebra of the weighted Dirichlet spaces.
Berhanu T. Kidane* and Tavan T. Trent, The University of Alabama (1046-46-149)
5:00pm Geometric properties inherited by ordered tensor
(339) products. Preliminary report.

Michelle R. Craddock, University of Mississippi (1046-46-1364)
5:15PM On the sum of superoptimal singular values.
(340) Preliminary report.

Alberto A. Condori, Michigan State University (1046-46-1140)
5:30Pm Partial unconditionality on a regular array in a
(341) Banach space. Preliminary report.

Frank Sanacory, SUNY - College at Old Westbury (1046-46-1988)
5:45PM Norm-linear operators between uniform algebras.
(342) Rebekah B. Yates, University of Montana (1046-46-294)

AMS Session on Associative and Non-Associative Rings and Algebras

2:15 PM - 5:40 PM

2:15pm A domain test for Lie color algebras.
(343) Kenneth L. Price, University of Wisconsin Oshkosh (1046-16-943)
2:30pm Nonsplit module extensions over a non-noetherian
(344) ring. Preliminary report.

Linhong Wang, Southeastern Louisiana University (1046-16-1084)
2:45PM Square-free rings and their automorphism group.
(345) Martin W. Montgomery, Piedmont College (1046-16-1091)

3:00pm	An isomorphism between the fusion algebras of V_{L}^{+}
(346)	
and type D	

AMS Session on Number Theory, I

```
2:15 PM - 5:55 PM
```

 2:15PM p-adic properties of Stirling numbers.
 (356) Ana Berrizbeitia*, University of Texas at Austin,
 Alexander Moll, Columbia University, and Laine
 Noble, Tulane University (1046-11-60)
 2:30pm The non-Archimedean metric Mahler measure.
 (357) Paul Fili, University of Texas at Austin, and Charles
 L. Samuels*, Max-Planck-Institüt für Mathematik
 (1046-11-216)
 2:45pm Rational points and hypergeometric functions.
 (358) Adriana Julia Salerno, University of Texas at
 Austin (1046-11-311)
 3:00pm Mahler's order functions and p-adic algebraic
 (359) approximation.
 Brian C. Dietel, Oregon State University
 (1046-11-453)
 3:15pm On the iteration of a function related to Euler's
 - (360) ϕ-function. Preliminary report.
Joshua Harrington* and Lenny Jones,
Shippensburg University (1046-11-573)
3:30pm Polynomials built using Lucas sequence pairs.
- (361) Preliminary report.
Donald Mills, Wittenberg University (1046-11-579)

3:45pm Explicit constructions of infinite families of MSTD

- (362) sets.

Daniel C. Scheinerman*, Brown University, and Steven J. Miller, Williams College (1046-11-761)
4:00pm Hilbert 90 for finite Abelian extensions.
(363) Andrew Schultz, University of Illinois at Urbana-Champaign (1046-12-623)
4:15PM Convergence of singular series for a pair of
(364) quadratic forms.

Thomas J. Wright, Johns Hopkins University (1046-11-725)
4:30pm On uniform bounds for rational points on rational
(365) curves and thin sets. Preliminary report.

Patrick X. Rault, SUNY Geneseo (1046-11-624)
4:45pm Orthogonal polynomials and ranks of abelian
(366) varieties. Preliminary report.

John Cullinan*, Bard College, and Farshid Hajir, University of Massachusetts (1046-11-707)
5:00pm On the cyclotomic Littlewood polynomials.
(367) Yi Sun, Harvard University (1046-11-762)

5:15pm On integers n that divide $\phi(n)+\sigma(n)$.
(368) Kelley Harris, Harvard University (1046-11-811)

5:30pm Happy numbers and semihappy numbers.

- (369) Helen G. Grundman, Bryn Mawr College (1046-11-980)
5:45pm Stable reduction of $X_{0}(625)$, with implications.
(370) Ken McMurdy, Ramapo College of New Jersey (1046-11-974)

MAA Session on Building Diversity in Advanced Mathematics: Models that Work

2:15 PM - 4:15 PM

Organizers: Patricia L. Hale, California State Polytechnic University Pomona
Abbe Herzig, University at Albany
2:15PM Evaluating STEM intervention programs.

- (371) Debbie Gochenaur, Elizabethtown College (1046-B1-1108)
2:40pm Factors impacting the pursuit of mathematics for
- (372) female Ph.D. students.
Y. Kathy Lin, Rutgers University (1046-B1-957)

3:05pm Effecting systemic change in the university:
(373) Five-year results from the NSF Houston-Louis Stokes Alliance for Minority Participation.
Martin V. Bonsangue*, California State University, Fullerton, and David E. Drew, The Claremont Graduate University (1046-B1-1708)
3:30pm Modular delivery and peer-led team-learning for

- (374) precalculus. Preliminary report.

Helmut Knaust* and Emil D. Schwab, The University of Texas at El Paso (1046-B1-1913)
3:55pm The implementation and impact of an ADVANCE IT

- (375) grant at a primarily undergraduate institution. Preliminary report.
Patricia L. Hale, California State Polytechnic University, Pomona (1046-B1-1787)

MAA Session on Cryptology for Undergraduates

2:15 Рм - 6:10 Рм
Organizers: Chris Christensen, Northern Kentucky University
Robert E. Lewand, Goucher College
2:15pm Teaching the group theory of permutation ciphers.

- (376) Preliminary report.

Joshua Brandon Holden, Rose-Hulman Institute of Technology (1046-D1-1479)

2:35pm Finding irreducible polynomials using Miller Rabin (377) type tests.

Jeffrey A. Ehme, Spelman College (1046-D1-1613)
2:55pm The Vigenere Cipher: A historical cipher with a

- (378) modern day application. Preliminary report. Tamara B. Veenstra, University of Redlands (1046-D1-1127)
3:15pm The ElGamal Cryptosystem on the TI-83. Preliminary
- (379) report.

Blake Rice, N/A, Neil Sigmon, Radford University, and Bill Yankosky*, North Carolina Wesleyan College (1046-D1-41)
3:35pm Quantum computing for undergraduates.

- (380) Thomas R. Hagedorn, The College of New Jersey (1046-D1-1645)
3:55pm The Venona Project.
- (381) Maryam Vulis, Fordham University (1046-D1-2016)

4:15PM An introduction to algebraic cryptanalysis.

- (382) Amber M. Rogers, Northern Kentucky University (1046-D1-717)
4:35pm Arithmetic in the field F_{28} as used in the Advanced
- (383) Encryption Standard.

Eric West, Benedictine College (1046-D1-2060)
4:55pm An interactive demonstration of the Navajo Code of

- (384) World War II. Preliminary report.

Neil P. Sigmon* and Jonathan D. Dixon, Radford University (1046-D1-1363)
5:15pM Cryptology as first-year seminar: Challenges and

- (385) rewards.

Alan Koch, Agnes Scott College (1046-D1-170)
5:35pm Explorations of elliptic curves in undergraduate

- (386) cryptography with minimal student background through the use of Maple worksheets.
Mike May, Saint Louis University (1046-D1-230)
5:55PM Investigations with private-key ciphers. Preliminary
- (387) report.

Annela R Kelly, Roger Williams University (1046-D1-1859)

MAA Session on Environmental Mathematics
2:15 PM - 4:15 PM
Organizers: Karen Bolinger, Clarion University Ben A. Fusaro, Florida State University
2:20pm A curriculum module for modeling

- (388) bioaccumulation, biomagnification, and elimination of toxins. Preliminary report.
Frederick A. Adkins, Indiana University of Pennsylvania (1046-G1-1881)
2:40PM Starting in your own backyard: Looking at local
- (389) enviromental risks in a mathematical modeling class.
Jennifer A. Gorman, Gannon University (1046-G1-1537)
3:00pm Teaching applied calculus through environmental
- (390) modeling.

Rachel M. Dunwell* and Christopher W. Seaton, Rhodes College (1046-G1-1423)
3:20pm Quantitative and citizen literacy through key

- (391) environmental issues of our time. Preliminary report.
Harel Barzilai, Salisbury University (1046-G1-958)
3:40pm Weatherquakes, earthquakes, mathematics and
- (392) climate change.

Martin E. Walter, University of Colorado, Boulder (1046-G1-432)

4:00pm Modelphobia - How does it arise; What can we do

- (393) about it?

Ben Fusaro, Florida State University
(1046-G1-2058)

MAA Session on Operations Research in the Undergraduate Classroom

2:15 PM - 5:00 PM
Organizers: Gerald Kobylski, U.S. Military Academy
Josh Helms, U.S. Military Academy
William Fox, Naval Post Graduate School
2:15PM Using interactive pedagogies to teach operations

- (394) research. Preliminary report.

Ronald M. Brzenk, Hartwick College, Oneonta NY 13820 (1046-P1-401)
2:45pm Mathematical methods of operations research.

- (395) Morteza Shafii-Mousavi, Indiana University South Bend (1046-P1-63)
3:20pm Recursive formulae for steady state distribution of
- (396) a certain class of Markov process.

Mark Evans, Lilinoe Harbottle, Ken Shun, and Alan Krinik*, California State Polytechnic University, Pomona (1046-P1-1562)
3:55pm Data envelopment analysis in operations research.

- (397) William C. Bauldry, Appalachian State University (1046-P1-21)
4:25pm The "Artist Guild" Strike: An example of game
- (398) theory.

William P. Fox, Naval Postgraduate School (1046-P1-1225)

MAA Session on Performing Mathematics

2:15 PM - 5:40 PM

Organizers: Timothy P. Chartier, Davidson College Karl Schaffer, De Anza College
2:15Pm Möbius and Grassmann on musical tuning systems.

- (399) Leon Harkleroad, Wilton, ME (1046-Q1-849)

2:45pm Juggling sequences with number theory-"A tale of

- (400) two kingdoms".

Stephen H. Harnish, Bluffton University
(1046-Q1-2009)
3:15PM Laban's choreutics and polyhedra.
(401) Sarah-Marie Belcastro, Sarah Lawrence College / HCSSiM (1046-Q1-1627)
3:45PM Dance and mathematics: A survey. Preliminary - (402) report.

Karl Schaffer, De Anza College and Dr. Schaffer and Mr. Stern Dance Ensemble (1046-Q1-1515)
4:15PM Using mime to see the remainder.

- (403) Tim Chartier, Davidson College (1046-Q1-885)

4:45PM Magic from a distance.

- (404) John M. Harris, Furman University (1046-Q1-864)

5:15PM Six fibs and videotape.

- (405) Colm Mulcahy*, Spelman College, and Tim

Chartier, Davidson College (1046-Q1-2034)
MAA Session on Productive Roles for Math Faculty in the Professional Development of K-1 2 Teachers, I

2:15 PM - 6:10 PM
Organizers: Dale R. Oliver, Humboldt State University

	Elizabeth Bu University
$\begin{array}{r} 2: 15 \mathrm{PM} \\ \bullet \quad(406) \end{array}$	Mathematics content knowledge and classroom practice in middle school. Preliminary report. Julie A. Belock, Salem State College (1046-R1-754)
$\begin{array}{r} 2: 35 \mathrm{PM} \\ -\quad(407) \end{array}$	An update of a professional development project focused on preparing students for algebra. Preliminary report. Matthew J. Haines*, Tracy BibeInieks, and Linda Stevens, Augsburg College (1046-R1-2076)
$\begin{array}{r} 2: 55 \mathrm{PM} \\ \bullet \quad(408) \end{array}$	Math faculty as partners in team teaching a non-Euclidean geometry course for K-12 teachers. Maria G. Fung*, Worcester State College, Tevian Dray, Oregon State University, Dave Damcke, University of Portland, Dianne Hart and Dianne Riverstone, Oregon State University (1046-R1-1559)
$\begin{array}{r} 3: 15 \mathrm{pm} \\ (409) \end{array}$	In-service teachers' proof schemes in transition. Evan Fuller*, Osvaldo Soto, Guershon Harel, and Alfred Manaster, UC San Diego (1046-R1-950)
$\begin{array}{r} 3: 35 \mathrm{PM} \\ -\quad(410) \end{array}$	Brazos Valley Math Teachers' Circle: Formation and activities. Preliminary report. Philip B. Yasskin, Texas A\&M University (1046-R1-589)
	Supporting mathematics teachers to increase retention through professional development: Overview, models and research. Davida Fischman, California State University, San Bernardino (1046-R1-550)
$\begin{array}{r} 4: 15 \mathrm{PM} \\ \bullet \quad(412) \end{array}$	Contributing to the professional development of K-12 mathematics teachers. Katherine J. Mawhinney, Appalachian State University (1046-R1-1295)
$\begin{array}{r} 4: 35 \mathrm{PM} \\ \bullet \quad(413) \end{array}$	Creating active learning environments with improved student/teacher relationships and state assessement scores. Juli D'Ann Ratheal, The University of Texas of the Permian Basin (1046-R1-621)
$\begin{array}{r} 4: 55 \mathrm{PM} \\ \bullet \quad(414) \end{array}$	Teaching for understanding through a professional development partnership. Jennifer J. Kosiak* and Jon Hasenbank, University of Wisconsin - La Crosse (1046-R1-1310)
$\begin{array}{r} 5: 15 \mathrm{PM} \\ \bullet \quad(415) \end{array}$	Mathematicians vs. future $K-8$ teachers: Is real communication possible? Is deep learning achievable? Betsy Darken, University of Tennessee at Chattanooga (1046-R1-812)
$\begin{array}{r} 5: 35 \mathrm{PM} \\ -\quad(416) \end{array}$	"If only I had known then what I know now" : A look back at six years of professional development programs. Linda Braddy, East Central University (1046-R1-486)
$\begin{array}{r} 5: 55 \mathrm{PM} \\ -\quad(417) \end{array}$	The Kentucky Center for Mathematics. Kirsten Fleming, Kentucky Center for Mathematics at Northern Kentucky University (1046-R1-181)

MAA Invited Paper Session on Mathematical Sociology

2:15 PM - 4:10 PM
Organizer: Barbara F. Meeker, University of Maryland, College Park
Moderator: Joseph Auslander, University of Maryland, College Park
2:15pm A particle system that mimics empirical income (418) dynamics.

John Angle, Inequality Process Institute
(1046-A1-892)

2:45pm Network implications of social exchange: An (419) overview.

Phillip Bonacich, University of California, Los Angeles (1046-A1-887)
3:15pm Exploring polarization: The effects of general
(420) inequality and subgroup relative size on distance between subgroups and dispersion within subgroups.
Guillermina Jasso, New York University (1046-A1-893)
3:45pm Mathematical models of talking in discussion (421) groups.
Barbara F. Meeker, University of Maryland College Park (1046-A1-895)

SIAM Minisymposium on Mathematical Modeling of

 Natural Resources, II2:15 Рм - 5:35 Рм
Organizer: Catherine A. Roberts, College of the Holy Cross
2:15pm Spatial optimal control in fishery models.

- (422) Suzanne Lenhart, University of Tennessee (1046-92-485)
2:45PM Liapunov exponents and persistence in some
(423) discrete dynamical systems. Preliminary report. Paul Leonard Salceanu* and Hal L. Smith, Arizona State University (1046-37-460)
3:15pm Economics of harvesting age-structured fish
(424) populations.

Olli Ilari Tahvonen, Finnish Forest Research Institute (1046-92-344)
3:45pm Fish biomass structure at pristine coral reefs and
(425) degradation by fishing. Preliminary report. Howard Weiss, Georgia Tech (1046-92-614)
4:15PM A comparison of the distributions of two stochastic
(426) models for metapopulation models.

Amy J. Ekanayake* and Linda J.S. Allen, Texas Tech University (1046-92-625)
4:45pm Models of disease dispersal for populations with

- (427) overlapping and non-overlapping discrete populations. Preliminary report.
Carlos Castillo-Chavez*, Arizona State University, Karen Rios-Soto, Universidad de Puerto Rico, Mayaguez, and Kailash Patidar, Arizona State University (1046-92-1942)
5:15pm Decentralized multinational management of a
- (428) highly migratory marine fish stock.

Robert W. McKelvey, University of Montana (1046-91-630)

MAA-Young Mathematicians' Network Panel Discussion

2:15 PM - 3:35 PM

Graduate school: Choosing one, getting in, staying in.
Organizers: Kirsti Meyer, Wisconsin Lutheran College
Vanessa Garcia, Texas State
University-San Marcos
Alan Alewine, McKendree University

MAA-Project NExT Panel Discussion

2:15 PM - 3:30 PM

The art of test-making and alternative assessments. Organizers: Suzanne Caulk, Regis University
Gertrud L. Kraut, Southern Virginia
University
Laurie Lenz, Marymount University
Beth Schaubroeck, U. S. Air Force
Academy
David M. Bressoud, Macalester
College

Richard J. Cleary, Bentley College
Gary Hagerty, Black Hills State

University
Barbara E. Reynolds, Cardinal Stritch

University

MAA Project NExT-Young Mathematicians' Network Poster Session

2:15 PM - 4:15 PM
$\begin{aligned} \text { Organizers: } & \text { Michael C. Axtell, Wabash College } \\ & \text { Kevin E. Charlwood, Washburn } \\ & \text { University }\end{aligned}$

AWM Panel Discussion

2:15 PM - 3:40 Рм
What and where will the jobs be? Trends in mathematics and in employment.
Moderator: Cathy B. Kessel, Mathematics Education Consultant
Panelists: Deanna Egelston, National Security Agency
Ellen E. Kirkman, Wake Forest University
Sandy Landsberg, U. S. Department of Energy
Mary E. Morley, Ocean County College

MAA Section Officers

2:30 PM - 5:00 PM

MAA Invited Address

```
3:20 PM - 4:10 PM
```

(429) Integral Appollonian packings and thin orbits. Peter Sarnak, Princeton University (1046-A0-12)

MAA General Contributed Paper Session, III
3:45 PM - 6:10 PM
Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: Cathy W. Carter, Christian Brothers University
Heather Lewis, Nazareth College
Vonda K. Walsh, Virginia Military Institute
3:45PM Solution matching for a second order boundary

- (430) value problem on a time scale.

Aprillya Lanz*, Virginia Military Institute, and Ana
Tameru, Alabama State University (1046-Z1-1852)
4:00pm How precise is your calibration? Multiple linear

- (431) regression and prediction error in Excel. Preliminary report.
Terje Hoim*, Eugene Belogay and Eugene T.
Smith, Wilkes Honors College, FAU (1046-Z1-2109)

4:15PM Calculating the void fraction of carbon foam using

- (432) a tetrahedron model. Preliminary report. Rika Paul*, Rohini Mankee, G. Dale Wesson and Desmond Stephens, Florida A\&M University (1046-Z1-2116)
4:30pm Statistical significance of ranking paradoxes.
- (433) Preliminary report.

Raymond N. Greenwell, Hofstra University (1046-Z1-111)
4:45pm Historical resources for multivariable calculus and
(434) differential geometry. Sarah J. Greenwald* and Gregory Rhoads, Appalachian State University (1046-Z1-150)
5:00pm Posing and pursuing one's own questions:

- (435) Comparing experiences of graduate students in math education and mathematics. Preliminary report.
Juliana V. Belding*, Harvard University, and Eden M. Badertscher, Institute For Learning, University of Pittsburgh (1046-Z1-1776)
5:15PM Methods of estimating inbreeding coefficients by
- (436) jointly estimating allele frequencies and accounting for the presence of null alleles.
Daisy L. Phillips*, Nathan W. Hall, Western Washington University, Laina Mercer, University of Washington, and Amy D. Anderson, Western Washington University (1046-Z1-1415)
5:30pm A simulation study comparing methods of
- (437) estimating inbreeding coefficients.

Nathan W. Hall*, Daisy L. Phillips, Western Washington University, Laina Mercer, University of Washington, and Amy D. Anderson, Western Washington University (1046-Z1-1411)
5:45PM Mathematics immersion for freshman engineers

- (438) (MIFE).

Pascal Bedrossian and Cathy W. Carter*, Christian Brothers University (1046-Z1-1324)
6:00PM Continual compounding of a conventional

- (439) mortgage.

William M. Wagner, Wagner Machine Works (1046-Z1-167)

AWM Business Meeting

3:45 PM - 4:15 PM

MAA CUPM Subcommittee on Research by Undergraduates Panel Discussion

3:50 PM - 5:10 PM
Starting and maintaining an academic year undergraduate research program.
Organizers: Michael J. Dorff, Brigham Young University
Zsuzsanna Szaniszlo, Valparaiso University
Panelists: Sarah Spence Adams, Franklin W. Olin College of Engineering
Rebecca Garcia, Sam Houston State University
Richard A. Gillman, Valparaiso University
Darren A. Narayan, Rochester Institute of Technology
Daniel J. Schaal, South Dakota State University

Reception for Undergraduate Students and Math Club Advisors

4:00 PM - 5:00 PM
MAA Committee on Graduate Students-Young Mathematicians' Network Panel Discussion

4:30 PM - 5:40 PM
How to apply for jobs.
Organizer: David C. Manderscheid, University of Nebraska
Panelists: Sharon M. Clarke, Pepperdine University
James H. Freeman, Cornell College David C. Manderscheid

SIGMAA on Environmental Mathematics Guest Lecture and Business Meeting
5:30 PM - 7:30 PM
SIGMAA on the History of Mathematics Business Meeting and Reception
5:30 PM - 6:30 PM
SIGMAA on the Philosophy of Mathematics Business Meeting and Reception
5:30 PM - 6:30 PM
Reception for Graduate Students and First-Time Participants

5:30 PM - 6:30 PM

MAA Special Dramatic Presentation

6:00 PM - 7:00 PM
The CNN United States of Mathematics Presidential Debate.
Presenters: Colin C. Adams, Williams College
Thomas Garrity, Williams College
SIGMAA on the History of Mathematics and SIGMAA on the Philosophy of Mathematics Guest Lecture

6:30 Рм - 7:30 Рм
(440) The role of the untrue in mathematics. Chandler Davis, University of Toronto

AMS Josiah Willard Gibbs Lecture

8:30 PM - 9:30 Рм

- (441) Integrable systems: A modern view.

Percy Deift, Courant Institute-New York University (1046-00-01)

Tuesday, January 6

Joint Meetings Registration

7:30 ам - 4:00 рм

AMS-MAA-MER Special Session on Mathematics and Education Reform, I

8:00 AM - 11:50 Aм
Organizers: William H. Barker, Bowdoin College William G. McCallum, University of Arizona
Bonnie S. Saunders, University of Illinois at Chicago
8:00am Understanding, abstracting, and building upon

- (442) students' mathematical reasoning: A new course for prospective elementary and middle school teachers. Preliminary report.
Guadalupe I. Lozano, University of New Mexico (1046-97-1846)
8:30am Creating regional networks of elementary and
(443) middle school teachers through professional development.
Jonathan Rogness* and Harvey B. Keynes, University of Minnesota (1046-97-701)
9:00am The impact of challenging mathematics courses on
- (444) middle school teachers. Preliminary report.

Bernadette Mullins*, Birmingham-Southern
College, John Mayer, Tommy Smith, University of Alabama at Birmingham, and Rachel Cochran, Center for Educational Accountability (1046-97-1481)
9:30am Changing K-16 Classroom Practice. Preliminary

- (445) report.

Rachel Cochran, John Mayer*, University of Alabama at Birmingham, and Bernadette Mullins, Birmingham Southern College (1046-97-594)
10:00am Math in the Middle Institute Partnership.

- (446) Preliminary report.
W. James Lewis, University of Nebraska-Lincoln (1046-97-990)
10:30am The work of the Institute for Mathematics and
(447) Education in developing partnerships between mathematicians, educators, and teachers. William G. McCallum, The University of Arizona (1046-97-2077)
11:00AM MIME at IM\&E: Professional development for (448) mathematicians in mathematics education. Deborah Loewenberg Ball* and Hyman Bass, University of Michigan (1046-97-2075)
11:30Am A review of NSF-supported research and
(449) development on instructional innovations in undergraduate mathematics education. Preliminary report.
Karen A. Marrongelle* and Larry Suter, National Science Foundation (1046-97-1401)

AMS-SIAM Special Session on Asymptotic Methods in Analysis with Applications, I

8:00 AM - 11:20 AM

Organizers: Diego Dominici, SUNY New Paltz
Peter A. McCoy, U.S. Naval Academy
8:00am Asymptotic formulae for eigenvalues and
(450) eigenfunctions of q-Sturm-Liouville problems. Mahmoud H. Annaby* and Zeinab S. Mansour, Cairo University (1046-41-1887)
8:30AM A finite family of q-orthogonal polynomials.
(451) Jemal E. Gishe*, Western Kentucky University, and Mourad Ismail, University of Central Florida (1046-33-140)

9:00am Characterizations of continuous and discrete
(452) q-ultraspherical polynomials.

Mourad E. H. Ismail*, University of Central Florida, and Josef Obermaier, Helmholtz Zentrum
München (1046-33-658)
9:30am A quick distributional way to the prime number (453) theorem.

Jasson Vindas* and Ricardo Estrada, Louisiana
State University (1046-11-992)
10:00am Another look at the Stirling series.

- (454) Valerio De Angelis, Xavier University of Louisiana (1046-41-1679)
10:30am Some linear statistics of random Hermitean
(455) matrices that are Painlevé functions.

Yang Chen, Imperial College London (1046-41-971)
11:00am Global asymptotic analysis of the Painlevé
(456) transcendents. The Riemann-Hilbert approach. Alexander Its, Indiana University-Purdue University Indianapolis (1046-41-1304)

AMS-ASL Special Session on Logic and Dynamical Systems, II

```
8:00 Aм - 11:55 Aм
```

Organizer: Stephen G. Simpson, Pennsylvania State University
8:00am Models for measure preserving transformations.
(457) Matthew D. Foreman, UC Irvine (1046-28-414)

8:20am A coloring property for countable groups.

- (458) Su Gao*, Steve Jackson, and Brandon Seward, University of North Texas (1046-37-454)
8:40am Fixed-point aperiodic tilings.
(459) Bruno Durand, LIF Marseille, CNRS, University Aix-Marseille (France), Andrei Romashchenko, LIF Marseille, CNRS, University Aix-Marseille (France) and IITP RAS, Moscow (Russia), and Alexander Shen*, LIF Marseille, CNRS, University Aix-Marseille (France) (1046-03-498)
9:00am \mathbb{Z}^{d}-actions on the Cantor set: Approximation, Rohlin
(460) properties and recursion theory. Michael Hochman, Princeton University (1046-37-656)
9:20Am Recursive and algorithmic aspects of growth
(461) complexity for multidimensional SFTs.

Tom Meyerovitch, Tel Aviv University (1046-37-764)
9:40am Random closed sets viewed as random recursions.
(462) R. Daniel Mauldin* and Alexander P. McLinden, University of North Texas (1046-37-785)
10:00am A compactness theorem for markers and group
(463) colorings. Preliminary report.

Steve C. Jackson*, Su Gao and Brandon Seward, University of North Texas (1046-03-1348)
10:20am Two notes on subshifts.
(464) Joseph S. Miller, University of Wisconsin-Madison (1046-03-1128)
10:40am Mortality and periodicity of dynamical systems.
(465) Jarkko Kari, University of Turku, Finland (1046-37-1568)
11:00AM Computability and complexity of Julia sets.
(466) Mark Braverman, Microsoft Research, New England (1046-37-637)
11:20am Equivalence relations with infinitely many ends and - (467) percolation.

Inessa Epstein*, California Institute of Technology, and Greg Hjorth, University of Melbourne, Australia (1046-03-1669)

11:40am A Ramsey theorem and dynamics.
(468) Slawomir Solecki, University of Illinois (1046-05-2024)

AMS Special Session on Mathematical Models of Biological Structures and Function

8:00 AM - 11:50 AM
Organizers: Chandrajit Bajaj, University of Texas at Austin
Andrew K. Gillette, University of Texas at Austin
8:00am Applications of the Hodge decomposition to biological structure and function modeling. Preliminary report.
Andrew Gillette* and Chandrajit Bajaj, University of Texas at Austin (1046-92-1079)
8:30Am Hidden symmetries in virus architecture and their

- (470)

9:00am Molecular solvation models and minimal surfaces.
(471)
inajit Bajaj", University of Texas at Austin,
Guoliang Xu, Chinese Academy of Sciences, and
Qin Zhang, University of Texas at Austin (1046-92-1080)
9:30am Fast protein dynamics simulations: Dominant
(472) pathways for protein conformational transitions.

Patrice Koehl*, University of California, Davis, Joel Franklin, Reed College, Seb Doniach, Stanford University, and Marc Delarue, Institut Pasteur, Paris, France (1046-65-948)
10:00am Multi-scale Morse theory for scientific data analysis.

- (473) Preliminary report.

Valerio Pascucci, University of Utah (1046-68-474)
10:30am A model of cellular motility: Focusing on the "feet"

- (474) of the cell.

Hannah L. Callender*, Institute for Mathematics and its Applications, and Hans G. Othmer, University of Minnesota (1046-92-919)
11:00am Numerical simulation of fluid membranes in
(475) Stokesian flow.

Veerapaneni Shravan, Denis Gueyffier, Courant Institute of Mathematical Sciences, New York University, George Biros, Georgia Institute of Technology, and Denis Zorin*, Courant Institute of Mathematical Sciences, New York University (1046-74-1857)
11:30am Multiscale modeling of rare events with applications (476) in biology.

Bjorn Engquist, University of Texas at Austin
(1046-65-1904)

AMS Special Session on Noncommutative Algebra, I
8:00 AM - 11:50 AM
Organizers: Greg Marks, St. Louis University
Ashish K. Srivastava, St. Louis University
8:00am Essential dimension of central simple algebras.
(477) Zinovy Reichstein, University of British Columbia (1046-16-1359)
8:30am Quaternion algebras and their subfields.
(478) David J. Saltman, Center for Communications Research, Princeton NJ (1046-16-1863)

9:00am Properties of injective hulls of a ring having a
(479) compatible ring structure. Preliminary report. Gary F. Birkenmeier, University of Louisiana at Lafayette, Barbara L. Osofsky*, Rutgers, The State University of New Jersey, Jae Keol Park, Busan National University, Korea, and S. Tariq Rizvi, Ohio State University, Lima (1046-16-420)
9:30am On $\sum-q$ rings.
(480) S. K. Jain*, Ohio University, Athens Surjeet Singh, Panjab University, India, and Ashish K. Srivastava, St. Louis University (1046-16-419)
10:00am Skew generalized power series rings.
(481) Ryszard Mazurek, Bialystok Technical University, (1046-16-1192)
10:30am Quasi-duo skew polynomial rings and graded rings.
(482) Andre G. Leroy, Université d'Artois (1046-17-1045)

11:00am On Noetherian skew power series rings. Preliminary (483) report.

Edward S. Letzter, Temple University (1046-16-1021)
11:30Am An inner automorphism is only an inner
(484) automorphism, but an inner endomorphism can be something strange.
George M. Bergman, University of California, Berkeley (1046-16-259)

AMS Special Session on Mathematics of Computation, II

```
8:00 Ам - 11:50 ам
```

Organizers: Susanne C. Brenner, Louisiana State University Chi-Wang Shu, Brown University
8:00am Dynamic defect morphology of sheared nematic polymers.
X. Yang*, University of North Carolina at Chapel Hill, Gregory M Forest, University of North Carolina at Chapel Hill, William M. Mullins, University of North Carolina at Chapel Hill, and Qi Wang, University of South Carolina (1046-65-1662)
8:30am Computation of spatial dynamics in systems
(486) biology.

Ching-Shan Chou, UC Irvine (1046-65-1956)
9:00am Application of inexact and truncated Krylov
(487) subspace methods to the solution of parabolic control problems. Preliminary report.
Daniel B. Szyld, Temple University (1046-65-767)
9:30ам New efficient sparse space-time algorithms for (488) superparameterization on mesoscales.

Yulong Xing*, Andrew J. Majda, Courant Institute of Mathematical Sciences, New York University, and Wojciech W. Grabowski, National Center for Atmospheric Research (NCAR) (1046-65-1531)
10:00am Finite element approximations of fully nonlinear (489) second order PDEs.

Michael Neilan, University of Tennessee, Knoxville (1046-65-402)
10:30am A new spectral-Galerkin method for
(490) high-dimensional PDEs.

Jie Shen, Purdue University (1046-65-1047)
11:00am Computational methods for fluid-structure
(491) interaction problems.

Padmanabhan Seshaiyer*, George Mason University, Eugenio Aulisa, Texas Tech University, and Sandro Manservisi, Univeristy of Bologna, Italy (1046-65-97)

11:30am Generalized prolate spheroidal wave functions and
(492) spectral methods on quasi-uniform grids. Li-Lian Wang, Nanyang Technological University, Singapore (1046-65-1206)

AMS Special Session on Infinite Dimensional Analysis, Path Integrals and Related Fields

8:00 AM - 11:50 AM
Organizers: Tepper L. Gill, Howard University Lance W. Nielsen, Creighton University Woodford W. Zachary, Howard University
8:00am Disentangling in Feynman's operational calculi for
(493) non-commuting operators.

Gerald W. Johnson, University of Nebraska-Lincoln (1046-46-782)
8:30am Convolution products, integral transforms and
(494) inverse integral transforms of functionals in $L_{2}\left(C_{0}[0, T]\right)$.
Seung Jun Chang, Hyun Soo Chung, Dankook University, Korea, and David Skoug*, University of Nebraska-Lincoln (1046-28-670)
9:00am Stochastic Feynman integral: Perspectives from
(495) fractional stochastic calculus. Preliminary report. Anna Amirdjanova, University of Michigan (1046-44-1497)
9:30Am Phase space Feynman path integrals via piecewise
(496) bicharacteristic paths and their semiclassical approximations.
Naoto Kumano-go, Kogakuin University (1046-46-468)
10:00am On the holonomy of the Coulomb Connection over
(497) manifolds with boundary.

William E. Gryc, Morehouse College (1046-58-827)
10:30Am A weak Hilbert space not isomorphic its subspaces.
(498) Kevin James Beanland*, Virginia Commonwealth University, Spiros Argyros and Haris Raikoftsalis, National Technical University of Athens, Greece (1046-46-599)
11:00am Nonrenormalizability tamed!
(499) John R. Klauder, University of Florida (1046-81-255)
11:30Am The power of functional integration.
(500) Cecile M. DeWitt-Morette, University of Texas at Austin (1046-46-178)

AMS Special Session on Computational Algebraic and Analytic Geometry for Low-dimensional Varieties, I

```
8:00 AM - 11:50 AM
```

Organizers: Mika K. Seppälä, Florida State University
Tanush Shaska, Oakland University
Emil J. Volcheck, Association for
Computing Machinery
8:00am Generators of the ideal of an algebraic space curve.

- (501) Elisabetta Fortuna, Patrizia Gianni, Universita di Pisa, and Barry Trager*, IBM Resarch (1046-14-1921)
8:30AM Khovanskii-Rolle continuation for real solutions.
(502) Preliminary report.

Dan Bates, Colorado State University, and Frank
Sottile*, Texas A\&M University (1046-14-1272)

9:00am Polyhedral methods to find common factors of - (503) algebraic plane curves. Preliminary report. Danko Adrovic, University of Illinois at Chicago, and Jan Verschelde*, University of Illinois at Chicago (1046-65-1885)
9:30am OpenMath library for computing on Riemann

- (504) Surfaces.

Yuri Lebedev* and Mika Seppala, Florida State University (1046-14-633)
10:00am Explicit models for Siegel modular varieties.
(505) Reinier Broker* and Kristin Lauter, Microsoft Research (1046-14-429)
10:30am Arithmetic aspects of a cubic function field in
(506) characteristic three.

Jonathan Webster, University of Calgary (1046-11-1720)
11:00am Tabulation of cubic function fields via reduction.
(507) Pieter Rozenhart* and Renate Scheidler, University of Calgary (1046-11-1642)
11:30am Abelian manifolds of arbitrary genus with complex
(508) multiplication. Preliminary report.

Harvey Cohn, IDA, Center for Communications Research (1046-14-889)

AMS Special Session on Automorphic and Modular Forms in Number Theory, II

8:00 Ам - 11:50 ам
Organizers: Ken Ono, University of Wisconsin-Madison
Amanda Folsom, University of Wisconsin-Madison
Sharon A. Garthwaite, Bucknell University
8:00am Indefinite theta functions.
(509) Sander Zwegers, University College Dublin (1046-11-501)
8:30am Number theoretic properties of generating
(510) functions related to Dyson's rank for partitions into distinct parts.
Maria J. Monks, Massachusetts Institute of Technology (1046-11-398)
9:00am On singular values of Maass forms.
(511) Paul Jenkins, Brigham Young University (1046-11-1778)
9:30am Mock Jacobi forms and the ${ }_{1} \psi_{1}$ summation
(512) formula.

Soon-Yi Kang, Korea Advanced Institute for Science and Technology (1046-11-777)
10:00am Explicit computations of Hecke operators on
(513) automorphic forms.

Lloyd J. Kilford, University of Bristol (1046-11-28)
10:30am Congruences for level four cusp forms.
(514) Scott Ahlgren, University of Illinois at Urbana-Champaign, Dohoon Choi, Korea Aerospace University, and Jeremy Rouse*, University of Illinois at Urbana-Champaign (1046-11-1223)
11:00am Value distribution of automorphic L-functions.
(515) Qiao Zhang, Texas Christian University (1046-11-1323)
11:30am Experiments with Siegel modular forms.
(516) Nathan C. Ryan*, Lauren Grainer, Kevin

McGoldrick, Sharon Anne Garthwaite, Bucknell University, Cris Poor, Fordham University, David W. Farmer, American Institute of Mathematics, David S. Yuen, Lake Forest College, and Ralf Schmidt, University of Oklahoma (1046-11-265)

AMS Special Session on Categorification and Link

 Homology, I```
8:00 Aм - 11:50 Aм
 Organizers: Aaron Lauda, Columbia University
 Mikhail Khovanov, Columbia
 University
 8:00am Construction of H-thick knots in Khovanov
 (517) homology. Preliminary report.
 Andrew W. Elliott, Rice University (1046-55-617)
 8:25am Functoriality for the su⿱ Khovanov homology.
 (518) Preliminary report.
 David A. Clark, Randolph-Macon College
 (1046-57-602)
 8:50am Twin TQFTs and Frobenius algebras.
 (519) Carmen L. Caprau, California State University,
 Fresno (1046-57-1025)
 9:15AM Equivariant sl(n)-link homology.
 (520) Daniel Krasner, Columbia University (1046-81-615)
 9:40am The 2-point and 4-point Khovanov categories.
 (521) Scott Morrison*, Microsoft Station Q, Clark David,
 Randolph-Macon College, and Kevin Walker,
 Microsoft Station Q (1046-54-955)
 10:00am Break
 10:15AM Transverse knots and knot homologies.
 (522) Lenny Ng, Duke University (1046-57-622)
10:40am Involutions on 3-manifolds and Khovanov homology.
 (523) Liam Watson, Universite du Quebec a Montreal
 (1046-57-969)
11:05am Patterns in odd Khovanov homology. Preliminary
 (524) report.
 Alexander N. Shumakovitch, The George
 Washington University (1046-57-2050)
11:30am Link homologies via instanton counting.
 (525) S. Gukov, Cal Tech (1046-54-2085)
```

AMS Special Session on Tracking Moving Interfaces in Complex Phenomena, II


AMS Special Session on Teichmüller Theory and Low-Dimensional Topology, I

8:00 AM - 11:20 Aм
Organizers: Richard P. Kent, Brown University Madlena Tomova, University of Iowa

8:00am Surface subgroups of doubles of free groups.
(530) Cameron McA. Gordon* and Henry Wilton, University of Texas at Austin (1046-57-675)
8:30Am Finiteness theorems for hyperbolic 3-manifolds.
(531) Ian Biringer*, University of Chicago, and Juan Souto, University of Michigan (1046-51-310)
9:00am Natural volumes on character varieties of
(532) three-manifolds.

Charles Frohman*, The University of Iowa, and Kania-Bartoszynska, Naitonal Science Foundation (1046-57-130)
9:30am The local topology of deformation spaces of
(533) Kleinian surface groups.

Aaron D. Magid, University of Michigan (1046-51-281)
10:00am Reducible and toroidal Dehn filling with distance 3.
(534) Sungmo Kang, The University of Texas at Austin (1046-57-56)
10:30am Complex projective structures with Schottky
(535) holonomy.

Shinpei Baba, UC Davis (1046-51-368)
11:00am Heegaard surfaces and the distance of
(536) amalgamation.

Tao Li, Boston College (1046-57-202)

## MAA Minicourse \#3: Part A

8:00 ам - 10:00 ам
Educating about the state of the planet and sustainability while enhancing calculus.
Organizer: Thomas J. Pfaff, Ithaca College

## MAA Minicourse \#8: Part A

## 8:00 ам - 10:00 ам

Taking symbols seriously: Teaching form and function in college algebra.
Organizers: Deborah Hughes Hallett, University of Arizona and Harvard University
Patti Frazer Lock, St. Lawrence University
William G. McCallum, University of Arizona
Patricia D. Shure, University of Michigan

## AMS Session on Geometry

| 8:00 ам - 1 | :40 ам |
| :---: | :---: |
| $\begin{array}{r} 8: 00 \mathrm{AM} \\ -\quad(537) \end{array}$ | Upper bound for the length of an $n^{\text {th }}$-shortest closed geodesic in a hyperbolic knot complement in $S^{3}$. <br> Sreekrishna Palaparthi, SUNY University at Buffalo (1046-51-231) |
| $\begin{array}{r} 8: 15 \mathrm{AM} \\ (538) \end{array}$ | A categorification of the Burau representation using contact geometry. Preliminary report. Sandra E. Ritz, University of Southern California (1046-51-290) |
| $\begin{array}{r} 8: 30 \mathrm{AM} \\ -\quad(539) \end{array}$ | Integer sequences from polygonal chains in the geometry of compact sets. <br> Schlicker Steven, Grand Valley State University (1046-51-321) |
| $\begin{array}{r} 8: 45 \mathrm{AM} \\ (540) \end{array}$ | Two neat results in elementary geometry. <br> R. KillGrove*, Vista, CA, L. Taylor, CSUB, and D. Koster, UWLC (1046-51-756) |

9:00am An index formula related to a conjecture of - (541) Loewner.

Steven E. Broad, University of Notre Dame (1046-51-856)
9:15AM Tiling the plane with squares.

- (542) Alison McDonough*, Amanda Cangelosi, Alethea Tschetterwood, Alexandra Berkoff, and Amy Wesolowski, Smith College (1046-51-998)
9:30am Flat flocks and generalized j-planes.
(543) Oscar Vega, California State University, Fresno (1046-51-1013)
9:45am Break
10:00am Which sets are resilient to erosion?
(544) Wesley Pegden, Rutgers University (New Brunswick) (1046-52-77)
10:15Am Ellipses inscribed in, and circumscribed about,
- (545) convex quadrilaterals.

Alan Horwitz, Penn State University/Brandywine Campus (1046-51-1709)
10:30am 7-Point bundle forms in Laguerre planes.
(546) Robert D. Knight, Ohio University-Chillicothe (1046-51-2014)
10:45am Squaring and not squaring one or more planes.
(547) James M. Henle*, Clark Science Center, Smith College, and Frederick V. Henle, athenahealth, Inc. (1046-52-838)
11:00Am Unfolding convex polyhedra.

- (548) Emma Schlatter*, Jessica Peterson, Sarah Rathnam, and Emily Gunawan, Smith College (1046-52-999)
11:15AM Nonconvex polygons and deformations of
- (549) associahedra.

Satyan Devadoss, Rahul Shah, Williams College, Xuancheng Shao, MIT, and Ezra M. Winston*, Bard College (1046-52-1955)
11:30am Supergaussian directions and the Hyperplane (550) Conjecture.

Grigorios Paouris, Texas A\&M University (1046-52-2073)

## AMS Session on Probability

## 8:00 Aм - 11:55 Aм

8:00am A strictly stationary, $N$-tuplewise independent
(551) counterexample to the central limit theorem. Richard C. Bradley*, Indiana University, and Alexander R. Pruss, Baylor University (1046-60-146)
8:15AM Stationary solutions for one-dimensional stochastic
delay differential equations with reflection.
Michael S. Kinnally* and Ruth J. Williams, University of California San Diego (1046-60-455)
8:30am Large deviations for ergodic processes in split
(553) spaces.

Adina Oprisan* and Andrzej Korzeniowski, The University of Texas at Arlington (1046-60-545)
8:45am Complex Itô formulas.
(554) Mylan Redfern, Valdosta State University (1046-60-584)
9:00Am Transforming renewal processes for simulation of
(555) nonstationary point processes.

Ira Gerhardt* and Barry L. Nelson, Northwestern University, (1046-60-604)
9:15AM Is the distribution exponential when the record
(556) median equals the record midrange, on average? George P. Yanev, The University of Texas - Pan American (1046-60-745)

9:30Am A single-server poison queueing system with (557) splitting and delayed batched feedback (Case $k=N$ = 1).
Aliakbar Montazer Haghighi*, Prairie View A\&M University, Stefanka S. Chukova, Victoria University of Wellington, and Dimitar P. Mishev, Prairie View A\&M University (1046-60-833)
9:45am Expected time to see flat path of $\alpha$ stable process.
(558) Sarah Bryant, Purdue University (1046-60-1171)

10:00am Break
10:15Am Coalescence time for a nonuniform allocation

- (559) process with applications to biology and computer science.
John K. McSweeney, Ohio State University (1046-60-1330)
10:30am Existence of almost periodic solutions to some
(560) functional integro-differential stochastic evolution equations.
Paul H. Bezandry, Howard University (1046-60-1293)
10:45am Intersection exponents for biased random walks on
(561) discrete cylinders.

Brigitta K. Vermesi, University of Rochester (1046-60-1317)
11:00am Stochastic limiting averages of zero-one sequences.
(562) Ryan S. Gantner, Saint John Fisher College (1046-60-1325)
11:15am On certain sequences of dependent random

- (563) variables.

Stephanie Sapp*, Johns Hopkins University, and
Amol Kapila, Brown University (1046-60-1367)
11:30am No feedback card guessing for top to random
(564) shuffles. Preliminary report.

Lerna Pehlivan, University of Southern California (1046-60-1469)
11:45am Generalized spaces of random variables.
(565) Mark Burgin, University of California, Los Angeles, and Alan Krinik*, California State Polytechnic University, Pomona (1046-60-1501)

## AMS Session on Algebraic and General Topology

```
8:00 AM - 11:55 Aм
```

8:00am Gorenstein model structures and generalized (566) derived categories.

James R. Gillespie, Penn State Greater Allegheny (1046-55-160)
8:15am Recovering topology of a camera network coverage.

- (567) Preliminary report.

Edgar J. Lobaton, UC Berkeley (1046-55-1008)
8:30am Homotopy invariants for one-dimensional and

- (568) planar spaces.

Mark H. Meilstrup* and Gregory R. Conner, Brigham Young University (1046-55-1697)
8:45am The cohomology of $\operatorname{PSL}(3, p), p$ an odd prime.
(569) Preliminary report.

Jane H. Long, Stephen F. Austin State University (1046-55-1734)
9:00am $\quad$ (co-)homology invariant of topological manifolds
(570) and its interface with boundary value problems in Riemannian geometry. Preliminary report.
Adeniran Adeboye, Howard University
(1046-55-2033)
9:15am A projective version of the Poincare polyhedron
(571) theorem. Preliminary report.

Benjamin J. Benoy, University of Redlands (1046-54-93)
9:30am Categorified bundles and classifying spaces.
(572) Weiwei Pan, Wesleyan University (1046-55-177)

9:45am
$\qquad$
10:00am
(574)
)

A 32 dimensional manifold which is a rational analog of the projective plane. Preliminary report. Zhixu Su, Indiana University (1046-57-309)
(57)

10:15am Non-uniform thickness of smooth knots.
(575) Kim J. Huerter, University of Iowa (1046-54-305)

10:30am An open $C^{*}(D)$-filter process of compactifications (576) and generalized Stone-Weierstrass theorems. Hueytzen J. Wu*, Texas A\&M University-Kingsville, and Wan-Hong Wu, University of Texas-Health Science Center (1046-54-575)
10:45am Finite image braid group representations from the

- (577) Yang Baxter Equation.

Jennifer M. Franko, The University of Scranton (1046-54-1247)
11:00am Some extensions of semi-closure spaces. Preliminary

- (578) report.

Shing S. So, University of Central Missouri (1046-54-1273)
11:15AM Fixed point theorems for n-continuous $L^{*}$-operators. (579) Preliminary report.

Wladyslaw Kulpa, Card. S. Wyszynski University, and Andrzej Szymanski*, Slippery Rock University (1046-54-1444)
11:30am The lattice of locally convex topologies on an
Frederic Mynard, Georgia Southern University, and Tom Richmond*, Western Kentucky University (1046-54-1528)
11:45am A math classic: The tale of three links.

- (581) Samuel Jacob Behrend, Denison University (1046-54-1711)


## AMS Session on Analytic Function Theory

## 8:00 ам - 11:40 ам

8:00am On analytic multivalent functions. Preliminary - (582) report.

Rosihan M. Ali, Universiti Sains Malaysia (1046-30-133)
8:15am Chracterizing compact composition operators on (583) the Hardy-Simirnov spaces. Preliminary report.

Abebaw Tadesse, Langston University
(1046-30-145)
8:30am An identical function theorem for functions of slow
(584) growth in the disk. Preliminary report.

Paul A. Gunsul, Northern Illinois University (1046-30-494)
8:45am Weak subordination for convex univalent harmonic
(585) functions.

Stacey Muir, University of Scranton (1046-30-912)
9:00am The MacLane class and complex differential
(586) equations in the unit disk. Preliminary report.

Kari Fowler*, The University of Tampa, and Linda
Sons, Northern Illinois University (1046-30-946)
9:15am Continuity of extremal elements in uniformly
(587) convex spaces and Ryabykh's theorem.

Tim Ferguson, University of Michigan, Ann Arbor (1046-30-968)
9:30Am $\quad L^{p}$-bounded point evaluations and uniform rational
(588) approximation. Preliminary report.

Erin Rita Militzer, University of Kentucky
(1046-30-187)
9:45am Break
$\left.\begin{array}{rl}\text { 10:00am } & \begin{array}{l}\text { Clunie type theorems for annuli. } \\ (589)\end{array} \\ \text { Mark E. Lund, Northern Illinois University } \\ \text { (1046-30-1442) }\end{array}\right\}$

## AMS Session on Combinatorics, II

```
8:00 AM - 11:55 AM
```

    8:00am Matching extendability in the hypercube.
    (596) Preliminary report.
    Jennifer R. Vandenbussche*, Southern Polytechnic
        State University, and Douglas B. West
        (1046-05-333)
    8:15am Bounded number of components of 2-factors in line
    (597) graphs.
        Hong-Jian Lai, West Virginia University, Liming
        Xiong, Beijing Institute of Technology, and Huiya
        Yan*, West Virginia University (1046-05-481)
    8:30am Combinatorics on border correlations of partial
    - (598) words.
F. Blanchet-Sadri, University of North Carolina,
Greensboro, M. Cordier, Kent State University, and
R. Kirsch*, University of Maryland (1046-05-831)
8:45AM $\mathcal{R}$-parametric chains.
(599) Anne C. Sinko, Oberlin College (1046-05-979)
9:00am Elementary techniques for Erdos-Ko-Rado-like
- (600) theorems.
Bill Kay*, University of South Carolina, and Greg
Brockman, Harvard University (1046-05-1065)
9:15Am Error-correction coding using combinatorial
- (601) representation matrices.
Li Chen, University of the District of Columbia
(1046-05-1212)
9:30am Semantic paradoxes and graph dynamical systems.
- (602) Preliminary report.
Matthew Macauley*, Clemson University, Brian
Rabern, Australian National University, and Landon
Rabern, Boulder, CO (1046-05-1069)
9:45am Break
10:00am Growth of sumsets and polytopes.
- (603) Jaewoo Lee, Borough of Manhattan Community
College (CUNY) (1046-05-1521)

10:15am Generalized dice: An investigation of dice families.

- (604) Preliminary report.

William M. Ella*, University of Mary Washington, Michael L. Follett, Lafayette College, Chelsey A. Cooley, North Carolina State University, Eric A. Gilson, University of Rochester, and Lorenzo Traldi, Lafayette College (1046-05-1506)
10:30am On decomposing complete graphs of odd order into
(605) Hamilton cycles and fixed length cycles. Jeffrey A. Mudrock*, University of Illinois at Urbana-Champaign, Saad El-Zanati, Illinois State University, Kyle King, University of Illinois at Urbana-Champaign, and Josephine Witkowski, Illinois State University (1046-05-1558)
10:45Am Fulkerson coloring of some families of snarks.

- (606) Xiaofeng Wang, West Virginia University (1046-05-1658)
11:00Am An injective proof of strong q-Log-convexity for Bell
- (607) polynomials.

Sebastian H. Moore*, Sonia Gilbukh and Lynne M. Butler, Haverford College (1046-05-1723)
11:15AM Minimal triangulations of contractible spaces and

- (608) random collapsing of $n$-simplices. Preliminary report.
Katherine D. Crowley, Washington and Lee University, Abigail Ebin, Yale University, and Bena
M. Tshishiku*, Washington and Lee University (1046-05-1842)
11:30am Dominating cartesian products of Petersen and
(609) Grötzsch graphs.

Robert R. Rubalcaba*, United States Department of Defense, and Peter J. Slater, University of Alabama in Huntsville (1046-05-2000)
11:45am On an exact formula for the coefficients of Han's

- (610) generating function.

Ameya A. Velingker, Harvard University
(1046-05-2002)

## AMS Session on Partial Differential Equations, I

```
8:00 ам - 11:55 ам
```

8:00am Classes of infinite semipositone systems.
(611) Eun Kyoung Lee, Pusan National University, Ratnasingham Shivaji and Jinglong $\mathrm{Ye}^{*}$, Mississippi State University (1046-35-54)
8:15AM Poroelasticity.
(612) Chadia Affane Aji*, Tuskegee University, and A. J. Meir, Auburn University (1046-35-206)
8:30am Existence of solutions to semi-linear elliptic
(613) differential equations: Approximation and verification.
Lisa Termine Hollman, Trinity College (1046-35-226)
8:45am Loss of compactness for nonlinear elliptic PDE's.
(614) Florin Catrina, St. John's University (1046-35-491)

9:00Am A study on the solution of complex KdV-Burgers

- (615) equation. Preliminary report.

Netra P. Khanal*, Jiahong Wu, Oklahoma State University, Bingyu Zhang, University of Cincinnati, and Juan-Ming Yuan, Providence University in Taiwan (1046-35-537)
9:15am The physical model of a variational nonlinear wave (616) equation.

Taewan Park, Millersville University
(1046-35-1851)

9:30Am Critical exponents for semilinear wave equations
(617) with space-time dependent potential. Preliminary report.
Maisa M. Khader, University of Tennessee (1046-35-269)
9:45Aм Break
10:00Am Observation based PDE models for stochastic

- (618) production systems. Preliminary report.

Ali Kemal Unver, Arizona State University (1046-35-1699)
10:15Am An accurate Riemann solver for Euler equation with
(619) phase change.
Chunguang Chen* and Harumi Hattori, West Virginia University (1046-35-709)
10:30Am Dafermos regularization of a modified kdV Burgers

- (620) equation. Preliminary report.

Monique R. Taylor, North Carolina State University (1046-35-733)
10:45am A new vaiational principle for Hamiltonian PDEs
(621) with nonlinear boundary conditions.

Abbas Momeni, Queen's University (1046-35-783)
11:00Am Traveling wave solutions for a nonlinear equation

- (622) which appears in fluid dynamics. Preliminary report.

Sridevi Pudipeddi, Augsburg College (1046-35-908)
11:15Am Soliton solutions to the nonlinear Schrödinger

- (623) equation.

Samuel Rivera, University of Texas at Arlington (1046-35-970)
11:30AM Elliptic equations with BMO coefficients with
(624) singularity in Reifenberg flat domains. Preliminary report.
Ko Woon Um, University of Iowa (1046-35-1096)
11:45am Non-Fickian delay reaction-diffusion equations:

- (625) Theoretical and numerical study.

Joao Ricardo Branco*, Coimbra Institute of Engineering, Jose Augusto Ferreira, University of Coimbra, and Pascoal Martins Silva, Coimbra Institute of Engineering (1046-35-1703)

MAA Session on Mathematics and Sports, I

```
8:00 Ам - 11:55 ам
Organizer: Howard L. Penn, U.S. Naval Academy
8:00am Jump shot mathematics. Preliminary report.
- (626) Howard Penn, U.S. Naval Academy (1046-N1-1582)
8:20Am Fixed points and free throws.
- (627) C. W. Groetsch, The Citadel (1046-N1-128)
8:40am Take a good look, using mathematics. Preliminary
- (628) report.
Jacqueline Brannon Giles, HCC Central College, Houston, Texas (1046-N1-39)
9:00Am How fair are BCS ratings? Analysis of Colley
(629) methods for sports ranking.
Erich Kreutzer, Davidson College (1046-N1-1217)
9:20am Football rankings using linear algebra. Preliminary
- (630) report.
R. Drew Pasteur, The College of Wooster (1046-N1-1477)
9:40AM The Superbowl box pool.
- (631) Michael A. Jones, Mathematical Reviews (1046-N1-1991)
10:00Am Hitting golf balls and tee balls as far as possible.
- (632) Preliminary report.
Robert Kantrowitz*, Hamilton College, and Michael M. Neumann, Mississippi State University (1046-N1-702)
```

10:20am G. H. Hardy's golfing adventure. Preliminary report.

- (633) Roland Minton, Roanoke College (1046-N1-1236)

10:40am Mission impossible - Hitting . 400 for a season.

- (634) Stanley Rothman, Quinnipiac University (1046-N1-53)
11:00am Major League Baseball meets Facebook: Modeling
- (635) trades using social network theory.

David J. Hunter, Westmont College (1046-N1-1548)
11:20am A Markov chain model of baseball.

- (636) Eric W. Kuennen, University of Wisconsin Oshkosh (1046-N1-1731)
11:40AM Modeling cumulative home run frequencies and the
- (637) recent home run explosion.

Mike Huber*, Muhlenberg College, Gabriel Costa, United States Military Academy, John Saccoman, Seton Hall University, and Brandon Stern-Charles, Muhlenberg College (1046-N1-210)

## MAA Session on Teaching Calculus in High School: Ideas that Work

8:00 AM - $11: 55$ AM
Organizers: Dan Teague, North Carolina School of Science and Mathematics
John F. Mahoney, Benjamin Banneker Academic High School
8:00Am Developing an interest in the conceptual meaning of

- (638) calculus. Preliminary report.

Carlos R. Bovell, Northern Burlington County Regional High School (1046-X1-69)
8:20am The Aha! experience in AP calculus: Projects

- (639) designed for a stimulating journey on a road of discovery. Preliminary report.
Gail Kaplan, Towson University (1046-X1-359)
8:40Ам Numerical integration before antidifferentiation.
(640) Doug Kuhlmann, Phillips Academy Andover, MA (1046-X1-1927)
9:00Am Teaching calculus course using creative hands-on
- (641) activities. Preliminary report.

Ryo Ohashi, King's College (1046-X1-544)
9:20Am A substitute for the U-substitution.

- (642) Queen W. Harris, Georgia Perimeter College (1046-X1-915)
9:40am The Clemson Calculus Challenge: A calculus
- (643) competition for high school students. Preliminary report.
P. M. Dearing and Shari Prevost*, Clemson University (1046-X1-1214)
10:00am Let them eat cake: An introduction to volumes by
- (644) cross section.
H. Smith Risser, Montana Tech (1046-X1-476)

10:20AM Metaphors that work, calculus and the real world.
(645) Aldo Maldonado, Park University (1046-X1-1333)

10:40Am Modeling the spread of a disease.

- (646) Mary Ann Connors, Westfield State College (1046-X1-1235)
11:00am Written papers and oral examinations to deepen (647) students understanding of calculus.

Christine M. Malone* and Marie B. Copeland, Macomb Mathematics Science Technology Center (1046-X1-1590)
11:20AM Introducing series using error.

- (648) Mark Howell, Gonzaga College High School, Washington, DC (1046-X1-967)
11:40Am Teaching series convergence effectively.
- (649) Robert Sachs, George Mason University (1046-X1-1883)


## MAA Session on Undergraduate Mathematical Biology, I

```
8:00 ам - 11:45 ам
```

| Organizers: | Timothy D. Comar, Benedictine |
| ---: | :--- |
|  | University |
|  | Raina Robeva, Sweet Briar College |
|  | Eric S. Marland, Appalachian State |
|  | University | University

8:00am Modeling logistic growth and extinction.
(650) Sheldon P. Gordon, Farmingdale State College (1046-Y1-176)
8:25am BioCalculus: First steps at a small liberal arts (651) college.

Margaret M. Sullivan, College of Notre Dame of Maryland, Baltimore (1046-Y1-1275)
8:55am Activities designed to prepare undergraduates for
(652) research in mathematical biology.

Timothy D. Comar, Benedictine University (1046-Y1-1234)
9:20am Translating the principles of BIO2010 into practice.
(653) Kelly E. Matthews*, Merrilyn Goos and Peter Adams, University of Queensland (1046-Y1-1567)
9:45am Active learning in the symbiosis project.

- (654) Jeff R. Knisley, East Tennessee State University (1046-Y1-1606)
10:10AM UBM-research and education program in biology
- (655) and ecology. Preliminary report.
S. Koksal, Florida Institute of Technology (1046-Y1-2010)
10:35AM Training undergraduates in mathematical biology
(656) using research with faculty.
E. Miller Jason, Truman State University (1046-Y1-1987)
11:00Am The standard genetic code and equivalence classes.
- (657) Brian Hopkins, Saint Peter's College (1046-Y1-548)

11:25am Bioinformatics on the cheap.
(658) Jennifer R. Galovich, St. John's University/College of St. Benedict (1046-Y1-289)

MAA General Contributed Paper Session, IV

```
8:00 ам - 11:55 ам
```

Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: Anthony D. Berard Jr., King's College Louise M. Berard, Wilkes University Mahmoud Yousef, University of Central Missouri Richard Stout, Gordon College
8:00am Teaching calculus through experimentation and

- (659) empiricism. Preliminary report.

Travis Kowalski, South Dakota School of Mines and Technology (1046-Z1-2107)
8:15am Online homework delivery in an introductory

- (660) statistics course. Preliminary report.

Leyla Batakci* and Keri A. Speicher, Elizabethtown College (1046-Z1-1969)
8:30am A simple geometer's Sketchpad sketch for exploring

- (661) ideas of function.

Ian Whitacre, San Diego State University (1046-Z1-1958)
8:45AM Mathematica laboratory assignments inspired by

- (662) the history of mathematics. Preliminary report. Gabriela R. Sanchis, Elizabethtown College (1046-Z1-1892)

9:00am

- (663)

9:15am

- (664)
(665)

9:45am

- (666)
pre-sersonal response systems (clickers) for pre-service teacher candidates in elementary content and secondary methods courses. Preliminary report.
Janet A. White* and Travis K. Miller, Millersville University of PA (1046-Z1-703)
10:00am A data gathering demo using Three Stooges films.
- (667) Robert L. Davidson and Robert B. Gardner*, East Tennessee State University (1046-Z1-484)
10:15am Using a personal response system. preliminary
- (668) report.

John Hawkins and T. Bruce McLean*, Georgia Southern University (1046-Z1-449)
10:30am Illustrating algorithms for computing computer

- (669)
graphics. Preliminary report.
Paul Raymond Bouthellier, University of Pittsburgh-Titusville (1046-Z1-236)
10:45am Discovering the derivative and its meaning with the
- (670) graphing calculator.

Murray H. Siegel, Central Arizona College (1046-Z1-165)
11:00am Integrating college algebra with modularity and

- (671) technology (iCAM\&T): A first year follow-up. Preliminary report.
A. Dale Magoun*, A. Serpil Saydam, Charlotte H. Owens, Elizabeth T. Smith and Stephen Richters, The University of Louisiana at Monroe, LA (1046-Z1-112)
11:15Am Incorporating software into college algebra: Who
- (672) wins? We all do, if...

Michelle R. DeDeo, Univ. of North Florida
(1046-Z1-79)
11:30am Spreadsheet modeling and applications.

- (673) Morteza Shafii-Mousavi, Indiana University South Bend (1046-Z1-67)
11:45am Fluid-structure interaction mathematical models for
- (674) studying biological systems. Preliminary report.

Kevin Yorke Kelbaugh*, Minerva Venuti, and Padmanabhan Seshaiyer, George Mason University (1046-Z1-65)

## SIAM Minisymposium on Mathematical and Computational Challenges in Global Climate and Energy Processes

## 8:00 AM - 10:55 Aм

Organizer: Margot Gerritsen, Stanford University
8:00am Performance prediction of thermal recovery

- (675) processes, or how we can produce heavy oil in an environmentally friendly way.
Margot Gerritsen*, J. V. lambers and Z. Zhu, Stanford University (1046-35-2013)
9:00AM Marine energy technology: Riding the current.
(676) Yin Lu Young*, Princeton University, and Margot Gerritsen, Stanford University (1046-65-2115)

9:30am Climate response through fluctuation-dissipation: A
(677) new algorithm for low-frequency dynamics.

Rafail V. Abramov*, University of Illinois at Chicago, and Andrew J. Majda, Courant Institute of Mathematical Sciences (1046-86-2111)
10:30am Detection and correction of forecast bias due to (678) parameter and initial condition errors. S. Lakshmivarahan, University of Oklahoma, and S. Crowell*, University of Oklahoma (1046-37-2102)

## Employment Center

## 8:00 Ам - 7:00 Рм <br> MAA Session on Demos and Strategies with Technology that Enhance Teaching and Learning Mathematics, I

## 8:20 Aм - 11:35 Aм

Organizers: David R. Hill, Temple University Scott Greenleaf, University of New England
Mary L. Platt, Salem State College Lila F. Roberts, Georgia College \& State University
8:20am Pen-technology and evolving Web-based instruction

## (679)

 tools in freshman calculus.Marilyn Reba, Clemson University (1046-E1-1169)
8:40am All you add is Webassign and Maple. Preliminary

- (680) report.

Denise J. LeGrand, University of Arkansas at Little Rock (1046-E1-897)
9:00am Auditory graphs in Excel for calculus.

- (681) Steven Hetzler* and Robert Tardiff, Salisbury University (1046-E1-793)
9:20am Interactive, data-driven and technology-enhanced
- (682) approach for probability and statistics education.

Ivo D. Dinov, University of California, Los Angeles (1046-E1-26)
9:40am Dynamic visualization tools for multivariable

- (683) calculus. Preliminary report.

Paul Seeburger, Monroe Community College (1046-E1-911)
10:00am Developing a video tutorial library to service upper

- (684) level MSE courses. Preliminary report.

Christopher M. Smith*, Frank Wattenberg, Josh
W. Helms and Rodney Sturdivant, United States Military Academy (1046-E1-1354)
10:20am ProofBuilder, a tool for showing students how to - (685) construct basic proofs. Preliminary report.

Hugh W. McGuire, Grand Valley State University (1046-E1-1399)
10:40am Using 3-dimensional bifurcation diagrams to

- (686) enhance student learning.

Itai Seggev, Knox College (1046-E1-1695)
11:00AM On the combined use of algebra and technology in

- (687) the study of a family of sequences. Preliminary report.
Sandra Schroeder* and Mihai Caragiu, Ohio Northern University (1046-E1-1715)
11:20am Conjecturing the sum of an infinite series: CAS Lab - (688) exercise in calculus I.

Bill Marion, Valparaiso University (1046-E1-24)

## MAA Invited Address

## 9:00 ам - 9:50 ам

- (689) Stacking bricks and stoning crows.

Peter Winkler, Dartmouth College (1046-A0-15)

## AMS Special Session on The Mathematics of Information and Knowledge, III

```
9:00 AM - 11:45 AM
 Organizers: Ronald R. Coifman, Yale University
 James G. Glimm, SUNY at Stony Brook
 Peter W. Jones, Yale University
 Stephen Smale, Toyota Institute
 9:00am Topological sensing: Doing more with less in sensor
 (690) networks via topological data.
 Robert Ghrist*, University of Pennsylvania, and
 Yuliy Baryshnikov, Bell Labs (1046-94-1796)
 10:00am Google and the Vapnik-Chervonenkis dimension.
 (691) Stuart Geman, Brown University (1046-60-2126)
 11:00Am Internet topology inference.
 (692) Paul Barford, University of Wisconson-Madison
 (1046-68-2132)
```

AMS Special Session on Group Actions on
Homogeneous Spaces and Applications, III
9:00 Aм - 11:40 ам
Organizers: Dmitry Y. Kleinbock, Brandeis
University
Gregory A. Margulis, Yale University
Hee Oh, Brown University
9:00am Orbital counting for thin groups and the affine
(693) linear sieve.
Alex V. Kontorovich* and Hee Oh, Brown
University (1046-11-252)
10:00am Invariant subsets and stationary probabilities on
(694) homogeneous spaces.
Yves Benoist*, Universite Paris-Sud, and
Jean-Francois Quint, Universite Paris-Nord
(1046-37-770)
11:00am Higher rank Anosov actions on tori.
(695) David M. Fisher, Indiana University, Boris V.
Kalinin, University of South Alabama, and Ralf J.
Spatzier*, University of Michigan (1046-37-792)

## MAA Minicourse \#1 3: Part A

9:00 AM - 11:00 AM
Directing undergraduate research.
Organizer: Aparna W. Higgins, University of Dayton

MAA Session on Innovative and Effective Ways to Teach Linear Algebra

## 9:00 AM - 11:55 AM

Organizers: David M. Strong, Pepperdine University
Gil Strang, Massachusetts Institute of Technology
David C. Lay, University of Maryland
9:00am Using linear algebra for image processing.

- (696) Preliminary report.

Paul Raymond Bouthellier, University of Pittsburgh-Titusville (1046-11-233)

9:20am Geometric representations of a $4 \times 4$ determinant.

- (697) Preliminary report.

Dean J. Caffentzis, New Port Richey, FL (1046-11-751)
9:40am Using the discrete wavelet transform to illustrate

- (698) concepts from linear algebra.

Patrick J. Van Fleet, University of St. Thomas (1046-11-450)
10:00am Algorithms for multivariable polynomial

- (699) interpolation.

Richard D. Neidinger, Davidson College (1046-I1-1637)
10:20am The Moore-Penrose inverse of a vector: Coping with

- (700) a sometimes tricky case differentiation. Karsten K. Schmidt, Schmalkalden University of Applied Sciences, Germany (1046-11-497)
10:40am Teach ill-conditioning to introductory linear algebra
- (701) students in a single lecture!

Jeffrey Stuart, Pacific Lutheran University (1046-I1-2078)
11:00Am The linear package and its integration into an

- (702) undergraduate linear algebra course.

Don Spickler, Salisbury University (1046-11-1430)
11:20am Getting your hands dirty in linear algebra.
(703) Murphy Waggoner, Simpson College (1046-11-1440)
11:40am Using projects and oral reports in the first linear

- (704) algebra course. Preliminary report.

Stephen Hilbert, Ithaca College, Ithaca NY (1046-I1-2023)

MAA Session on Mathematics of Games and Puzzles, I
9:00 AM - 11:55 Aм
Organizer: Laura A. Taalman, James Madison University
9:00am La Loubere magic squares.

- (705) James Z. Klingensmith* and Roman Wong,

Washington and Jefferson College (1046-L1-801)
9:20am Magic tortoise puzzles. Preliminary report.

- (706) Heakyung Lee, Winthrop University (1046-L1-374)

9:40am Leapin' lizards! It's mathematics!
(707) Doug Ensley, Shippensburg University (1046-L1-1993)
10:00am On determining paint by numbers puzzles with
(708) non-unique solutions. Preliminary report.

Ryan Mullen, Sacred Heart University
(1046-L1-507)
10:20am The alarm-off puzzle.

- (709) Roman Wong*, Shunika Hamilton and Sarah Charley, Washington and Jefferson College (1046-L1-619)
10:40am Should you take the bet? A problem from Marilyn
- (710) Vos Savant.

Daniel Schaal, South Dakota State University (1046-L1-1840)
11:00am Using game theory to get a date: Strategy selection

- (711) for two (or more) suitors.

Darryl K. Nester, Bluffton University
(1046-L1-1836)
11:20am Be rational! An examination of player motives and

- (712) utility. Preliminary report.

Charles Andrew Tannouri, Johns Hopkins University (1046-L1-2049)
11:40am Elementary Farkle strategy: Have you farkled

- (713) lately?

Donald E. Hooley, Bluffton University
(1046-L1-891)

## MAA-Young Mathematicians' Network Panel Discussion

9:00 AM - 10:20 AM
Career options for undergraduate mathematics majors.
Organizers: Vanessa Garcia, Texas State
University-San Marcos
Dov N. Chelst, ICMA

## MAA Panel Discussion

9:00 AM - 10:20 AM
Multidisciplinary projects that hook those not usually interested in mathematics.
Organizers: Alex J. Heidenberg, U.S. Military Academy
Gerald C. Kobylski, U.S. Military Academy
Panelists: Laurie J. Heyer, Davidson College Shawnee L. McMurran, California State University, San Bernardino Michael Huber, Muhlenberg College Barbra S. Melendez, U. S. Military Academy

## MAA Committee on the Profession Special

 Presentation
## 9:00 AM - 10:20 Aм

Session for chairs.
$\begin{aligned} & \text { Organizers: } \begin{array}{l}\text { Daniel P. Maki, Indiana University } \\ \text { Cahterine M. Murphy, Purdue }\end{array} \\ & \begin{array}{l}\text { University Calumet }\end{array} \\ & \text { Presenter: } \text { Susan C. Geller, Texas A\&M University }\end{aligned}$

## MAA Committee on the Participation of

 Women/Women and Mathematics Network Poster Session9:00 AM - 11:00 AM
Mathematical outreach programs for underrepresented populations.
Organizer: Elizabeth G. Yanik, Emporia State University

## Student Hospitality Center

9:00 Ам - 5:00 Рм

## Exhibits and Book Sales

9:30 Ам - 5:30 Рм

## SIGMAA Officers Meeting

10:00 ам - 11:30 ам
Chair: Amy Shell-Gellasch, Pacific Lutheran University

## AWM Emmy Noether Lecture

## 10:05 ам - 10:55 ам

(714) The geometry of graphs.

Fan Chung Graham, University of California San Diego

MAA Minicourse \#4: Part A

```
10:30 AM - 12:30 PM
```

An introduction to the mathematics of modern cryptography.
Organizers: Jeffrey Ehme, Spelman College
Colm A. Mulcahy, Spelman College

MAA Minicourse \#9: Part A
10:30 Am - $12: 30$ PM
Beyond formulas and algorithms: Teaching a
conceptual/thematic single variable calculus
course.
Organizer: Shahriar Shahriari, Pomona College
SIGMAA on the History of Mathematics and SIGMAA
on the Philosophy of Mathematics Panel Discussion

MAA Workshop
10:45 Ам - 12:05 Рм
Proposal writing for grant applications to the NSF Division of Undergraduate Education.
Organizers: Daniel P. Maki, NSF
Ginger H. Rowell, NSF
Elizabeth J. Teles, NSF
Lee L. Zia, NSF

MAA Committee on Technology in Mathematics Education Panel Discussion

## 10:45 AM - 12:05 PM

Picture this! Geometry software.
Organizers: Mary L. Platt, Salem State College Marina Vulis, University of New Haven Lawrence Moore, Duke University
Moderators: Mary L. Platt
Marina Vulis
Panelists: Michael D. Hvidsten, Gustavus Adolphus College
David Fowler, University of Nebraska-Lincoln Jon Choate, Groton School David Austin, Grand Valley State University

## SIAM Invited Address

## 11:10 AM - NOON

(715) Mathematics of sea ice to help predict climate change.
Kenneth M. Golden, University of Utah (1046-86-122)

## AMS Colloquium Lectures: Lecture II

## 1:00 PM - 2:00 PM

(716) Homogeneous dynamics and number theory II.

Gregory Margulis, Yale University (1046-37-03)

AMS-MAA-SIAM Special Session on Research in Mathematics by Undergraduates, III

## 1:00 PM - 4:20 PM

Organizers: Darren A. Narayan, Rochester Institute of Technology
Jacqueline A. Jensen, Sam Houston State University
Carl V. Lutzer, Rochester Institute of Technology
Vadim Ponomarenko, San Diego State University
Tamas Wiandt, Rochester Institute of Technology
1:00pm Morgan Prize talk.
1:30pm On the realizability of certain graphs as Delaunay

- (717) Tessellations.

Nicholas L Michaud*, Liz Anet, Adam Chodoff and Viriya Ratanasangpunth, Bard College (1046-51-527)
2:00pm Local edge detection with wavelet coefficients.

- (718) Taylor Edward Burmeister, Haverford College (1046-43-86)
2:30pm Modeling the dynamics of feed-forward biological
- (719) networks.

Lauren E. Pace*, John W. Cain and Dewey T. Taylor, Virginia Commonwealth University (1046-92-89)
3:00pm Examining the evolution of molecular gas in the

- (720) interstellar medium: The case of the singular ordinary differential equations. Preliminary report. Benjamin Baxter* and Lisa J. Holden, Northern Kentucky University (1046-34-104)
3:30pm Numerical evidence on the uniform distribution of
- (721) power residues for elliptic curves.

Jeffrey Hatley*, The College of New Jersey, and Amanda Hittson, Bryn Mawr College (1046-11-115)
4:00pm An upper bound for the number of graceful

- (722) labelings of a path with $n$ edges.

Sylvia R. Naples, Bard College (1046-00-301)

AMS-MAA-MER Special Session on Mathematics and Education Reform, II

## 1:00 PM - 4:10 PM

Organizers: William H. Barker, Bowdoin College William G. McCallum, University of Arizona
Bonnie S. Saunders, University of Illinois at Chicago

1:00pm Undesirable habits of mind of pre-service teachers:
(723) Strategies for addressing them.

Kien H. Lim, University of Texas at El Paso (1046-97-1675)
1:30pm Mathematical habits of mind and the
(724) language-learning brain: Mathematics as a second language.
Paul Goldenberg, Educational Development Center (1046-97-2113)
2:00pm Algebraic reasoning in 3D, using principles of
(725) linearity and symmetry.

Hyman Bass, University of Michigan
(1046-97-1906)
2:30pm Habits of mind for proving.

- (726) Annie Selden* and John Selden, New Mexico State University (1046-97-684)
3:00pm Classroom norms and habits of mind.
- (727) Chris Rasmussen, San Diego State University (1046-97-1774)
3:30pm Panel: Helping students develop mathematical
- (728) habits of mind.

Kristin A. Camenga*, Houghton College, and Kien H. Lim, University of Texas at El Paso (1046-97-1111)

## AMS-MAA Special Session on The Scholarship of Teaching and Learning, I

## 1:00 PM - 4:20 PM

Organizers: Curtis D. Bennett, Loyola Marymount University
Jacqueline M. Dewar, Loyola Marymount University
1:00pm Using video case-studies to enhance both teaching

- (729) and learning in a transition course. Preliminary report.
James Sandefur*, Georgetown University, Connie
M. Campbell, Millsaps College, Kay Somers, Moravian College, Manya Raman, Umeå University, and Geoffrey D. Birky, Georgetown University (1046-97-853)
1:30PM Making the most of pre-class reading assignments
- (730) in statistics.

Derek Bruff, Vanderbilt University (1046-97-1657)
2:00pm Questions you might want answered using data

- (731) from the registrar.

Jack Bookman, Duke University (1046-97-1739)
2:30pm Collaborative concept mapping in calculus.

- (732) David E. Meel, Bowling Green State University (1046-97-847)
3:00pm Paperless Internet-based calculus across all levels,
- (733) updated.

Thomas F. Banchoff, Brown University (1046-00-972)
3:30pm What makes effective online feedback in college

- (734) algebra? Preliminary report.

Andrew G. Bennett, Kansas State University (1046-97-1758)
4:00pm Comparing methods of instruction in intermediate

- (735) algebra for college students, round 2. Preliminary report.
Susan Elaine Thompson, Otterbein College (1046-97-664)

AMS-SIAM Special Session on Asymptotic Methods in Analysis with Applications, II
1:00 PM - 4:20 PM
Organizers: Diego Dominici, SUNY New Paltz
Peter A. McCoy, U.S. Naval Academy
1:00pm Asymptotic behavior of solutions of a class of

- (736) non-linear difference equations. Preliminary report. Faruk F. Abi-Khuzam, American University of Beirut (1046-39-975)
1:30pm Asymptotics of the $p$-adic valuations of solutions of
(737) linear recurrences.

Tewodros Amdeberhan, Tulane University, Luis A. Medina, Rutgers University, and Victor H. Moll*, Tulane University (1046-11-1158)
2:00pm Stochastic epidemic model reduction: A normal
(738) form approach. Preliminary report.

Eric Forgoston*, Naval Research Laboratory, Lora Billings, Montclair State University, and Ira B. Schwartz, Naval Research Laboratory (1046-37-612)
2:30pm Fluid limits, diffusion limits, and event horizons for
(739) the response times of processor sharing queues with time varying rates.
William A. Massey, Princeton University (1046-41-747)
3:00pm Mathematical analysis of double-walled carbon
(740) nanotube model.

Marianna A. Shubov* and Miriam Rojas-Arenaza, University of New Hampshire (1046-35-1118)
3:30pm Pulse propagation in a debye material with static
(741) Preliminary report.
Natalie A. Cartwright*, State University of New York at New Paltz, and Kurt E. Oughstun, University of Vermont (1046-78-852)
4:00pm The Riesz energy of the N-th roots of unity: An
(742) asymptotic expansion for large $N$.

Edward B. Saff*, Vanderbilt University, Johann S. Brauchart, Graz University of Technology, and Douglas Hardin, Vanderbilt University (1046-41-2128)

## AMS-ASL Special Session on Model Theoretic Methods

 in Finite Combinatorics, I```
1:00 PM - 4:20 PM
            Organizers: Martin Grohe, Humboldt University
                                    Johann A. Makowsky, Technion Israel
                                    Institute of Technology
    1:00pm Discussion
    1:30pm Symmetrized Ramsey theorems for graphs and for
        (743) countably categorical structures. Preliminary
        report.
        Menachem Kojman, Ben Gurion University,
        Bersheva, Israel (1046-05-342)
    2:00pm Universal graphs with forbidden subgraphs.
    (744) Preliminary report.
        Gregory L. Cherlin, Rutgers University, New
        Brunswick, NJ (1046-03-366)
    2:30PM Partition theorems and permutation groups.
    (745) Preliminary report.
        Andreas Blass, University of Michigan
        (1046-03-471)
    3:00pm A geometric zero-One law.
- (746) Robert Gilman, Stevens Institute of Technology,
    Yuri Gurevich, Microsoft Research, and Alexei
    Myasnikov*,McGill University (1046-05-373)
```

3:30pm Laplace transforms and zero-one laws. Preliminary (747) report.

Jason P. Bell, Simon Fraser University (1046-05-448)
4:00pm The Specker-Blatter theorem revisited. Preliminary

- (748) report.

Eldar Fischer* and Johann A. Makowsky, Technion - Israel Institute of Technology, Haifa, Israel (1046-05-343)
AMS Special Session on Convex and Discrete
Geometry, II

AMS Special Session on Von Neumann Algebras, II 1:00 PM - 4:20 PM

Organizers: Pinhas Grossman, Vanderbilt University
Remus Nicoara, University of Tennessee
1:00pm Discussion
1:30pm On the conditionally free analogue of the
(756) S-transform.

Mihai Popa, Indiana University at Bloomington (1046-47-336)
2:00pm Binary shifts of higher commutant index.
(757) Preliminary report. Geoffrey L. Price, United States Naval Academy (1046-46-467)
2:30pm Multipliers and extreme points of operator spaces.
(758) Masayoshi Kaneda, The University of Mississippi (1046-46-1388)
3:00pm Normalizers of subalgebras of I_{1} factors.
(759) Alan D. Wiggins, Vanderbilt University (1046-46-1280)

3:30pm A modified version of free orbit-dimension of von
(760) Neumann algebras. Weihua Li* and Don Hadwin, University of New Hampshire (1046-46-370)
4:00pm Structure results for normalizers of II_{1} factors.
(761) Jan Cameron, Texas A\&M University (1046-47-1313)

AMS Special Session on Noncommutative Algebra, II 1:00 PM - 3:50 PM

Organizers: Greg Marks, St. Louis University Ashish K. Srivastava, St. Louis University
1:00pm Hopf algebras of Iow GK-dimension.
(762) James J. Zhang, University of Washington (1046-16-204)
1:30pm Centralizers in domains of low Gelfand-Kirillov
(763) dimension. Preliminary report.

Jason P. Bell, Simon Fraser University (1046-16-451)
2:00pm Homology of a ring.
(764) Ivo Herzog, Yonsei University (Seoul, South Korea) and Ohio State University at Lima (1046-16-1418)
2:30PM Nichols algebras in positive characteristic.
(765) Aaron Lauve and Sarah Witherspoon*, Texas A\&M University (1046-16-2035)
3:00pm Von-Neumann-algebra-like rings and the answer to
(766) a S. K. Berberian's question.

Lia Vaš, University of the Sciences in Philadelphia (1046-16-994)
3:30pm Big projective modules over Noetherian semilocal
(767) rings.

Dolors Herbera*, Universitat Autonoma de Barcelona, and Pavel Prihoda, Charles University, Prague (1046-16-1580)

AMS Special Session on Computational Algebraic and Analytic Geometry for Low-dimensional Varieties, II

```
1:00 PM - 4:20 PM
```

Organizers: Mika K. Seppälä, Florida State University
Tanush Shaska, Oakland University
Emil J. Volcheck, Association for Computing Machinery
1:00Pm Palindromes and discreteness algorithms.
(768) Jane Gilman*, Rutgers University, Newark, and Linda Keen, Lehman College, CUNY (1046-20-682)
1:30pm
(769)
trigonal Riemann surface.
Milagros Izquierdo*, Linköping University, and Antonio F. Costa, UNED (1046-14-405)
2:00pm WIT: A structured and comprehensive package for
(770) computations in intersection theory.

Sebastian Xambó-Descamps, Universitat Politècnica de Catalunya (1046-14-1435)
2:30pm Riemann surfaces via circle packing.
(771) G. Brock Williams, Texas Tech University (1046-30-1803)
3:00Рм Hyperbolic polygons, Fuchsian groups and Helling
(772) Matricies.
K.-D. Semmler, EPF Lausanne (1046-53-1585)

3:30pm Thetanulls of curves with automorphisms.
(773) Emma Previato*, Boston University, and T. Shaska, Oakland University (1046-14-800)

4:00pm Graphical representation of the Birman-Series set
(774) on hyperbolic surfaces. Preliminary report.

Peter Buser* and Hugo Parlier, École Polytechnique Fédérale Lausanne (EPFL) (1046-53-1093)

AMS Special Session on Harmonic Analysis, I

1:00 PM - 4:20 pm	
	Organizers: Paul A. Hagelstein, Baylor University
\quad Alexander M. Stokolos, DePaul	

AMS Special Session on the Mathematics of Information and Knowledge, IV

```
1:00 PM - 4:20 PM
Organizers: Ronald R. Coifman, Yale University James G. Glimm, SUNY at Stony Brook Peter W. Jones, Yale University Stephen Smale, Toyota Institute
1:00pm Hodge theory for singular spaces.
(782) Steve Smale*, Toyoto Technological Institute, and Nat Smale, University of Utah (1046-60-1222)
2:00pm Harmonic and multiscale analysis on
(783) low-dimensional data sets in high-dimensions. Mauro Maggioni, Duke University (1046-60-1685)
3:00pm Fast matrix computations via randomized
(784) sampling.
Gunnar Martinsson, University of Colorado at Boulder (1046-60-2131)
3:45pm Discussion
```

AMS Special Session on Topological Methods in Applied Mathematics, II

```
1:00 PM - 4:20 PM
    Organizer: Yongwu Rong, George Washington University
```

1:00pm Topology and data.
(785) Gunnar Carlsson, Stanford University (1046-68-1631)
1:30PM Estimating the topology of functions on manifolds
(786) from noisy samples.

Peter Bubenik*, Cleveland State University, Gunnar Carlsson, Stanford University, Peter T. Kim and Zhiming Luo, University of Guelph (1046-55-916)
2:00pm Homology computations for random nodal domains.
(787) Thomas Wanner, George Mason University (1046-55-459)
2:30pm Euler characteristic, integration, and definable
(788) functions. Preliminary report. Yuliy Baryshnikov, Bell Labs, and Robert Ghrist*, University of Pennsylvania (1046-55-479)
3:00pm Counting objects in dense sensor networks: A

- (789) topological integral transform. Preliminary report. Yuliy Baryshnikov, Bell Laboratories (1046-55-1554)
3:30PM Discrete curvature flows and their applications, I.
(790) Feng Luo*, Rutgers University, and David Gu, SUNY at Stony Brook (1046-52-1939)
4:00PM Discrete curvature flows and their applications, II.
- (791) Preliminary report.

David Gu*, SUNY at Stony Brook, and Feng Luo, Rutgers University (1046-97-2091)

AMS Special Session on Teichmüller Theory and Low-Dimensional Topology, II

```
1:00 PM - 4:20 PM
Organizers: Richard P. Kent, Brown University Madlena Tomova, Rice University
    1:00pm A normal surface calculus for Heegaard splittings.
    (792) Jesse E. Johnson, Yale University (1046-57-825)
    1:30pm Asymptotics of Weil-Petersson geodesics.
    (793) J. Brock*, Brown University, H. Masur, University
        of Chicago, and Y. Minsky, Yale University
        (1046-51-1311)
    2:00pm Uniform uniform exponential growth of subgroups
    (794) of the mapping class group.
        Johanna Mangahas, University of Michigan
        (1046-51-362)
    2:30PM Topological index theory for isotopy classes of
    (795) surfaces.
        David C. Bachman, Pitzer College (1046-57-139)
    3:00PM A compactification for the space of singular
    (796) Euclidean metrics on a surface.
        Kasra Rafi*, University of Oklahoma, Moon
        Duchin, University of Michigan, and Christopher
        Leininger, UIUC (1046-51-188)
    3:30pm Surgery on a knot in (surface)x(l).
    (797) Martin Scharlemann, UCSB, and Abigail
        Thompson*, UC Davis (1046-57-932)
    4:00pm Geometry of splittings and models.
    (798) Hossein Namazi, University of Texas at Austin
        (1046-57-390)
```

MAA Minicourse \#10: Part A

1:00 PM - 3:00 PM

The ubiquitous Catalan numbers and their applications.
Organizer: Thomas Koshy, Framingham State College

MAA Minicourse \#14: Part A

1:00 PM - 3:00 PM
Teaching a course in the history of mathematics.
Organizers: V. Frederick Rickey, U.S. Military Academy
Victor J. Katz, University of the District of Columbia

MAA Minicourse \#5: Part A

1:00 PM - 3:00 PM	
	Developing departmental self-studies.
Organizers:	Donna L. Beers, Simmons College
	Richard A. Gillman, Valparaiso
	University

AMS Session on Partial Differential Equations, II
1:00 PM - 3:55 PM
1:00pm Thermal blow-up in a subdiffusive medium.
(799) W. E. Olmstead, Northwestern University, and
Catherine A. Roberts*, College of the Holy Cross
(1046-35-706)
1:15pm Accurate resolution of a nonlinear PDE with corner

- (800) singularities. Preliminary report.
Qingshan Chen*, Indiana University at
Bloomington, and Roger Temam, Indiana
University (1046-35-1492)
1:30pm A model for particle size segregation in granular
(801) flow under nonuniform shear.
Karen Daniels, Lindsay B.H. May*, North Carolina
State University, Kasey Phillips, University of
Cambridge, and Michael Shearer, North Carolina
State University (1046-35-1694)
1:45Pm Minimizers of the Lawrence-Doniach model for
(802) superconductors under weak coupling and a
parallel or slightly tilted field. Preliminary report.
Patricia E. Bauman and Zhenqiu Xie*, Purdue
University (1046-35-1850)
2:00pm The unique determination of an acoustic speed
(803) from thermoacoustic tomography data.
Kyle S. Hickmann, Oregon State University
(1046-35-1925)
2:15PM Propagation of solitons under colored noise.
(804) Preliminary report.
Russell L. Herman, University of North Carolina
Wilmington (1046-35-1966)
2:30pm Complete integrability in Burgers turbulence.
(805) Preliminary report.
Ravi Srinivasan, Brown University (1046-35-2065)
2:45pm Using distinguish-ability criteria to optimally design
(806) sources in optical tomography.
Taufiquar Khan, Clemson University, Peter Maass,
University of Bremen, Germany, and Bonnie
McAdoo*, Clemson University (1046-35-1979)
3:00pm Nodal and multiple constant sign solutions for the
(807) p-Laplacian. Preliminary report.
Michael E. Filippakis*, National Technical
University of Athens, Ravi P. Agarwal, Florida
Institute of Technology, Donal O'Regan,
National University of Ireland, and Nikolaos S.
Papageorgiou, National Technical University of
Athens (1046-35-2127)
3:15pm Immiscible two-phase flow through porous media: A
- (808) case of uniqueness of a solution. Preliminary report.
Koffi B. Fadimba, University of South Carolina
Aiken (1046-35-1453)

3:30Pm Homogenization of time-harmonic acoustics of (809) bone: The diphasic case. Ana Vasilic*, University of Delaware, Ming Fang, Norfolk State University, and Robert P. Gilbert, University of Delaware (1046-35-1828)
3:45pm An optimal order error estimate of a linear finite
(810) element method for smooth solutions of 2D systems of conservation laws.
Xiaomei Ji, Stony Brook University. (1046-00-1650)

AMS Session on Biology, II

1:00 PM - 3:25 PM

1:00pm Gene dispersal in an insect pollinated tree species.

- (811) Preliminary report.

David M. Chan*, Rodney J. Dyer, Erich Foster,
Alex Feild and April McFarland, VCU (1046-92-74)
1:15pm The estimation of the effective reproductive number

- (812) from disease outbreak data.

Ariel Cintron-Arias, North Carolina State University (1046-92-162)
1:30pm 3D In vivo MRI-Based FSI models for human carotid
(813) atherosclerotic plaques and patient-specific plaque progression growth functions with validation. Zijie Liao, Xueying Huang*, Worcester Polytechnic Institute, Chun Yang, Beijing Normal University, and Dalin Tang, Worcester Polytechnic Institute (1046-92-253)
1:45PM Linkage analysis for categorical traits on complex
(814) pedigrees.

Abra Brisbin*, Center for Applied Mathematics, Cornell University, Jason Mezey and Carlos
Bustamante, Cornell University (1046-92-264)
2:00pm Computational mutagenesis for analysis of protein

- (815) functional changes upon mutation. Preliminary report.
Majid Masso, George Mason University (1046-92-78)
2:15pm The analysis of a nonlinear adaptive elastic plate
(816) under loading with numerical simulations of its displacement and growth under various boundary conditions.
Robert J. Ronkese, United States Military Academy (1046-92-389)
2:30pm A general method to derive a Boolean model from a
- (817) continuous model for gene regulatory networks.

Franziska B. Hinkelmann, Virginia Tech (1046-92-306)
2:45pm Study on critical stress in atherosclerotic carotid
(818) artery using In vivo MRI-based 3D multi-physics models with fluid-structure interactions.
Zhongzhao Teng*, Xueying Huang, Zijie Liao and Dalin Tang, Worcester Polytechnic Institute (1046-92-417)
3:00pm A gender structured model with single-biased

- (819) separation rate. Preliminary report. Daniel Maxin, Valparaiso University (1046-92-469)
3:15pM A modified Mitchell-Schaeffer model of
- (820) cardiac action potential which incorporates caveolae-associated ionic currents. Preliminary report.
Ian Besse*, Colleen Mitchell, University of lowa, and Erwin Shibata, University of lowa (1046-92-518)
AMS Session on Dynamical Systems and Ergodic Theory, I

```
1:00 Pм - 3:55 pm
```

 1:00pm Decay of correlations of nonuniform geodesic flows.
 (821) Preliminary report.
 Hongkun Zhang, University of
 Massachusetts-Amherst (1046-37-52)
 1:15PM All bounded type Siegel disks of rational maps are
 (822) quasi-disks.
 Gaofei Zhang, Nanjing University (1046-37-136)
 1:30pm Endomorphisms of various substitution systems.
 - (823) Preliminary report.
 Jeanette Olli, University of North Carolina at
 Chapel Hill (1046-37-280)
 1:45pm A dynamical study of a cellular automata model of
 - (824) the spread of HIV in a lymph node.
Emily G. Burkhead*, Meredith College, Jane M.
Hawkins, University of North Carolina at Chapel
Hill, and Donna K. Molinek, Davidson College
(1046-37-314)
2:00pm Measurable time-restricted sensitivity. Preliminary
- (825) report.
Domenico Aiello, Williams College, Hansheng
Diao, Massachusetts Institute of Technology, Zhou
Fan, Harvard College, Daniel O. King, Williams
College, Jessica Lin*, Courant Institute of
Mathematical Sciences, and Cesar E. Silva, Williams
College (1046-37-953)
2:15PM Pinching deformations of rational maps.
(826) Robert W. O’Connell, Indiana
University-Bloomington (1046-37-428)
2:30pm Minimal measures for Lagrangian systems on
(827) 2-manifold. Preliminary report.
Fang Wang, Northwestern University
(1046-37-1099)
2:45PM A cellular model for spatial population dynamics.
- (828) James T. Long*, Moravian College, Chu Yue
(Stella) Dong, Polytechnic Institute of New York
University, Corey Staten, Ohio State University,
Rytis Umbrasas and Clifford A. Reiter, Lafayette
College (1046-37-1001)
3:00pm An approach at the binomial transformation
- (829) problem. Preliminary report.
Andy Q. Yingst*, University of South Carolina
Lancaster, and R. Daniel Mauldin, University of
North Texas (1046-37-1094)
3:15pm Reducibility of skew-product systems with Brjuno
(830) base flows.
Sasa Kocic, University of Toronto (1046-37-1132)
3:30pm The dynamics of nonlinear tent-like maps.
- (831) Oumarou Njoya* and Zach Flres, Michigan State
University (1046-37-1141)
3:45pm On the road to a classification of attractors of
- (832) injective iterated function systems in \mathbb{R}^{1}.
Jason E. Snyder* and Mariusz Urbanski, University
of North Texas (1046-37-1316)
AMS Session on Number Theory, II
1:00 PM - 3:55 PM
1:00pm Bounding the coefficients of $\Phi_{p q r}(x)$.
(833) Brian Lawrence, California Institute of Technology
(1046-11-1150)
1:15PM Membership in an ideal in the group ring, $\mathbb{Z}\left[G L_{3}(\mathbb{Z})\right]$.
(834) Becky E. Hall, Wesleyan University (1046-11-1349)

1:30pm More results on "sum of cubes equal to square of - (835) sums".

Paul A. Loomis, Bloomsburg University (1046-11-1382)
1:45PM Finding square roots of p-adic numbers.

- (836) William D. Taylor, University of Nevada, Reno (1046-11-1446)
2:00pm Composites with large sets of strong liars.
(837) Preliminary report.

Andrew Shallue*, University of Calgary, and Eric Bach, University of Wisconsin-Madison (1046-11-1459)
2:15pm On a conjecture regarding the coefficients of
(838) cyclotomic polynomials. Sherry Gong, Harvard University (1046-11-1518)
2:30pm Modular forms for some noncongruence subgroups
(839) of $S L_{2}(Z)$.

Chris A. Kurth, Iowa State University (1046-11-1817)
2:45pm Groups of linear functions on Zn .

- (840) Tue Ngoc Ly, University of South Florida (1046-11-1530)
3:00pm Computation of Jacobsthal's Function $\mathbf{h}(\mathbf{n})$ for
- (841) $\mathbf{n}<\mathbf{5 0}$.

Thomas R. Hagedorn, The College of New Jersey (1046-11-1633)
3:15pm Distribution of integers with smooth square free
(842) parts.

Chaogui Zhang, Marywood University (1046-11-1794)
3:30pm Waring's number in a finite field. Preliminary report.
(843) James Arthur Cipra, Kansas State University (1046-11-1944)
3:45pm On prime factors of $A^{n} \pm 1$. Preliminary report.

- (844) John H. Jaroma, Ave Maria University (1046-11-873)

MAA Session on Demos and Strategies with Technology that Enhance Teaching and Learning Mathematics, II

1:00 PM - 3:15 PM

Organizers:	David R. Hill, Temple University
	Scott Greenleaf, University of New
	England
	Mary L. Platt, Salem State College
	State University

1:00pm Math in your hands: The use of tablet PCs and

- (845) computer algebra systems in a calculus classroom. Joshua Brandon Holden, Rose-Hulman Institute of Technology (1046-E1-1480)
1:20pm Using tablet PCs and the ubiquitous presenter to
- (846) engage students and enhance the learning experience in service courses. Preliminary report. Shemsi I. Alhaddad*, University of South Carolina Lancaster, and Greg Thomas, Waldorf College (1046-E1-1439)
1:40pm My first semester using 'clickers' for rapid
- (847) feedback: The good, the bad, and the ugly.

Dexter C. Whittinghill, Rowan University, Glassboro, NJ (1046-E1-1673)
2:00pm Turning point technology: Using personal response

- (848) systems to stimulate class participation. Preliminary report.
Kimberly J. Presser, Shippensburg University (1046-E1-422)

2:20pm Effective teaching and learning with the right - (849) web-based resources.

Douglas B. Meade*, University of South Carolina, and Philip B. Yasskin, Texas A\&M University (1046-E1-650)
2:40pm A powerful, easy-to-use computer algebra

- (850) alternative that students love, but (most) teachers have not yet discovered!
Anand L. Pardhanani, Earlham College (1046-E1-600)
3:00pm Integrating engineering technology into the
- (851) teaching of mathematics.

Mary Ann Connors, Westfield State College (1046-E1-198)

MAA Session on Mathematics and Sports, II

```
1:00 PM - 3:15 PM
```

Organizer: Howard L. Penn, U.S. Naval Academy
1:00pm SiSSYS: A senior capstone course based on statistics

- (852) in sports.

Robin H. Lock*, Michael E. Schuckers, and Travis
Atkinson, St. Lawrence University (1046-N1-2020)
1:20pm Traditional introductory statistics restricted to

- (853) sports.

Andrew B. Perry, Springfield College
(1046-N1-1773)
1:40pm The effects of wind and altitude on 400-m sprint

- (854) performances with various IAAF track geometries. Michael Frantz*, University of La Verne, and Vanessa Alday, California State University, Fullerton (1046-N1-1882)
2:00pm Walking or running in the rain: Myth busted?
- (855) Preliminary report.

Eugene Belogay, Wilkes Honors College, Florida Atlantic University (1046-N1-1931)
2:20pm Mathematics of the Olympics: From the ancient

- (856) Greeks to the present.

Elizabeth C. Rogers, Piedmont College (1046-N1-2062)
2:40pm How expert swing dancers exploit physics.

- (857) Preliminary report.

Megan Elise Selbach-Allen*, Sommer E. Gentry and Kevin L. Mcllhany, United States Naval Academy (1046-N1-1894)
3:00pm Mathematics and collegiate wrestling tournaments.

- (858) T. S. Michael, United States Naval Academy (1046-N1-613)

MAA Session on Research on the Teaching and Learning of Undergraduate Mathematics, I

```
1:00 PM - 4:05 PM
            Organizers: Keith H. Weber, Rutgers University
                Michelle J. Zandieh, Arizona State University
                Karen A. Marrongelle, Portland State
                University
    1:00PM A multiage examination of students' approaches to
        (859) mathematical induction tasks.
        Stacy A. Brown, Pitzer College (1046-U1-1771)
    1:35PM Bringing a formative approach to definitions in
- (860) undergraduate real analysis: Theoretical
        considerations and preliminary results. Preliminary
        report.
        Paul C. Dawkins, University of Texas at Arlington
        (1046-U1-1871)
```

2:00pm An investigation of students' problem solving

- (861) abilities: Where's the quantity? Kevin C. Moore, Arizona State University (1046-U1-1471)
2:25pm Expert vs. novice understanding of convergence of
- (862) Taylor series. Preliminary report.

Jason Howard Martin, University of Oklahoma (1046-U1-1716)
2:50pm Measuring Mathematical Sophistication.

- (863) Eric W. Kuennen*, Jennifer E. Szydlik, University of Wisconsin Oshkosh, and Carol E. Seaman, University of North Carolina Greensboro (1046-U1-1760)
3:20pm Students' mental models and success on a calculus (864) word problem.

Dale J. Winter*, Carnegie Mellon University, and Matthew E. DeLong, Taylor University (1046-U1-564)
3:45Pm A two semester study of interactions in

- (865) multi-section undergraduate mathematics classes. Preliminary report.
Jessica M. Deshler, West Virginia University (1046-U1-1414)

MAA Session on Undergraduate Mathematical Biology, II

1:00 PM - 2:40 PM
Organizers: Timothy D. Comar, Benedictine University
Raina Robeva, Sweet Briar College
Eric S. Marland, Appalachian State University
1:00pm Sensitivity analysis and parameter identification in

- (866) undergraduate mathematical modeling.

Steven M. Deckelman, University of Wisconsin-Stout (1046-Y1-1014)
1:25pm Materials for analyzing sensitivity using the partial

- (867) rank correlation coefficient. Preliminary report. J. K. Denny, Mercer University (1046-Y1-2041)

1:55pm Secret diffusion lessons of the sea monkeys and
(868) other math bio projects for undergraduates.

Brynja R. Kohler*, Rebecca J. Atkins, James
Haefner, and James Powell, Utah State University (1046-Y1-993)
2:20pm What's math have to do with history: A biological

- (869) application to matrices and difference equations. Robert E. Burks Jr., United States Military Academy (1046-Y1-1742)

MAA Session on Wavelets for Undergraduates

1:00 PM - 4:15 PM
Organizers: Catherine Beneteau, University of South Florida
Caroline Haddad, SUNY Geneseo
David Ruch, Metropolitan State College of Denver
Patrick Van Fleet, University of St. Thomas
1:00pm An image compression introduction to wavelets.

- (870) Colm Mulcahy, Spelman College (1046-YY-1962)

1:25PM Zooming in on a transformed image: A project for (871) students.

Caroline N. Haddad*, State University of NY College at Geneseo, Dawit Haile, Virginia State University, and Helmut Knaust, The University of Texas at El Paso (1046-YY-1365)
1:50pm Wavelet packets and applications. Preliminary

- (872) report.
Bruce Atwood, Beloit College, Raouf Boules, Towson University, and Patrick Van Fleet*, University of St. Thomas (1046-YY-1920)
2:15PM A student project on lifting algorithms for wavelet
- (873) transformations.
Catherine Beneteau*, University of South Florida, Kristin Pfabe, Nebraska Wesleyan University, and Karen Shuman, Grinnell College (1046-YY-1698)
2:40pm A student project on matrix completion for discrete
- (874) wavelet transformations. Preliminary report.
Roger Zarnowski*, San Angelo State University, Tatyana Sorokina, Towson State University, and David K. Ruch, Metropolitan State College of Denver (1046-YY-1690)
3:05pm A student summer research project on image
- (875) segmentation using wavelet methods and matrix completion.
David K. Ruch, Metropolitan State College of Denver (1046-YY-1696)
3:30pm Wavelets in vocal identification of great horned
- (876) owls (Part I). Preliminary report.
Katherine L. McCaffrey*, University of St. Thomas, and Nicole F. Kingsley, SUNY Geneseo (1046-YY-1362)
3:55PM Wavelets in vocal identification of great horned
- (877) owls (Part II). Preliminary report.
Nicole F. Kingsley*, State University of New York at Geneseo, and Katherine L. McCaffrey, University of St. Thomas (1046-YY-1441)

MAA General Contributed Paper Session, V
1:00 PM - 3:55 Рм
Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: Edwin Herman, University of Wisconsin
Ana M. Tameru, Alabama State University
Aprillya Lanz, Virginia Military Institute
Deborah Koslover, University of Texas at Tyler
1:00pm The promises of clinical instructological research.

- (878) Clyde L. Greeno, MALEI Mathematics Institute (1046-Z1-1174)
1:15PM Teaching infinite series: A study on students'
- (879) conceptual and procedural understanding of infinite series in calculus.
Brian J. Lindaman, University of Minnesota, IT Center for Educational Programs (1046-Z1-2053)
1:30pm How was that picture helpful? Using online
- (880) tablet-PC software and corrective self-explanation to increase student conceptual understanding in applied pre-calculus. Preliminary report.
Aaron Wangberg, Winona State University (1046-Z1-2011)
1:45pm Evaluating the success of a calculus placement test:
- (881) Aligning the basis for placement and the basis for assessment. Preliminary report.
Carrie Muir, University of Colorado, Boulder (1046-Z1-1933)
2:00pm Role of mathematical definitions in proof: A case of (882) prospective mathematics teachers. Preliminary report.
Nermin Bayazit, Florida State University (1046-Z1-1952)

2:15pm	Basic mathematical skills and success in introductory level statistics. M. Leigh Lunsford and Phillip Poplin*, Longwood University (1046-Z1-1740)
2:30pm	Effect of WeBWorK on student performance in
calculus II. Preliminary report.	
2:45pm	Christopher C. Leary* and Aaron Heap, SUNY
Geneseo (1046-Z1-1683)	

1:00 Pм - 3:55 Рм
Organizer: Stephen G. Hartke, University of Nebraska-Lincoln
1:00PM Random threshold graphs.
(890) Elizabeth Reilly and Edward R. Scheinerman*, Johns Hopkins University (1046-05-354)
1:30pm Large induced trees in K_{r}-free graphs.
(891) Jacob Fox*, Po-Shen Loh, Princeton University, and Benny Sudakov, UCLA (1046-05-533)
2:00pm Some observations on sorting pairs in bins.

- (892) Preliminary report.

Andre E. Kezdy* and Adam Jobson, University of Louisville (1046-05-1250)
2:30pm An approximate version of Hadwiger's conjecture
(893) for claw-free graphs.

Alexandra Ovetsky Fradkin*, Princeton University, and Maria Chudnovsky, Columbia University (1046-05-530)
3:00pm The distinguishing chromatic number.

- (894) Karen L. Collins, Wesleyan University (1046-05-1539)
3:30pm Entire $(\Delta+4)$-choosability of planar graphs with
- (895) $\Delta \geq 8$.

Daniel W. Cranston*, Center for Discrete Mathematics and Theoretical Computer Science, Rutgers, and David Lapayowker, Harvey Mudd College (1046-05-514)

Using open-source software for undergraduate courses.
Organizers: Karl-Dieter Crisman, Gordon College
Marshall E. Hampton, University of Minnesota, Duluth
David Joyner, U. S. Naval Academy
Panelists: John A. Verzani, CUNY
Michael E. Gage, University of Rochester
David Joyner
Robert Miller, University of Washington

MAA Committee on Graduate Students Panel Discussion

```
1:00 PM - 2:20 PM
```

Teaching postdocs: A journey from graduate school to a position in the world of mathematics.
Organizers: Stephen M. Gagola,III, University of Arizona

Feryal Alayont, Grand Valley State University
Panelists: Taliesin Sutton, University of Arizona
Andrew G. Bennett, Kansas State University
Nathan A. Carlson, University of Arizona
Steven J. Schlicker, Grand Valley State University
Matt Salomone, Bates College
MAA CUPM Subcommittee on Research by Undergraduates-Project NExT Panel Discussion

```
1:00 PM - 2:20 PM
```

Preparing students to communicate mathematics. Organizer: Lewis D. Ludwig, Denison University Panelists: Joseph A. Gallian, University of Minnesota-Duluth
Darren A. Narayan, Rochester Institute of Technology Michael E. Orrison, Harvey Mudd College

MAA-Project NExT Panel Discussion

```
1:00 PM - 2:15 PM
```

Establishing your identity as a post-tenure professor.
Organizers: Linda Braddy, East Central University
Sharon M. Frechette, College of the Holy Cross
Jennifer McLoud-Mann, University of Texas at Tyler
Panelists: Colin L. Adams, Williams College
Jaimie Hebert, Sam Houston State University
Catherine A. Roberts, College of the Holy Cross
Charlotte K. Simmons, University of Central Oklahoma

Judy L. Walker, University of Nebraska-Lincoln

Summer Program for Women in Mathematics (SPWM) Reunion

1:00 PM - 4:00 PM
Organizer: Murli M. Gupta

MAA Session on Mathematics of Games and Puzzles, II
1:40 PM - 4:15 PM
Organizer: Laura A. Taalman, James Madison University
1:40pm Meet Colonel Blotto.

- (896) Andrew G. Niedermaier, University of California San Diego (1046-L1-330)
2:00pm Two-dimensional abstract games.
- (897) Matthew M. Burke, George Washington University (1046-L1-1135)
2:20pm Rubik's Cubes in the classroom: How a puzzle of
- (898) logic, patterns, and algorithms can build confidence in mathematics.
Eric W. Drake* and Robert E. Burks Jr, The United States Military Academy (1046-L1-740)
2:40pm Using the pile splitting puzzle to enhance student
- (899) learning of mathematics. Bill Marion, Valparaiso University (1046-L1-23)
3:00pm Discussion
3:20pm Chomp, chomp, bechewy chomp: Research with
- (900) undergraduates. Preliminary report.

Alex Meadows, St. Mary's College of Maryland (1046-L1-1989)
3:40pm Counting the mathematical faces of all regular

- (901) flexagons. Preliminary report.

Homeira Pajoohesh, City University of New York, T. Bruce McLean*, Georgia Southern University, Thomas Anderson, Emory University, Chasen Smith, Emil Iacob, and John Nelson, Georgia Southern University (1046-L1-412)
4:00pm You gotta know how to fold 'em.

- (902) Thomas C. Hull, Western New England College (1046-L1-1378)

AMS Special Session on Group Actions on Homogeneous Spaces and Applications, IV

2:00 PM - 4:10 PM
Organizers: Dmitry Y. Kleinbock, Brandeis University
Gregory A. Margulis, Yale University
Hee Oh, Brown University
2:00pm Expanding translates of curves and

3:00pm Metric Diophantine approximation for systems of
(904) linear forms via homogeneous dynamics. Preliminary report.
Dmitry Kleinbock*, Brandeis University, Gregory Margulis, Yale University, and Junbo Wang, Brandeis University (1046-11-1867)
3:30pm Logarithm laws for horocycles and diophantine
(905) approximation

Jayadev Siddhanta Athreya* and Grigory
Margulis, Yale University (1046-37-254)
MAA Poster Session on Projects Supported by the NSF
Division of Undergraduate Education

MAA Poster Session on Projects Supported by the NSF Division of Undergraduate Education

2:00 PM - 4:00 PM

Organizer: Jon W. Scott, Montgomery Community College
2:00pm WeBWorK, a Web-based interactive homework
(906) system.
Arnold Pitzer*, Michael Gage, and Vicki Roth, University of Rochester
2:00pm Quantitative reasoning in the contemporary world.
Dencina Central Washington University, and Shannon Dingman, University of Arkansas
:00pm Mathematics across the curriculum. Community College
2:00pm A Phase II expansion of the development of a multidisciplinary course on wavelets and cations. College at Geneseo, Catherine Beneteau, University of South Florida, David Ruch, Van Fleet, University of St. Thomas
2:00pm Biocalculus: Text development, dialog, and assessment.
Timothy Comar*, Lisa Townsley and Brenda Alberico, Benedictine University
2:00pm Real world STEM application modules.
Sudit, Rochester Institute of Technology
2:00pm Math images.
Forum, and Stephen Maurer, Swarthmore College
2:00pm The National Curve Bank. Angeles, Mary Kay Abbey, Montgomery College, and Chris Caldwell, University of Tennessee at Martin
2:00pm A biomathematical learning enhancement network Gregory Goins*, Mingxiang Chen, Dinitra White, Thomas Redd, Dominic Clemence, Mary Smith, and Vinaya Kelkar, North Carolina A\&T State University
2:00PM Research-based video for teaching undergraduate James Sandefur*, Geoffrey Birky, Georgetown University, Connie Campbell, Millsaps College, Kay Somers, Moravian College, and Manya Sundstrom, Umea University
2:00pm Learning discrete mathematics and computer Jerry Lodder* and David Pengelley, New Mexico State University
2:00pm The MAA Online Book Project. University
2:00pm MathDL: The MAA Mathematical Sciences Digital Lawrence Moore*, Duke University, and Roseanne Brown, Mathematical Association of America
2:00pm Biology and mathematics in population studies (BioMaPS). Christopher Mecklin and, Howard Whiteman, Murray State University America, Nancy Baxter Hastings, Dickinson College, Nathaniel Dean, Texas State University, San Marcos, Virginia Buchanan, Hiram College, and Jon Scott*, Montgomery College
Experimental mathematics.
Marc Chamberland, Grinnell College
The PascGalois Project: Visualizing abstract mathematics.
Michael Bardzell*, Kathleen Shannon, and Donald Spickler, Salisbury University
Undergraduate research projects in complex analysis with accompanying applets.
Michael Dorff*, Brigham Young University, Jim
Rolf, U.S. Air Force Academy, Rich Stankewitz, Ball
State University, Ken Stephenson, University of
Tennessee, Mike Brilleslyper, U.S. Air Force
Academy, Dov Chelst, ICMA, Jane McDougall, Colorado College, and Beth Schaubroeck, U.S. Air Force Academy
Renewal of college algebra.
Norma Agras*, Miami Dade College, and J. Michael Pearson, Mathematical Association of America
Maplets for calculus, tutoring without the tutor.
Philip Yasskin*, Texas A\&M University, and
Douglas Meade, University of South Carolina
Integrating field trips into calculus courses.
Despina Prapavessi*, Karen Edwards, and Sam Needham, Diablo Valley College
Center for Women in Mathematics at Smith College.
Ruth Haas* and James Henle, Smith College
Long Beach Project in Geometry and Symmetry.
Scott Crass, California State University, Long Beach
Dynamic visualization tools for multivariable calculus.
Paul Seeburger, Monroe Community College
Proofs, functions, \& computations: A web-based course as a laboratory for enhanced teaching and learning in logic, mathematics and computer science.
Wilfried Sieg* and Alex Smith, Carnegie Mellon University
Contemporary college algebra \& the HBCU retreat and follow-on program.
Don Small*, U.S. Military Academy, and Laurette Foster, Prairie View A\&M University
Sonification for calculus instruction.
Steven Hetzler* and Robert Tardiff, Salisbury University
Classroom response systems in statistics courses.
Teri Murphy*, Curtis McKnight, Michael Richman, and Robert Terry, University of Oklahoma
Elementary mathematics for teachers.
Scott Baldridge, Louisiana State University, and Thomas Parker*, Michigan State University
PREP: Professional Enhancement Program.

MathQuest: Math questions to engage students. Holly Zullo*, Kelly Cline, and Mark Parker, Carroll College
Beyond Crossroads Workshops.
Rikki Blair, American Mathematical Association of Two-Year Colleges, and Robert Farinelli*, College of Southern Maryland
Paradigms in physics: Multiple entry points.
Corinne Manogue, Tevian Dray, Barbara
Edwards, David McIntyre, Emily van Zee, Oregon State University, and Aaron Wangberg*, Winona State University

2:00pm	Preparing at-risk students for CSI and calculus.
(938)	John Lusth, University of Alabama Tuscaloosa
2:00pm	College algebra in context: A learner-centered
(939)	approach incorporating data-driven activities
	related to social issues.
	Michael Catalano, Dakota Wesleyan University
2:00pm	SyBR-U: Synthetic biology research for
(940)	undergraduates.
	Laurie Heyer, Davidson College, Jeffrey Poet,
	Missouri Western State University, A. Malcolm
	Campbell, Davidson College, and Todd Eckdahl,
	Missouri Western State University

2:00pm Preparing at-risk students for CSI and calculus.
(938) John Lusth, University of Alabama Tuscaloosa

2:00pm College algebra in context: A learner-centered approach incorporating data-driven activities Michael Catalano, Dakota Wesleyan University

2:00pm SyBR-U: Synthetic biology research for undergraduates.
Laurie Heyer*, Davidson College, Jeffrey Poet Campbell, Davidson College, and Todd Eckdah Missouri Western State University
2:00pm Mathematics across the community college curriculum: A national quantitative literacy Jim Roznowski*, Delta College, and Christie Gilliland, Green River Community College

2:00pm Math biology research at UNCG.
Jan Rychtar*, M. Chhetri, S. Gupta, D. Remington, Carolina Greensboro

2:00pm Supplying undergraduate biology and mathematics education and research group experiences to Patrick Nelson*, John Schiefelbein, and Trachette Michigan
2:00pm Understanding the formation of the arabidopsis root epidermis through an intimate collaboration moteling and experiment uay Almassaiha, Asha Radhamohan, Andrew Nelson, Yana Panciera, and John Schiefelbein* University of Michigan

2:00pm Dynamic analysis of bactericidal activity in patients with severe sepsis.

Yin, Alex Jacobsen,

The next step: Integrating STEM learning communities.

Research-focused Learning Communities in Mathematical Biology. , Milical Bol Beck, Michael Kelrick, and Laura Rechav-Fielden, Truman State University

2:00pm Discrete mathematics in computing education. David Klappholz, Stevens Institute of Technology

2:00pm Appropriately using WeBWorK, WebAssign and Maple in calculus I and II. Preliminary report. Jeffrey Stuart*, Bryan Dorner, Daniel Heath, and Jesica Sklar, Pacific Lutheran Unity
2:00pm Research and education program in biology and ecology.

Semen Koksal, Jan Varada, Adail Remard Sinden, and Jewgeni Dshalalow, Florida Institute of Technology

2:00pm A model teacher-scholar program in secondary Saad El-Zanati, David Barker, Cynthia Langrall, Sharon McCrone, and Wendy O'Hanlon*, Illinois State University
2:00pm REU Site: Mathematics research experience for Saad El-Zanati, David Barker*, Cynthia Langrall, Sharon McCrone, and Wendy O'Hanlon, Illinois State University

AMS Invited Address

2:15 PM - 3:05 PM

(953) Unearthing the visions of a master: The web of Ramanujan's mock theta functions. Ken Ono, University of Wisconsin-Madison (1046-11-07)

AMS Committee on the Profession Panel Discussion

2:30 PM - 4:00 PM
What I wish I had known or studied before going to graduate school.
Moderator: Craig L. Huneke, University of Kansas
Panelists: Raegen Higgins, Texas Tech
University
Manoj Kummini, Purdue University
Aaron D. Magid, University of Michigan
Marion Moore, University of California Davis
Andrew Niedermaier, University of California San Diego
Roger A. Wiegand, University of Nebraska-Lincoln

SIGMAA on Statistics Education and ASA-MAA Joint Committee on Statistics Panel Discussion

2:30 PM - 3:50 PM

Hiring, tenuring, and promoting statisticians in a mathematics or mathematical sciences department.
Organizers: Patricia B. Humphrey, Georgia Southern University
Chris J. Lacke, Rowan University Michael A. Posner, Villanova University
Robin H. Lock, St. Lawrence University
Moderator: Carolyn K. Cuff, Westminster College
Panelists: Patti Frazer Lock, St. Lawrence University
Douglas E. Norton, Villanova University
Lila F. Roberts, Georgia College \& State University and Clayton State University

MAA Committee on the Teaching of Undergraduate Mathematics Panel Discussion

2:30 PM - 3:50 PM

Online homework systems: A pedagogical prospective.
Organizers: Ellen E. Kirkman, Wake Forest University
Cheryl Miner, Nebraska Wesleyan University
Panelists: Andrew G. Bennett, Kansas State University
Ellen E. Kirkman
P. Gavin LaRose, University of Michigan

Young Mathematicians' Network Town Meeting 7:30 PM - 8:30 PM
Organizer: Sarah Ann Stewart, Belmont University Moderator: Joshua D. Laison, Willamette University

Wednesday, January 7

Joint Meetings Registration

7:30 Ам - 4:00 Рм
AMS Special Session on Continued Fractions, I 7:30 ам - 10:50 ам

Organizers: James G. McLaughlin, West Chester University
Nancy J. Wyshinski, Trinity College
7:30am Some of Ramanujan's continued fraction identities -

- (955) How and why.

Lisa Lorentzen, Norwegian University of Science and Technology (1046-40-1049)
8:00am Vertical symmetries in continued fraction periods.

- (956) Preliminary report.

Richard K. Guy*, The University of Calgary, Kell Cheng, Hong Kong Institute of Education, and Renate Scheidler, The University of Calgary (1046-11-1264)
8:30Am Some relations between orthogonal L-polynomials (957) and orthogonal polynomials.
A. Sri Ranga*, Regina da Silva Lamblém, and

Heron Martins Felix, Universidade Estadual Paulista (1046-33-1328)
9:00am On a thermodynamic classification for real

- (958) numbers. Preliminary report.

Thomas Garrity, Williams College (1046-11-858)
9:30am Polynomials that take small values at an algebraic

- (959) integer. Preliminary report.

Doug Hensley, Texas A\&M University
(1046-11-1738)
10:00am Quadratics, continued fractions and divided cells.
(960) Preliminary report.

Richard T. Bumby*, Rutgers, the State University of New Jersey, and Mary E. Flahive, Oregon State University (1046-11-832)
10:30am Applying the divided cell algorithm. Preliminary (961) report.

Mary E. Flahive*, Oregon State University, and Richard T. Bumby, Rutgers, the State University of New Jersey (1046-11-750)

ASL Invited Address

8:00 ам - 8:50 ам

(962) Jet spaces and the Zilber dichotomy. Rahim Moosa, University of Waterloo (1046-03-107)

AMS-MAA-SIAM Special Session on Research in Mathematics by Undergraduates, IV

```
8:00 AM - 10:50 Am
```

Organizers: Darren A. Narayan, Rochester Institute of Technology

Jacqueline A. Jensen, Sam Houston State University
Carl V. Lutzer, Rochester Institute of Technology
Vadim Ponomarenko, San Diego State University
Tamas Wiandt, Rochester Institute of Technology
8:00am Least perimeter partitions of the sphere into equal

- (963) areas.

Max D. Engelstein, Yale University (1046-51-611)
8:25am Coloring graphs. Preliminary report.

- (964) Nora Youngs*, Carolyn Gardner, Marissa Neal, Yoshi Merrybird, and Agnieszka Rec, Smith College (1046-05-997)
8:50am Maximally non-matching covered graphs
- (965) Timothy B. Muller* and Kimberly Jordan Burch, Indiana University of Pennsylvania (1046-05-475)
9:15am Vector coloring.
- (966) Gerald S. Haynes, Central Michigan University (1046-05-84)
9:40am The relaxed coloring game on certain classes of
- (967) trees. Preliminary report.

Lynnette Snyder, Simpson College (1046-05-159)
10:05am A tree with maximum degree three and game

- (968) chromatic number four. Preliminary report.

Victor O. Larsen, Middlebury College (1046-05-155)
10:30am Multilevel and multidimensional Hadamard

- (969) matrices.

Matthew Crawford*, Caitlin Greeley, Bryce Lee, Franklin W. Olin College of Engineering, Mathav Kishore Murugan, Indian Institute of Technology Kharagpur, and Sarah Spence Adams, Franklin W. Olin College of Engineering (1046-05-859)

AMS-MAA-MER Special Session on Mathematics and Education Reform, III

```
8:00 ам - 10:50 ам
```

Organizers: William H. Barker, Bowdoin College William G. McCallum, University of Arizona
Bonnie S. Saunders, University of Illinois at Chicago
8:00am Math as exploration. Preliminary report.

- (970) Scott Crass, CSU, Long Beach (1046-97-876)

8:30am Geometry is natural. Preliminary report.

- (971) David W. Henderson, Cornell University (1046-51-963)
9:00am Discrete, combinatorial, and computational
- (972) geometry for undergraduates.

Joseph Malkevitch, York College (CUNY) (1046-97-848)
9:30am a course in axiomatic geometry.

- (973) Gerard A. Venema, Calvin College, MAA (1046-97-1598)
10:00am Teaching the Erlanger Program.
(974) Roger Howe*, Yale University, and William Barker, Bowdoin College (1046-51-1534)
10:30am Panel on teaching undergraduate geometry:
- (975) Choices in philosophy, content, and pedagogy. William Barker, Bowdoin College (1046-97-1874)

AMS-MAA Special Session on History of Mathematics, I

8:00 Aм - 10:55 ам
Organizers: Joseph W. Dauben, Lehman College

Karen H. Parshall, University of Virginia
Patti Hunter, Westmont College
Deborah Kent, Hillsdale College
8:00am Mathematics in medieval India: The Bijagaṇita of

- (976) Jñānarāja.

Toke Lindegaard Knudsen, SUNY Oneonta (1046-01-739)
8:30am Trigonometry on the edge: Interpolation in ancient

- (977) and medieval astronomy.

Glen R. Van Brummelen, Quest University (1046-01-299)
9:00am A medieval Muslim mathematician looks at Indian

- (978) arithmetic: Al-Biruni's treatise on Sanskrit rules of proportion.
Kim Plofker, Union College (1046-01-690)
9:30am The early years of Gresham College, London.
- (979) Robin Wilson, The Open University, UK
(1046-01-609)
10:00am Leibniz and the two problems of Méré.
- (980) Maria Sol de Mora, University of the Basque Country UPV/EHU (1046-01-345)
10:30am The prehistory of the Cauchy-Riemann equations.
- (981) Preliminary report.

Craig Fraser, University of Toronto (1046-01-367)

AMS-MAA Special Session on The Scholarship of Teaching and Learning, II

8:00 ам - 10:50 ам
Organizers: Curtis D. Bennett, Loyola Marymount University
Jacqueline M. Dewar, Loyola
Marymount University
8:00am Teaching math majors how to teach
(982) Yvonne Lai*, University of Michigan, Ann Harbor, Hillel M. Raz and Marion Moore, University of California Davis (1046-97-1880)
8:30am Teacher-scholars: Research experiences for

- (983) pre-service and in-service secondary mathematics teachers. Preliminary report.
David Barker and Saad I. El-Zanati*, Illinois State University (1046-97-1553)
9:00am Teaching students to be life-long learners of
- (984) mathematics: Algebra I and Mathematics for Mathematics Education doctoral students. Daniel I. Chazan, University of Maryland, Center for Mathematics Education (1046-97-1249)
9:30AM Mathematics + SENCER = Student Learning.
(985) Mariah Birgen, Wartburg College (1046-97-938)

10:00am Teaching introductory statistics with community

- (986) based group projects and assessing with the SENCER-SALG.
Cindy C. Kaus, Metropolitan State University, Saint Paul, MN (1046-97-789)
10:30am Mathematical and statistical reasoning in (987) compelling contexts.

David L. Ferguson, Stony Brook University (1046-97-1431)

AMS Special Session on Representation Theory of Lie Algebras and Algebraic Groups, II

8:00 AM - 10:50 AM

Organizers: David G. Taylor, Roanoke College
Terrell L. Hodge, Western Michigan University

	Daniel K. Nakano, University of Georgia
$\begin{array}{r} 8: 00 \mathrm{AM} \\ (988) \end{array}$	Induced modules for Affine Kac-Moody algebras. Preliminary report. Vyacheslav Futorny* and Iryna Kashuba, University of Sao Paulo (1046-17-523)
$\begin{array}{r} \text { 8:30Ам } \\ (989) \end{array}$	Type Q Lie superalgebras and degenerate affine Sergeev algebras. David Hill*, University of California, Berkeley, Jon Kujawa, University of Oklahoma, and Josh Sussan, University of California, Berkeley (1046-20-92)
$\begin{array}{r} \text { 9:00Ам } \\ (990) \end{array}$	Representations of Lie superalgebras in prime characteristic. Lei Zhao* and Weiqiang Wang, University of Virginia (1046-17-798)
$\begin{array}{r} \text { 9:30Ам } \\ (991) \end{array}$	Motzkin algebras and sl(2). Georgia Benkart*, University of Wisconsin-Madison, and Tom Halverson, Macalester College (1046-05-820)
$\begin{array}{r} \text { 10:00ам } \\ (992) \end{array}$	Normality of enhanced nilpotent orbit closures. Preliminary report. Benjamin F. Jones, University of Georgia (1046-22-1233)
$\begin{array}{r} 10: 30 \mathrm{AM} \\ (993) \end{array}$	Cohomology and support varieties for Cartan Lie superalgebras. Irfan Bagci, The University of Georgia (1046-17-952)

AMS Special Session on Homotopy Theory and Higher Categories, I

8:00 AM - 10:50 ам
Organizers: Thomas M. Fiore, University of Chicago
Mark W. Johnson, Penn State Altoona
James M. Turner, Calvin College
W. Stephen Wilson, Johns Hopkins University
Donald Yau, Ohio State University at Newark
8:00am Stable splitting of generalized moment-angle
(994) complexes.
A. Bahri, Rider University, M. Bendersky*, Hunter College, F. Cohen, University of Rochester, and S. Gitler, Cinvestav (1046-55-655)
8:30am Connective K-theory of certain symmetric groups.
(995) Son P. Nguyen, Wayne State University (1046-55-158)
9:00am The $R O(G)$-graded Serre spectral sequence.
(996) William C. Kronholm, Swarthmore College (1046-55-563)
9:30am Some properties of the ν_{1}-periodic spectra
(997) associated to exceptional Lie groups.

Xiaoxue H. Li, Emory \& Henry College (1046-55-135)
10:00am New developments in the topology of representation
(998) spaces.

Daniel A. Ramras, Vanderbilt University (1046-55-807)
10:30am Differentials in homotopy fixed point spectral
(999)
sequences.
Michael A. Hill*, University of Virginia, Michael J. Hopkins, Harvard University, and Douglas C. Ravenel, University of Rochester (1046-55-1595)

AMS Special Session on Financial Mathematics, I
8:00 ам - 10:50 ам
Organizers: Erhan Bayraktar, University of
Tim Siu-Tang Leung, Johns Hopkins University
Birgit Rudloff, Princeton University
8:00am Portfolio choice under space-time monotone (1000) performance criteria.

Thaleia Zariphopoulou*, The University of Texas at Austin, and Marek Musiela, BNP Paribas, London (1046-35-2087)
9:00am Utility maximization under risk constraints.
(1001) Birgit Rudloff*, Princeton University, Joern Sass, RICAM, and Ralf Wunderlich, Zwickau University of Applied Sciences (1046-60-1743)
9:30am A note on the existence of the power investor's
(1002) optimizer.

Kasper Larsen, Carnegie Mellon University (1046-91-512)
10:00am Incorporating risk aversion and model uncertainty
(1003) into structural models of default.

Sebastian Jaimungal* and Georg Sigloch, University of Toronto (1046-60-1210)
10:30am Discussion

AMS Special Session on Dynamical Systems and Differential Equations: Theory and Applications, I

```
8:00 AM - 10:50 AM
```

Organizers: Annalisa Crannell, Franklin \& Marshall College
Suzanne Sindi, Brown University
8:00am Quasicontinuous functions in dynamical systems.
(1004) Annalisa Crannell, Franklin \& Marshall College (1046-37-116)
8:30am Some results in metric trees.
(1005) Asuman G. Aksoy, Claremont McKenna College (1046-47-37)
9:00am Global stability with Dulac functions.

- (1006) Marc Chamberland, Grinnell College (1046-34-713)
9:30AM On the dynamics and control of drinking: The role
(1007) of control theory in combating relapse and other factors.
Carlos Castillo-Chavez*, Arizona State University,
Eunok Jung and Sunmi Lee, Konkuk University (1046-92-1934)
10:00am Solution sets for differential equations.
(1008) Jerrold Bebernes, University of Colorado-Boulder (1046-35-872)
10:30am Periodic difference equations with Allee effects:
- (1009) Applications to economics and biology. Preliminary report.
Saber N. Elaydi, Trinity University (1046-39-1 864)

AMS Special Session on Harmonic Analysis, II

8:00 Aм - 10:50 Ам

Organizers: Paul A. Hagelstein, Baylor University Alexander M. Stokolos, DePaul University
8:00Am Almost everywhere convergence of a case of
(1010) weighted averages. Preliminary report. Anna K. Savvopoulou* and Karin Reinhold, SUNY Albany (1046-37-526)

$\begin{aligned} & \text { 8:30Ам } \\ & (1011) \end{aligned}$	The regularity problem for the Lame system of elastostatics on curvilinear polygons in two dimensions. Preliminary report. Katharine Ott*, University of Kentucky, Irinia Mitrea, University of Virginia, and Warwick Tucker, University of Bergen (1046-35-773)
$\begin{array}{r} 9: 00 \mathrm{Am} \\ -\quad(1012) \end{array}$	Geometric configurations in Euclidean space and restriction theory. Alex losevich, University of Missouri (1046-42-2096)
$\begin{aligned} & \text { 9:30Ам } \\ & (1013) \end{aligned}$	Maximal multipliers in L^{p}. Ciprian Demeter, Indiana University, Bloomington (1046-42-1290)
$\begin{array}{r} \text { 10:00ам } \\ (1014) \end{array}$	Critical integrability exponent associated to multivariate polynomials. Tristan Collins and Malabika Pramanik*, University of British Columbia, Vancouver (1046-42-1120)
$\begin{array}{r} \text { 10:30ам } \\ (1015) \end{array}$	Sharp weighted bounds for fractional operators. Kabe Moen, University of Kansas, Lawrence, Kansas, Carlos Pérez, University of Seville, Spain, and Rodolfo H. Torres*, University of Kansas, Lawrence (1046-42-934)

AMS Special Session on Automorphic and Modular Forms in Number Theory, III

```
8:00 ам - 10:50 ам
```

Organizers: Ken Ono, University of Wisconsin-Madison
Amanda Folsom, University of Wisconsin-Madison
Sharon A. Garthwaite, Bucknell University
8:00am Discussion
8:30am Holomorphic parts of weak harmonic Maass forms (1016) and Eichler cohomology.

Pavel Guerzhoy, University of Hawaii at Manoa (1046-11-1175)
9:00am Traces of Hecke operators in level 1 and Gaussian
(1017) hypergeometric functions.

Jenny G. Fuselier, United States Military Academy (1046-11-878)
9:30am Non-harmonic weak Maass forms and arithmetic
(1018) geometry. Preliminary report.

Riad Masri* and Amanda Folsom, University of Wisconsin-Madison (1046-11-804)
10:00am A p-adic supercongruence conjecture of Van
(1019) Hamme.

Eric Mortenson, Pennsylvania State University (1046-11-2030)
10:30am The second moment of quadratic twists of a (1020) modular L-function.

Matthew P. Young*, Texas A\&M University, and K. Soundararajan, Stanford University (1046-11-781)

AMS Special Session on Computational Algebra and Convexity, I

8:00 AM - 10:50 Aм

Organizers: Dan Bates, Colorado State University Tsung-Lin Lee, Michigan State University
Sonja Petrovic, University of Illinois at Chicago
Zach Teitler, Texas A\&M University

8:00am How to draw tropical planes.
(1021) Sven Hermann, TU Darmstadt, Anders Jensen, U

Göttingen, Michael Joswig, TU Darmstadt, and Bernd Sturmfels*, UC Berkeley (1046-05-394)
8:30Am Tropical implicitization and mixed fiber polytopes.
(1022) Bernd Sturmfels, University of California, Berkeley, and Josephine $\mathbf{Y u}^{*}$, Massachusetts Institute of Technology (1046-13-1502)
9:00am A tropical approach to rational curves on general
(1023) hypersurfaces in \mathbb{P}^{3}.

Tristram C. Bogart, Queen's University (1046-14-1410)
9:30Am Experimentation at the frontier of reality in

- (1024) Schubert calculus. Preliminary report.

Frank Sottile, Texas A\&M University (1046-14-578)
10:00AM Geometrical aspects of control points for toric
(1025) patches. Preliminary report.

Luis D. Garcia-Puente*, Sam Houston State University, and Frank Sottile, Texas A\&M University (1046-14-332)
10:30am Asymptotic regularity: Are we almost at infinity
(1026) yet? Preliminary report.

David Eisenbud*, University of California, Berkeley, and Bernd Ulrich, Purdue University (1046-14-524)

AMS Session on Numerical Analysis, I

8:00 ам - 10:55 ам

8:00am Constraint preconditioning for nonsymmetric
(1027) indefinite linear systems. Liying Sun, Guangdong Education Institute (1046-65-32)
8:15AM A numerical method for fast integration.

- (1028) Preliminary report. Natasha A. Cayco Gajic*, Caltech, Nathan Kallus, UC Berkeley, and Jessica L. Stigile, Washington University (1046-65-57)
8:30am Numerical solutions of boundary inverse problems
(1029) for the Laplace equation. Weifu Fang, Wright State University, and Suxing Zeng*, West Virginia University (1046-65-132)
8:45Am Application of splitting techniques in numerical
(1030) models for a hydrostatic atmosphere.

Andrei Bourchtein* and Ludmila Bourchtein, Pelotas State University (1046-65-189)
9:00Am Adaptive quad-tree surface representation for 3-D

- (1031) vortex rings motion and collision.

Leon Kaganovskiy*, New College of Florida, Robert Krasny, University of Michigan, and Feng Hualong, Huaihai Institute of Technology, Lianyungang, China (1046-65-73)
9:15am Break
9:30am Optimal kernel via an estimate to the eigenvalues
(1032) of kernel matrices.

Guohui Song, Syracuse University (1046-65-896)
9:45am A system of bilinear immersed finite elements.
(1033) Xiaoming He*, Tao Lin, Virginia Tech, and Yanping Lin, University of Alberta (1046-65-795)
10:00am GMRES algorithm in the meshless generalized
(1034) finite difference method for human carotid atherosclerotic plaque progression simulation. Preliminary report.
Peng Ni*, Homer Walker, Worcester Polytechnic Institute, Chun Yang, Beijing Normal University, and Dalin Tang, Worcester Polytechnic Institute (1046-65-352)

$\begin{array}{r} 10: 15 \mathrm{Am} \\ (1035) \end{array}$	Convergence analysis of mixed LDG methods applied to 2-D singularly perturbed problems. Zhimin Zhang and Huiqing Zhu*, Wayne State University (1046-65-353)
$\begin{array}{r} 10: 30 \mathrm{AM} \\ (1036) \end{array}$	Spline wavelets, finite element wavelets, and wavelets with composite dilation. Preliminary report. Tian-Xiao He, Illinois Wesleyan University (1046-65-1000)
$\begin{array}{r} 10: 45 \mathrm{Am} \\ (1037) \end{array}$	Mathematical modeling and numerical simulations of cell signaling pathways. Xinfeng Liu*, Nie Qing, University of California at Irvine, and Lee Bardwell, UC Irvine (1046-65-1320)

AMS Session on Commutative Rings and Algebras

```
8:00 Aм - 10:55 ам
```

 8:00am The core of points and the Cayley-Bacharach
 (1038) Property.
 Louiza Fouli*, University of Texas, Austin, Claudia
 Polini, Univeristy of Notre Dame, and Bernd Ulrich,
 Purdue University (1046-13-271)
 8:15am The local case sub-algorithm for Suslin's stability
 (1039) theorem. Preliminary report.
 Cynthia J. Woodburn, Pittsburg State University
 (1046-13-1075)
 8:30am The Gorenstein property for coherent rings.
 (1040) Livia Hummel*, University of Indianapolis, and
 Thomas Marley, University of Nebraska-Lincoln
 (1046-13-1197)
 8:45am Uniqueness of minimal acyclic complexes.
 (1041) Preliminary report.
 Meri T. Florence, TX (1046-13-1319)
 9:00am Negligibility of automorphisms of polynomial rings
 (1042) and other mathematical structures. Preliminary
 report.
 Mowaffaq Hajja, Yarmouk University
 (1046-13-1327)
 9:15am The core of monomial ideals in \(K[x, y]\).
 - (1043) Bonnie B. Smith, University of Notre Dame
(1046-13-297)
9:30am Zero-sum sequence designs. Preliminary report.
(1044) Michael A. Freeze, University of North Carolina
Wilmington (1046-13-1914)
9:45am Generalized Grob̈ner basis method for computing
(1045) multivariate Hilbert polynomials.
Alexander B. Levin, The Catholic University of
America (1046-13-787)
10:00am Square-free monomial ideals associated to Ferrers
(1046) graphs.
Rachelle Renee Bouchat, Slippery Rock University
(1046-13-1493)
10:15am Goto numbers in a numerical semigroup ring.
(1047) Lance Bryant, Purdue University (1046-13-1557)
10:30am Initial algebra of multiplicative invariants.
(1048) Mohammed S. Tesemma, Spelman College
(1046-13-1810)
10:45am Existence of totally reflexive modules. Preliminary
(1049) report.
Kristen A. Beck, The University of Texas at
Arlington (1046-13-1829)
AMS Session on Linear Algebra and Matrix Theory
8:00 Aм - 10:55 Aм
8:00am Chordal supergraphs and minimum semidefinite
(1050) rank.
Lon H. Mitchell, Virginia Commonwealth University
(1046-15-85)

8:15am

- (1051)

8:30am

- (1052)

8:45am
(1053)

Rana Mikkelson, Iowa State University
$(1046-15-1403)$
9:00am Traces of matrix products. Preliminary report.

- (1054) John R. Greene, University of Minnesota Duluth (1046-15-1404)
9:15Am An associative multiplication for multidimensional
- (1055) matrices. Preliminary report.

Paul A. Sundheim, University of Wisconsin (1046-15-141)
9:30AM A higher-order generalization of the matrix SVD as

- (1056) a product of higher-order tensors. Preliminary report.
Carla D. Martin*, James Madison University, Misha
E. Kilmer, Tufts University, and Lisa Perrone, Hawaii Pacific University (1046-15-1520)
9:45am Complex spectrally arbitrary zero-nonzero patterns
(1057) whose Jacobian is zero at every nilpotent realization.
Amy Ann Yielding* and Judith J. McDonald, Washington State University (1046-15-1409)
10:00am Diagonal and D convergence of matrices.
(1058) Olga Pryporova, Iowa State University (1046-15-1455)
10:15am Roots of polynomials and linear programming.
(1059) Preliminary report.

Carla Fidalgo*, Coimbra Institute of Engineering, Portugal, and Alexander Kovacec, University of Coimbra (1046-15-1746)
10:30am Linear maps preserving diagonalizability on the
(1060) space of upper triangular matrices. Preliminary report.
A. A. Jafarian, University of New Haven (1046-15-1831)
10:45Am On the structure of some classes of invariant
(1061) kernels. Preliminary report.

Troy Banks, Salisbury University (1046-15-1998)

AMS Session on Partial Differential Equations, III

8:00 AM - 10:55 AM

8:00am Local fields in nonlinear power law materials.
(1062) Silvia Jimenez* and Robert Lipton, Louisiana State University (1046-35-203)
8:15Am Differential forms with mixed boundary conditions.
(1063) Tunde Jakab*, Irina Mitrea, University of Virginia, and Marius Mitrea, University of Missouri-Columbia (1046-35-209)
8:30am Modeling and computation of buoyant flow during
(1064) alloy solidification. Preliminary report.

Dambaru Bhatta*, The University of Texas-Pan
American, M. Mallikarjunaiah and Daniel
Riahi, The University of Texas-Pan American (1046-35-581)
8:45am On the uniqueness of invariant measures for the
(1065) stochastic infinite Darcy-Prandtl number model. Rana Durga Parshad* and Xiaoming Wang, Florida State University (1046-35-693)
$\left.\begin{array}{rl}\text { 9:00am } \\ \text { (1066) } & \begin{array}{l}\text { A global existence theorem for the Navier-Stokes } \\ \text { equations. } \\ \text { Guy Bernard, Midwestern State University }\end{array} \\ & \text { (1046-35-729) }\end{array}\right\}$

AMS Session on Dynamical Systems and Ergodic Theory, II

```
8:00 Am - 10:55 ам
```

 8:00am Symbolic dynamics for topological hyperbolic maps.
 (1073) David Richeson, Dickinson College, and Jim
 Wiseman*, Agnes Scott College (1046-37-1361)
 8:15AM Long time error estimate using contraction
 (1074) properties of the Huxley's equation.
 Champike Attanayake, Miami University
 (1046-37-1594)
 8:30am Centralizers in the interval exchange group.
 (1075) Christopher F. Novak, University of
 Michigan-Dearborn (1046-37-1665)
 8:45am A chaotic day at the beach. Preliminary report.
 - (1076) L. Loizou*, M. Dankwa, J. Herburt-Hewell, and J.
C. Ortega, James Madison (1046-37-1821)
9:00am The generalized Gauss transformation.
(1077) Santanu Chakraborty, University of Texas - Pan
American (1046-37-1886)
9:15Am Fixed point shifts of inert involutions.
(1078) Nicholas E. Long, Stephen F. Austin State
University (1046-37-1664)
9:30am Imaginary circle inversions and Sierpinski carpets.
- (1079) Preliminary report.
Daniel M. Look, Williams College (1046-37-1389)
9:45am Configuration spaces in phyllotaxis. Preliminary
- (1080) report.
Cordelia McGehee*, Christophe Golé, Gillian
Riggs, Smith College, and Samantha Oestreicher,
University of Minnesota (1046-37-1937)
10:00am Pointwise convergence of ergodic averages in Orlicz
(1081) spaces.
Andrew J. N. Parrish, University of Memphis
(1046-37-1983)

10:15am On the dynamics of non-linear tent-maps. - (1082) Preliminary report.

Zachary Flores* and Oumarou Njoya, Michigan State University (1046-37-1992)
10:30Am Scaling law for a global bifurcation.
(1083) Cecilia I. Gonzalez Tokman* and Brian R. Hunt, University of Maryland (1046-37-2029)
10:45am Nonsmoothable locally indicable group actions on
(1084) the interval.

Danny Calegari, California Institute of Technology (1046-37-2080)

MAA Session on Mathematics Experiences in Business, Industry, and Government

8:00 ам - 10:55 ам

Organizers: Philip Gustafson, Mesa State College Michael Monticino, University of North Texas
8:00am The Doppler Effect in radar as a source of
(1085) mathematics.

John E. Gray, U. S. Navy (1046-M1-1671)
8:15am Mathematical surface modeling problems in

- (1086) industry.

Edmond Nadler, Eastern Michigan University (1046-M1-1556)
8:30am Dynamical systems modeling for Iraq. Preliminary

- (1087) report.

William P. Fox, Naval Postgraduate School (1046-M1-1230)
8:45AM Automated torpedo classification and alerting using

- (1088) Bayesian methods.

Joni E. Baker*, C. Allen Butler, W. Reynolds
Monach, and Thomas R. McSherry, Daniel H. Wagner Associates (1046-M1-1805)
9:00am Least cost check routing. Preliminary report.

- (1089) Michael G. Monticino, University of North Texas (1046-M1-559)
9:15am Using mathematics in industry.
- (1090) James P. Ochoa, Metron, Inc. (1046-M1-1487)

9:30am A short B.I.G. introduction to Sage.
(1091) David Joyner, U.S. Naval Academy (1046-M1-757)

9:45am A mathematical consideration of the rule of three.

- (1092) Preliminary report.

Paul H. Schuette, FDA (1046-M1-973)
10:00am Reliability as a field in aerospace: A NASA

- (1093) application.

Richard D. Jarvinen, Winona State University (1046-M1-667)
10:15AM A measure of inter-rater reliability when one rater

- (1094) is rating on a continuous scale.

James H. Fife, Educational Testing Service (1046-M1-1682)
10:30am Effective use of controls in the clinical laboratory:
(1095) Analysis of traditional and new algorithms.

George V. Woodrow III, River Vale, New Jersey (1046-M1-443)
10:45am Determining an optimal search area for a serial

- (1096) criminal.

Mike P. O'Leary, Towson University
(1046-M1-1312)

MAA Session on Mathlets for Teaching and Learning Mathematics

8:00 AM - 10:55 Aм
Organizers: Thomas E. Leathrum, Jacksonville State University

David M. Strong, Pepperdine

 UniversityJoe Yanik, Emporia University
8:00am How fit is your model? Interactive data fitting in

- (1097) Excel. Preliminary report.

Eugene Belogay, Wilkes Honors College, Florida Atlantic University (1046-O1-1876)
8:20am Statlets: Statistics applets and activities.

- (1098) Kady Schneiter, Utah State University (1046-O1-1819)
8:40am Mathlets for continuous and discrete dynamical
- (1099) sSystems. Preliminary report.

Robert J. Decker, University of Hartford (1046-O1-1153)
9:00am Making calculus come alive with dynamic

- (1100) visualization tools. Preliminary report.

Paul Seeburger, Monroe Community College (1046-O1-913)
9:20am Java mathlets with Blaise. Preliminary report.

- (1101) Elisha Peterson, United States Military Academy (1046-01-1377)
9:40am Fractal applets in Flash.
- (1102) Daniel Gries, Hamilton College (1046-01-487)

10:00am Toy proofs. Preliminary report.

- (1103) Kenneth G. Monks*, University of Scranton, and

Nathan C. Carter, Bentley College (1046-01-1261)
10:20am A Flash application illustrating Napier's bones.

- (1104) Michael J. Caulfield, Gannon University (1046-01-346)
10:40am a maplet for encoding, decoding, and correcting
- (1105) errors in Golay codes. Preliminary report.

Rick Klima, Appalachian State University (1046-O1-392)

MAA Session on Productive Roles for Math Faculty in the Professional Development of K-12 Teachers, II

8:00 AM - 10:55 am
Organizers: Dale R. Oliver, Humboldt State University
Elizabeth Burroughs, Montana State University
8:00am Japanese lesson study: A process to build and foster

- (1106) communities of practice dedicated to the professional development of mathematics teachers. Connie H. Yarema* and CheryI D. Schwiethale, Abilene Christian University (1046-R1-44)
8:20am A lesson study approach to developing productive
(1107) dialogue between university mathematics faculty and high school teachers. Preliminary report.
Randall E. Groth* and Jennifer A. Bergner, Salisbury University (1046-R1-1984)
8:40am Using lesson study to enhance content knowledge
- (1108) and use of inquiry in middle school classrooms. Elizabeth A. Burroughs, Montana State University (1046-R1-456)
9:00AM The role of mathematics faculty in supporting
(1109) teachers to increase retention: A constructivist model.
Terran D. Felter*, California State University, Bakersfield, and Axelle P. Faughn, Western Carolina University (1046-R1-1730)
9:20Am Middle school teachers connecting content and
(1110) student thinking.

Brian J. Lindaman*, University of Minnesota, and Terry Wyberg, University of Minnesota d Instruction (1046-R1-2064)

9:40am Mathematical inquiry in the elementary classroom

- (1111) after teacher participation in professional development.
Heather R. Mathison, Montana State University (1046-R1-1003)
10:00am Sustained professional development in urban and
- (1112) suburban middle schools: Is it effective?

Cathy S. Liebars, The College of New Jersey (1046-R1-869)
10:20am A program of courses to prepare highly qualified

- (1113) teachers of middle school mathematics. Marie P. Sheckels* and Debra Hydorn, University of Mary Washington (1046-R1-1798)
10:40am Connecting higher education mathematics faculty
(1114) to K-12 Mathematics Teachers.

Kathryn Ernie*, University of Wisconsin-River Falls, and Erick B. Hofacker, University of Wisconsin River Falls (1046 -R1-1476)

MAA Session on Quantitative Literacy Across the Curriculum

8:00 AM - 10:35 AM
Organizers: Kimberly M. Vincent, Washington State University Cinnamon Hillyard, University of Washington
8:00am Making quantitative reasoning central to a

- (1115) precalculus course.

Cinnamon Hillyard* and Nicole Hoover, University of Washington Bothell (1046-T1-1599)
8:20Am QL from a service division perspective.

- (1116) Gary T. Franchy, Davenport University (1046-T1-2057)
8:40am Mathematics and democracy.
(1117) Kira Hamman, Pennsylvania State University, Mont Alto (1046-T1-1744)
9:00am Using media article to drive a QL course.
- (1118) Preliminary report.

Stuart Boersma*, Central Washington University,
Caren L Diefenderfer, Hollins University, and
Bernard L Madison, University of Arkansas (1046-T1-1299)
9:20am Medical accuracy: Content for a quantitative

- (1119) literacy course.

Stuart Boersma* and Teri Willard, Central Washington University (1046-T1-570)
9:40am Building the mathematical and computational skills
(1120) of science students: What we are doing, what students think, and how it is working.
Kelly E. Matthews*, Merrilyn Goos and Peter Adams, University of Queensland (1046-T1-1565)
10:00Am Toward a numerate culture: A quantitative literacy

- (1121) project. Preliminary report.
D. Scott Dillery, Lindsey Wilson College (1046-T1-1464)
10:20am Incorporating quantitative literacy into the
- (1122) research writing classroom. Preliminary report.

Kimberly M. Vincent, Washington State University
(1046-T1-2069)
MAA General Contributed Paper Session, VI
8:00 AM - 10:55 Am
Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: Katrina Palmer, Appalachian State University

Joyati Debnath, Winona State

 UniversityHurlee Gonchigdanzan, University of Wisconsin Stevens Point
Jason Molitierno, Sacred Heart University
8:00am Facing up to the realities of quantitative illiteracy:
(1123) Do you know what your students Do NOT Know about "Basic" mathematics?
Betsy Darken, University of Tennessee at Chattanooga (1046-Z1-817)
8:15am Limit theorems for the product of partial sums.
(1124) Preliminary report.

Hurlee Gonchigdanzan, University of Wisconsin Stevens Point (1046-Z1-168)
8:30am Zero product sequences in commutative rings.
(1125) Preliminary report.

Shane P. Redmond, Eastern Kentucky University (1046-Z1-1843)
8:45Am What is a mathematical theory?

- (1126) James R. Henderson, University of

Pittsburgh-Titusville (1046-Z1-46)
9:00am Exploring Goldbach's Conjecture via CAS (computer

- (1127) algebra system) technology. Preliminary report.

Jay L. Schiffman, Rowan University (1046-Z1-248)
9:15am Enumerating graphs to conveniently produce

- (1128) adjacency matrices using Maple or Mathematica.

Jason J. Molitierno, Sacred Heart University (1046-Z1-784)
9:30am Teaching differential equations on-line: The

- (1129) challenges and changes.

Katrina Palmer, NC (1046-Z1-444)
9:45Am Teaching introductory differential equations

- (1130) courses through real-life case studies.

Anand L. Pardhanani, Earlham College
(1046-Z1-1119)
10:00am The positive influence generation (our college

- (1131) students). Preliminary report.

John F. Loase, Concordia College (1046-Z1-19)
10:15am Math in your dorm room - from calculus to number

- (1132) theory - with Sage. Preliminary report.

Karl-Dieter Crisman, Gordon College
(1046-Z1-1604)
10:30am Characterization of compactness in classical

- (1133) Banach Spaces.

Julius N. Esunge, Louisiana State University, Baton Rouge, LA (1046-Z1-1725)
10:45am Lessons learned from a calculus redesign project.
(1134) Jennifer C. McLoud-Mann, University of Texas at Tyler (1046-Z1-2104)

SIAM Minisymposium on Graph Theory, II

8:00 ам - 10:55 ам
Organizer: Stephen G. Hartke, University of Nebraska-Lincoln
8:00am Some results on graph linkage. Preliminary report.

- (1135) Mark Ellingham, Michael Plummer, Vanderbilt University, and Gexin Yu*, College of William and Mary (1046-05-1376)
8:30am The number of cliques in graphs of given order and
- (1136) size.

Vladimir Nikiforov, University of Memphis, TN (1046-05-1889)
9:00Am On A_{4}-balanced graphs.

- (1137) Michael D. Barrus* and Douglas B. West, University of Illinois (1046-05-880)

9:30am Structure of bipartite probe interval graphs.
(1138) David E. Brown, Utah State University, Arthur H. Busch, University of Dayton, and Garth Isaak*, Lehigh University (1046-05-1543)
10:00am Reconstructing a graph from its vertex-edge

- (1139) incidence graph.

Stephen Hartke, University of Nebraska - Lincoln, and Geir Helleloid*, University of Texas at Austin (1046-05-874)
10:30am Entropy inequalities.
(1140) Jonathan Cutler*, Montclair State University, and A. J. Radcliffe, University of Nebraska-Lincoln (1046-05-1294)

PME Council

8:00 AM - 11:00 AM

Employment Center

8:00 Ам - 7:00 Рм

AMS Special Session on Discrete Dynamical Systems in Periodic Environments, I

```
8:30 AM - 10:50 AM
```

Organizers: M. R. S. Kulenović, University of Rhode Island
Orlando Merino, University of Rhode Island
Abdul-Aziz Yakubu, Howard University

8:30am
(1141)

Population models with asymptotically constant or periodic solutions. Preliminary report.
Youssef Naim Raffoul, University of Dayton (1046-39-212)
9:00AM
(1142) On the dynamics of $x_{n+1}=p_{n}+\frac{x_{n-1}}{x_{n-2}}, \quad n=0,1, \ldots$
(1142)
with a period-2 and period-3 coefficient.
Senada Kalabusic*, University of Sarajevo, Bosnia and Herzegovina, and Nurkanovic Mehmed, University of Tuzla, Bosnia and Herzegovina (1046-39-1601)
9:30am Dynamics of the Leslie-Gower model with periodic
(1143) coefficients.

Orlando Merino* and Sukanya Basu, University of Rhode Island (1046-39-928)
10:00am The effect of periodization of parameters in some

- (1144) monotone difference equations. Preliminary report.

Ann Brett, University of Rhode Island
(1046-39-1579)
10:30am Stability of the Gumowski-Mira equation with - (1145) period-two coefficient.
M. R. S. Kulenovic, University of Rhode Island (1046-39-1576)

AMS Special Session on Algebraic Cryptography and Generic Complexity, I

8:30 Aм - 10:45 ам

Organizers: Vladimir Shpilrain, The City College of New York
Yesem Kurt, Randolph College
8:30Ам Thompson's group F has no generic subgroups.
(1146) Sean Cleary*, The City College of New York and the CUNY Graduate Center, Murray Elder, University of Queensland, Brisbane, Australia, Andrew
Rechnitzer, University of British Columbia, and
Jennifer Taback, Bowdoin College (1046-20-129)

9:00am Average-case vs. generic-case complexity of lattice (1147) problems. Preliminary report.

Antonio R. Nicolosi, Stevens Institute of Technology (1046-68-1973)
9:30am A gateway to group based cryptography.
(1148) Preliminary report.

Delaram Kahrobaei*, CUNY Graduate Center and
City Tech, and Michael Anshel, CUNY Graduate
Center and City College of New York (1046-68-735)
10:00am Mathematics of Commutator Key Exchange.

- (1149) Preliminary report.

Alexei Miasnikov, McGill University (1046-20-1948)

AMS-MAA Grad School Fair

8:30 ам - 10:30 ам
Undergrads! Take this opportunity to meet representatives from mathematical sciences graduate programs.

MAA Invited Address

9:00 ам - 9:50 ам
(1150) Making math out of style.

Daniel N. Rockmore, Dartmouth College (1046-A0-13)

ASL Invited Address

9:00 ам - 9:50 ам

- (1151) Descriptive set theory and the classification of separable Banach spaces.
Christian Rosendal, University of Illinois at Chicago (1046-03-108)

MAA Minicourse \#11: Part B
9:00 ам - 11:00 ам
Planning and teaching mathematics capstone courses for preservice secondary school teachers.
Organizers: Edward F. Aboufadel, Grand Valley State University Richard Hill, Michigan State University Bruce E. Sagan, Michigan State University
Sharon Senk, Michigan State University
Natasha M. Speer, Michigan State University
Rebecca Walker, Grand Valley State University

MAA Minicourse \#1: Part B
9:00 ам - 11:00 ам
Discrete models in biology and simulations.
Organizers: Saber N. Elaydi, Trinity University Huseyin Kocak, University of Miami David Ribble, Trinity University

MAA Minicourse \#6: Part B
9:00 ам - 11:00 ам
Teaching with clickers and classroom voting.
Organizers: Derek Bruff, Vanderbilt University
Kelly Cline, Carroll College

Mark Parker, Carroll College
Holly Zullo, Carroll College
MAA Session on Statistics in K-1 2 Education: How Will It Affect Statistics at the College Level?

```
9:00 Am - 10:35 Am
```

Organizers: Patricia B. Humphrey, Georgia
Southern University
Robin H. Lock, St. Lawrence University
9:00am They took AP, but didn't pass. Now what?

- (1152) Preliminary report.

Patricia Humphrey, Georgia Southern University (1046-V1-1649)
9:20am Preparing pre-service secondary math teachers to

- (1153) teach statistics.

Kady Schneiter* and Brynja Kohler, Utah State University (1046-V1-1830)
9:40Am Wikis, forums, and group assignments: Building a

- (1154) learning community over the Internet. Preliminary report.
Lothar A. Dohse, UNC - Asheville (1046-V1-1854)
10:00am Achieving statistical literacy in elementary school
- (1155) using current popular curricula.

Anna E. Bargagliotti, University of Memphis (1046-V1-195)
10:20am The American Statistical Association's Meeting

- (1156) Within a Meeting (MWM) Workshop and follow-up activities for $K-12$ mathematics and science teachers: An example K-12 statistics education outreach program
Rebecca A. Nichols, Martha B. Aliaga, American Statistical Association, and Katherine T. Halvorsen*, Smith College (1046-V1-1792)

SIGMAA on Environmental Mathematics Panel Discussion

9:00 Aм - 10:20 ам

Environmental mathematics: Getting it in the curriculum.
Organizers: Karen D. Bolinger, Clarion State University
Ben A. Fusaro, Florida State University
Moderator: Lee Seitelman, United Technologies
Panelists: Charles R. Hadlock, Bentley College
Martin E. Walter, University of Colorado at Boulder
Ben A. Fusaro
MAA-NCTM Committee on Mutual Concerns-MAA Committee on Articulation and Placement Panel Discussion

9:00 AM - 10:20 Aм
Placement testing: Is it working?
Organizers: Jerry F. Dwyer, Texas Tech University
Susan L. Forman, Bronx Community College, CUNY
Panelists: Bernard L. Madison, University of Arkansas
Dan Miller, Millikin University
Kent Pearce, Millikin University
Judy E. Ackerman, Montgomery
College

Student Hospitality Center

9:00 AM - 5:00 Рм
AMS Special Session on Asymptotic Geometric Analysis, I

9:30 Ам - 10:50 Ам

Organizers: | | Alexander E. Litvak, University of |
| ---: | :--- |
| | Alberta |
| | Dmitry Ryabogin, Kent State |
| | University |
| | Artem Zvavitch, Kent State University |

9:30am Projecting l_{∞} onto classical spaces.
(1157) Hermann Koenig, University of Kiel, Germany, and Nicole Tomczak-Jaegermann*, University of Alberta (1046-46-1491)
10:00am Auerbach bases and minimal-volume sufficient
(1158) enlargements for normed spaces. Preliminary report.
Mikhail I. Ostrovskii, St. John's University (1046-46-492)
10:30am Convex geometry, Sobolev inequalities, and
(1159) information theory. Preliminary report. Erwin Lutwak, Deane Yang* and Gaoyong Zhang, Polytechnic Institute of NYU (1046-52-2008)

Exhibits and Book Sales
9:30 Ам - 5:30 Рм

ASL Invited Address

```
10:00 ам - 10:50 ам
```

- (1160) Orbit equivalence and ergodic actions of countable groups.
Inessa Epstein, California Institute of Technology (1046-03-661)

AMS Special Presentation

10:00 Aм - 11:00 am

Who Wants To Be a Mathematician.
Organizers: Michael A. Breen, AMS
William T. Butterworth, DePaul
University

AMS Invited Address

10:05 ам - 10:55 ам

- (1161) Nonlinear problems involving integral diffusions. Luis A. Caffarelli, University of Texas at Austin (1046-35-06)

AMS-MAA Invited Address

11:10 Am - NOON

(1162) Geometry of surfaces, laminations, and dynamics over the moduli space of Riemann surfaces. Maryam Mirzakhani, Princeton University (1046-51-34)

AMS Colloquium Lectures: Lecture III
1:00 PM - 2:00 PM
(1163) Homogeneous dynamics and number theory III. Gregory Margulis, Yale University (1046-37-04)

MAA Lecture for Students

1:00 PM - 1:50 PM

- (1164) Some elementary problems that remain unsolved. Nathaniel Dean, Texas State University-San Marcos

AMS Current Events Bulletin

```
1:00 PM - 4:45 PM
            Organizer: David Eisenbud, University of
            California Berkeley
    1:00PM Topology, representation theory, and arithmetic:
    (1165) Three-manifolds and the Langlands program.
        Matthew James Emerton, Northwestern University
        (1046-11-1560)
    2:00pm Compressive sensing: A paradigm shift in signal
- (1166) processing.
        Olga V. Holtz, University of California-Berkeley and
        Technische Universitaet Berlin (1046-94-2067)
    3:00pm From Seiberg-Witten theory to closed orbits of
    (1167) vector fields:Taubes's proof of the Weinstein
        conjecture.
        Michael Hutchings, UC Berkeley (1046-53-1445)
    4:00Pm Frontiers of reality in Schubert calculus.
    (1168) Frank Sottile, Texas A&M University (1046-14-679)
```


AMS-MAA Special Session on History of Mathematics,

 II1:00 PM - 5:55 PM
Organizers: Joseph W. Dauben, Lehman College
Karen H. Parshall, University of Virginia
Patti Hunter, Westmont College
Deborah Kent, Hillsdale College
1:00pm The mathematics in Newton's Principia
(1169) Mathematica.

George E. Smith, Tufts University; Stanford University (Spring '09) (1046-01-1437)
2:00pm Mrs. Bean's Young Ladies: Mathematics education

- (1170) in early modern england. Kathryn James, Beinecke Library, Yale University (1046-01-356)
2:30pm Insights into Cayley's work on the quintic.
- (1171) Steven H. Weintraub, Lehigh University (1046-01-33)
3:00pm What is at stake in Weierstrass' criticism of
- (1172) Riemann's function theory?

Renaud G. Chorlay, Universite Denis Diderot (Paris 7) (1046-01-525)

3:30pm Computing devices, mathematics education and

- (1173) mathematics - Sexton's Omnimetre in its time. Peggy Aldrich Kidwell, National Museum of American History, Smithsonian Institution (1046-01-287)
4:00pm Did geometry need saving from Bourbaki?
- (1174) Preliminary report.

Thomas Drucker, University of Wisconsin-Whitewater (1046-01-282)
4:30pm The Polish-American mathematician Joseph Perott.

- (1175) Preliminary report.

Roger L. Cooke, University of Vermont (1046-01-384)

5:00pm Grading the greats: What G. CasteInuovo and F.
(1176) Severi thought of one another in the 1930s. Preliminary report.
Donald G. Babbitt, UCLA, and Judith R. Goodstein*, Institute Archives, California Institute of Technology (1046-01-378)
5:30pm Hilbert and the origin myth of modern

- (1177) mathematics.

Colin McLarty, Case Western Reserve University (1046-01-802)

AMS-ASL Special Session on Model Theoretic Methods in Finite Combinatorics, II

1:00 PM - 5:50 PM

$\begin{aligned} & \text { Organizers: } \text { Martin Grohe, Humboldt University } \\ & \text { Johann A. Makowsky, Technion Israel } \\ & \text { Institute of Technology }\end{aligned}$
1:00PM Why is the chromatic polynomial a polynomial? A

- (1178) model theoretic interpretation.

Tomer Kotek*, Johann A. Makowsky,
Technion-Israel Institute of Technology, and
Boris Zilber, Oxford University, Great Britain (1046-03-393)
1:30pm Towards a theory of graph polynomials. Preliminary

- (1179) report.

Johann A. Makowsky, Computer Science,
Technion-Israel Institute of Technology (1046-03-338)
2:00pm Nonstandard methods in hypergraph theory.
(1180) Preliminary report.

Gabor Elek, The Alfred Renyi Mathematical Institute of the Hungarian Academy of Sciences, Budapest, and Balasz Szegedy*, University of Toronto (1046-05-339)
2:30pm Homomorphism universal structures.

- (1181) Jan Hubicka, Charles University Prague, Czech Republic, and Jaroslav Nesetril*, Charles University Prague (1046-05-341)
3:00pm On the monadic second-order transduction
(1182) hierarchy.

Achim Blumensath*, and Bruno Courcelle, Universite Bordeaux 1, LaBRI (1046-03-118)
3:30pm Ramsey Theory and constraint propagation

- (1183) heuristics. Preliminary report.

Albert Atserias, Universitat Politècnica de Catalunya, Barcelona, Spain (1046-05-496)
4:00pm Algorithmic meta-theorems.
(1184) Stephan Kreutzer, University of Oxford (1046-05-340)
4:30pm Counting constraint satisfaction problems.

- (1185) Andrei A. Bulatov, Simon Fraser University (1046-05-377)
5:00pm k-Clique requires $k / 4$ variables.
- (1186) Benjamin Rossman, Massachusetts Institute of Technology (1046-68-387)
5:30pm Discussion
AMS Special Session on Commutative Rings, I
1:00 PM - 5:50 PM
Organizers: Jay A. Shapiro, George Mason University
David E. Dobbs, University of Tennessee, Knoxville
Shane P. Redmond, Eastern Kentucky University
Joe A. Stickles, Millikin University

1:00pm Finitely generated monoids of fractional ideals.
(1187) Daniel D. Anderson* and Sangmin Chun, University of lowa (1046-13-425)
1:30pm Nonunique factorization in integral domains.
(1188) Preliminary report.

David F. Anderson*, University of Tennessee, and
D. D. Anderson, University of Iowa (1046-13-930)

2:00pm The annihilator condition for finite commutative
(1189) rings. Preliminary report.

John D. LaGrange, Indiana University Southeast (1046-13-1229)
2:30pm On the maximal cardinality of chains of
(1190) intermediate rings. Preliminary report.
D. E. Dobbs, University of Tennessee, Knoxville, Gabriel Picavet, Laboratoire de Mathématique, Université Blaise Pascal, and Martine
Picavet-L'Hermitte*, Université Blaise Pascal, France (1046-13-855)
3:00pm Ranks of indecomposable torsion-free modules and
(1191) a Krull-Schmidt theorem.

Nicholas R. Baeth*, University of Central Missouri, and Melissa R. Luckas, University of Nebraska-Lincoln (1046-13-813)
3:30pm Semigroups of torsion-free modules. Preliminary
(1192) report.

Roger Wiegand, University of Nebraska (1046-13-814)
4:00pm Splitting sets and weakly Matlis domains.
(1193) Preliminary report. Muhammad Zafrullah, Idaho State University (1046-13-1344)
4:30pm Atomicity of certain pullback constructions.
(1194) Jason Greene Boynton and Jim Coykendall*, North Dakota State University (1046-13-939)
5:00pm Generally t-linkative domains. Preliminary report.
(1195) Thomas G. Lucas, University of North Carolina Charlotte (1046-13-1133)
5:30pm Special sequences for local domains. Preliminary
(1196) report.
S. B. Mulay, University of Tennessee, Knoxville (1046-13-1332)

AMS Special Session on Mathematics and Mathematics Education in Fiber Arts

1:00 Рм - 5:50 Рм
Organizers: Sarah-Marie Belcastro, The Hampshire College Summer Studies in Mathematics
Carolyn A. Yackel, Mercer University
1:00pm
Temari math and geometry on the sphere.

- (1197) Preliminary report.

Carolyn Yackel, Mercer University (1046-20-1195)
1:30pm Visualizing groups and subgroups in counted cross

- (1198) stitch.

Mary D. Shepherd, Northwest Missouri State University (1046-20-903)
2:00pm Diaper pattern in needlepoint.

- (1199) Diane L. Herrmann, University of Chicago (1046-00-899)
2:30pm Semiregular tessellations.
- (1200) Irena Swanson, Reed College (1046-52-674)

3:00pm Mathematical Fiber Arts Exhibit
3:30pm Don't blow a gasket!

- (1201) Ted Ashton, Linthicum Heights, MD (1046-00-760)

4:00pm Exploring two-dimensional manifolds with crochet

- (1202) hook.

Daina Taimina, Cornell University (1046-97-962)

$\begin{array}{r} 4: 30 \mathrm{PM} \\ -\quad(1203) \end{array}$	Braids, cables, and cells: An intersection of mathematics, computer science, and fiber arts. Preliminary report. Joshua Brandon Holden, Rose-Hulman Institute of Technology (1046-37-82)
$\begin{array}{r} 5: 00 \mathrm{PM} \\ -\quad(1204) \end{array}$	Braid words in generalized helix stripe patterns. Sarah-Marie Belcastro, Sarah Lawrence College / HCSSiM (1046-54-1626)
$\begin{aligned} & 5: 30 \mathrm{PM} \\ & (1205) \end{aligned}$	Calculating patterns for knitted surfaces. Amy F. Szczepański, University of Tennessee, Knoxville (1046-00-1046)
AMS Special Session on Conformal Geometry, Twistor Theory, and Integrable Systems	
1:00 PM - 5:50 PM	
	Organizers: Dana Mihai, Carnegie Mellon University
	George Sparling, University of Pittsburgh
$\begin{aligned} & 1: 00 \mathrm{PM} \\ & (1206) \end{aligned}$	Twistors and 2T-physics as unifiers of 1 T-physics systems. Itzhak Bars, University of Southern California (1046-81-1735)
$\begin{aligned} & 2: 00 \mathrm{PM} \\ & (1207) \end{aligned}$	Geometric Interpretation of elliptic integrable systems associated to k-symmetric spaces. Idrisse Khemar, T.U. Munich (1046-53-1189)
$\begin{aligned} & 3: 00 \mathrm{PM} \\ & (1208) \end{aligned}$	The Penrose process and the wave equation in Kerr geometry. Niky Kamran, McGill University (1046-83-1727)
$\begin{aligned} & \text { 4:00pm } \\ & (1209) \end{aligned}$	New ideas in space-time: Cartan's ODE's, parabolic geometry and conformal structures. George Sparling, University of Pittsburgh $(1046-83-1151)$
$\begin{aligned} & \text { 5:00pm } \\ & (1210) \end{aligned}$	On unveiled relations between twistor and quantum Hall effect. Preliminary report. Hasebe Kazuki, Takuma National College of Technology (1046-51-1031)
$\begin{array}{r} 5: 30 \mathrm{PM} \\ -\quad(1211) \end{array}$	Fierz identities for real Clifford algebras. Eric Korman, University of Pittsburgh (1046-83-1156)

AMS Special Session on Discrete Dynamical Systems in Periodic Environments, II

```
1:00 PM - 5:50 PM
    Organizers: M. R. S. Kulenović, University of Rhode
                    Island
                            Orlando Merino, University of Rhode
                        Island
                            Abdul-Aziz Yakubu, Howard
                            University
    1:00PM Semigroups of maps and periodic difference
    (1212) equations.
        Robert J. Sacker, University of Southern California
        (1046-37-1419)
    1:30pm Why period-doubling cascades occur. Preliminary
    (1213) report.
        James A. Yorke, Univ. of Maryland (1046-37-927)
    2:00PM Unimodal periodic models with Allee effects.
- (1214) Preliminary report.
    Saber N. Elaydi, Trinity University (1046-39-1755)
    2:30pm Two species competition in a periodic environment.
    (1215) Preliminary report.
        J. M. Cushing, University of Arizona (1046-39-668)
```

3:00pm S-I-S epidemic models with disease induced
(1216) mortality in periodic environments. Preliminary report.
John E. Franke*, North Carolina State University, and Abdul-Aziz Yakubu, Howard University (1046-37-1256)
3:30pm Periodic versus constant harvesting of discretely

- (1217) reproducing fish populations.

Abdul-Aziz Yakubu*, Howard University, and Michael Fogarty, National Marine Fisheries Service (1046-92-1215)
4:00pm Attractors for a periodic, discrete
(1218) selection-migration model with partial dominance. Preliminary report.
James F. Selgrade*, Jordan West Bostic, North Carolina State University, and James H. Roberds, USDA Forest Service (1046-92-890)
4:30pm Impact of harvesting in a discrete-time
(1219) predator-prey model.

Shari Wiley*, Abdul-Aziz Yakubu, Howard University, and Michael Fogarty, National Oceanic and Atmospheric Administration (1046-37-1748)
5:00pm Dynamics of a discrete-time lottery model and its
(1220) approximation by ODEs. Preliminary report.

Ryusuke Kon, Kyushu University (1046-92-1584)
5:30pm On a property of plane curves. Preliminary report.

- (1221) Mohammad Javaheri, Trinity College (1046-37-582)

AMS Special Session on Homotopy Theory and Higher Categories, II

```
1:00 PM - 5:50 PM
```

Organizers: Thomas M. Fiore, University of Chicago
Mark W. Johnson, Penn State Altoona
James M. Turner, Calvin College
W. Stephen Wilson, Johns Hopkins University
Donald Yau, Ohio State University at Newark
1:00pm

4:00pm Some remarks on 2-completed motivic homotopy
(1228) theory and the motivic J-homomorphism.

Kyle M. Ormsby, University of Michigan (1046-55-55)
4:30pm Generating spaces for $S(n)$-acyclics. Preliminary
(1229) report.

Aaron C. Leeman, University of Oregon (1046-55-1893)

```
5:00pm Completion of real Johnson-Wilson theory E(n)
(1230) yields fixed points of Morava E-theory.
    Maia Averett, Mills College (1046-55-1513)
5:30pm Extensions of motives and cell bundles.
(1231) Jack Morava, Johns Hopkins University
    (1046-55-2092)
```

AMS Special Session on Algebraic Cryptography and Generic Complexity, II

1:00 PM - 5:50 PM
Organizers: Vladimir Shpilrain, The City College of New York

Yesem Kurt, Randolph College
1:00pm Public-Key cryptography from a (theoretical)

- (1232) cryptographer's perspective.

Jonathan Katz, University of Maryland (1046-68-860)
2:00pm Group theory in authenticated key establishment:
(1233) What assumption(s) Do We Make?

Rainer Steinwandt, Florida Atlantic University (1046-94-1447)
2:30pm Bilinear groups and algebraic cryptography.
(1234) Preliminary report.

Nelly Fazio, City University of New York (1046-68-1974)
3:00pm An identification scheme for one-time private key

- (1235) systems (OTPK). Preliminary report.

Yesem Kurt, Randolph College (1046-94-1517)
3:30pm Cryptanalysis of the shifted conjugacy
(1236) authentication protocol.

Alexander V. Ushakov*, Stevens Institute of Technology, and Jonathan Longrigg, University of Newcastle (1046-68-1496)
4:00pm Challenge response password security using
(1237) combinatorial group theory. Preliminary report. Gilbert Baumslag, City College of CUNY, Benjamin Fine*, Fairfield University, and Douglas Troeger, City College of CUNY (1046-20-1006)
4:30pm Authentication schemes.

- (1238) Dima Grigoriev, Institut de Recherche Mathématique, Campus de Beaulieu, Rennes, France, and Vladimir Shpilrain*, City College of New York (1046-94-503)

5:00pm Discussion

AMS Special Session on Asymptotic Geometric Analysis, II

1:00 PM - 4:50 PM
Organizers: Alexander E. Litvak, University of Alberta
Dmitry Ryabogin, Kent State University

Artem Zvavitch, Kent State University
1:00pm Variational formulas for the isotropic constant
(1239) Preliminary report.

Ralph Howard, University of South Carolina (1046-53-1898)

1:30pm Remark on isotropic constant of projections of (1240) convex bodies.

David Alonso-Gutiérrez, Jesús Bastero, Julio
Bernués, University of Zaragoza, Spain, and Paweł Wolff*, Case Western Reserve University (1046-52-1772)

2:00pm Local and Equatorial characterization of unit balls
(1241) of subspaces of $L_{p}, p>0$ and properties of the generalized cosine transform.
Jeffrey Schlaerth, Kent State University (1046-52-2006)
2:30pm Erdélyi-Kober integrals on the cone of positive
(1242) definite matrices and Radon transforms on Grassmann manifolds.
Elena Ournycheva, University of Pittsburgh at Bradford (1046-44-1483)
3:00pm Intersection bodies with lower dimensional faces

- (1243) and Lonke's barrel zonoid. Preliminary report. Maria de los Angeles Alfonseca*, North Dakota State University, Dmitry Ryabogin and Artem Zvavich, Kent State University (1046-52-902)

3:30pm Quaternionic Busemann-Petty problem.
(1244) Boris Rubin, Louisiana State University (1046-52-1393)

4:00pm On embeddings of normed spaces in L_{-k}.
(1245) Vladyslav Yaskin, University of Alberta (1046-46-1 823)

4:30pm Algorithmic approximation of convex polytopes by
(1246) simpler convex polytopes.

Shlomo Reisner, University of Haifa, Israe (1046-52-1564)

AMS Special Session on Nonsmooth Analysis in Inverse and Variational Problems, II

1:00 PM - 5:55 PM

Organizers: M. Zuhair Nashed, University of

 Central FloridaOtmar Scherzer, University of Innsbruck
1:00pm Infinite dimensional duality and applications to

- (1247) equilibrium problems. Preliminary report. Patrizia Daniele*, University of Catania, Italy, Sofia Giuffre', D.I.M.E.T. Mediterranean University, Italy, and Antonino Maugeri, University of Catania, Italy (1046-46-2083)

1:30pm Inverse potential theory on the sphere.
(1248) Willi Freeden, Geomathematics Group, TU Kaiserslautern, Germany (1046-86-1 185)
2:00pm On some mathematical aspects of the ill-posed
(1249) determination of the Earth's interior. Volker Michel, University of Siegen, Germany (1046-45-426)

2:30pm Sparse regularization with 1-a penalty term.
(1250) Otmar Scherzer, University Innsbruck (1046-49-1182)

3:00pm Adaptive kernel methods using the balancing (1251) principle.

Sergei V. Pereverzev, Johann Radon Institute For Computational and Applied Mathematics, Austrian Academy of Sciences (1046-65-610)

3:30pm Tikhonov regularization methods with general
(1252) data-fit term. Preliminary report

Christiane Poeschl, University of Innsbruck (1046-00-768)

4:00pm Current density-based electrical impedance
(1253) tomography.

Adrian Nachman, University of Toronto,
Alexandru Tamasan*, University of Central Florida, and Alexandre Timonov, University of South Carolina Upstate (1046-35-1408)

4:30pm Nonsmooth analysis in infinite dimensions with
(1254) applications to stability of variational systems. Mordukhovich Boris, Wayne State University, and Nguyen Mau Nam*, University of Texas-Pan American (1046-49-51)
5:00pm A hierarchy of differential approximations for
(1255) nonsmooth operators and variational problems. Preliminary report.
M. Zuhair Nashed, University of Central Florida (1046-46-1899)
5:30pm A nonsmooth feedback solution for a class of
(1256) quantum control problems.

Qin Zhang* and Kazufumi Ito, North Carolina State University (1046-49-458)

AMS Special Session on Categorification and Link
Homology, II

	Organizers: Aaron Lauda, Columbia University Mikhail Khovanov, Columbia University
$\begin{aligned} & 1: 00 \text { PM } \\ & (1257) \end{aligned}$	A categorification of quantum tangle invariants via quiver varieties. Preliminary report. Ben Webster, Massachusetts Institute of Technology (1046-18-1244)
$\begin{aligned} & 1: 25 \text { PM } \\ & (1258) \end{aligned}$	The 1,2-coloured HOMFLY-PT link homology. M. Mackaay*, Universidade do Algarve, M. Stosic, Instituto Superior Técnico, and P. Vaz, Universidade do Algarve (1046-18-607)
$\begin{aligned} & 1: 50 \mathrm{PM} \\ & (1259) \end{aligned}$	Towards a geometric categorification of the coloured Reshetikhin-Turaev sl(m) knot invariants. Sabin Cautis, Rice University/MSRI (1046-14-1164)
$\begin{aligned} & \text { 2:15PM } \\ & (1260) \end{aligned}$	How to categorify dynamical zeta functions. Preliminary report. Alexander Fel'shtyn, University of Szczecin and Boise State University (1046-57-1010)
$\begin{aligned} & \text { 2:40PM } \\ & (1261) \end{aligned}$	Gram determinants of planar states and Lagrangian tangles. Jozef H. Przytycki, George Washington University $(1046-57-1710)$
$\begin{aligned} & \text { 3:05PM } \\ & (1262) \end{aligned}$	Crossingless matchings and the Springer representation. Heather M. Russell* and Julianna S. Tymoczko, University of Iowa (1046-57-1373)
$\begin{aligned} & \text { 3:30PM } \\ & (1263) \end{aligned}$	Plane diagrammatics and categorification. Preliminary report. Radmila Sazdanovic*, The George Washington University, and Mikhail Khovanov, Columbia University (1046-16-1241)
$\begin{aligned} & \text { 3:55PM } \\ & (1264) \end{aligned}$	Sheaves of modules over posets and Khovanov homology. Paul R. Turner*, Heriot-Watt University/ Universite de Fribourg, and Brent J. Everitt, University of York (1046-57-638)
4:20pm	Discussion
$\begin{aligned} & \text { 4:45PM } \\ & (1265) \end{aligned}$	Every modular category is the category of modules over an algebra. Hendryk Pfeiffer, The University of British Columbia (1046-20-1762)
$\begin{aligned} & \text { 5:10PM } \\ & (1266) \end{aligned}$	Groupoidification. John C. Baez, University of California, Riverside (1046-18-596)
$\begin{aligned} & \text { 5:35PM } \\ & (1267) \end{aligned}$	A categorification of Hecke algebras. Alexander E. Hoffnung, University of California, Riverside (1046-18-1057)

AMS Special Session on the Role of Generalized Maximal Monotonicity Frameworks in Optimization and Control Theory with Applications, II

1:00 PM - 5:20 PM
Organizer: Ram U. Verma, International Publications
1:00pm Optimality conditions and efficiency in solving
(1268) nonsmooth multiobjective programming problems.
S. K. Mishra, Banaras Hindu University, R. N.

Mohapatra*, University of Central Florida,
and Vinay Singh, Banaras Hindu University
(1046-49-2017)
2:00pm Fixed point iterations. Preliminary report.
(1269) B. E. Rhoades, Indiana University, Bloomington, IN (1046-47-229)
3:00pm Hybrid over-relaxed proximal point procedure and

- (1270) generalized Yosida regularization for first-order evolution inclusions.
Ram U. Verma, International Publications (USA) (1046-49-791)
4:00pm Representability of monotone operators.
(1271) M. D. Voisei, Towson University (1046-46-442)

5:00pm Input identification to linear differential systems.
(1272) Gheorghe Morosanu, Central European University, Budapest, Hungary (1046-93-452)

AMS Special Session on Computational Algebra and

 Convexity, II1:00 PM - 5:50 PM
Organizers: Dan Bates, Colorado State University Tsung-Lin Lee, Michigan State University
Sonja Petrovic, University of Illinois at Chicago
Zach Teitler, Texas A\&M University
1:00pm Diagonal ideals of determinantal rings.
(1273) Kuei-Nuan Lin, Purdue University (1046-13-1207)

1:30pm Finite atomic lattices and resolutions of associated (1274) monomial ideals. Preliminary report.

Sonja Mapes, Columbia University (1046-13-982)
2:00pm A numerical local dimension test for algebraic sets.
(1275) Andrew Sommese, University of Notre Dame (1046-65-687)
2:30PM Partial decomposition of radical ideals through
(1276) numerical homotopy and lattice basis reduction.

Dan Bates, Colorado State University, Jon
Hauenstein, University of Notre Dame, Tim McCoy, Colorado State University, Andrew Sommese, University of Notre Dame, and Christopher Peterson*, Colorado State University (1046-14-1451)
3:00pm Numerical primary decomposition.
(1277) Anton Leykin, University of Illinois at Chicago (1046-14-520)
3:30pm On numerical-symbolic exact irreducible
(1278) decomposition of cyclic-12.

Rostam Sabeti* and Tien-Yien Li, Michigan State University (1046-65-577)
4:00pm Computational algebraic geometry for mechanism
(1279) synthesis.

Hai-Jun Su, University of Maryland, Baltimore County (1046-14-1124)
4:30pm F,G,H,I bases for polynomial rings and their
(1280) relations.

Wenyuan Wu, Michigan State University (1046-13-421)

5:00pm Estimates for orders of derivatives in differential (1281) Nullstellensatz.

Oleg Golubitsky, University of Western Ontario, Marina Kondratieva, Moscow State University, Alexey Ovchinnikov*, University of Illinois at Chicago, and Agnes Szanto, North Carolina State University (1046-13-99)
5:30pm p-adic Descartes' bounds.
(1282) Ashraf A. Ibrahim, Texas A\&M University (1046-14-315)

AMS Session on Mathematics Education

1:00 PM - 3:55 PM

1:00pm Instructor resources for elementary mathematics

- (1283) for teachers. Preliminary report.

Scott J. Baldridge*, Louisiana State University, and Thomas H. Parker, Michigan State University (1046-97-2072)
1:15PM Integrated, multidisciplinary and

- (1284) technology-enhanced science education: The next frontier.
Ivo D. Dinov* and Nicolas Christou, University of California, Los Angeles (1046-97-25)
1:30pm Inquiry-based learning: An educational reform
- (1285) based upon content-centred teaching.
M. Padraig McLoughlin, Kutztown University of Pennsylvania (1046-97-644)
1:45pm What do MD \& VA teachers believe about
- (1286) mathematics and what do they know about mathematics history?
Danielle M. Goodwin, Vincennes University (1046-97-755)
2:00pm The hybrid mathematics class: The best of both
- (1287) worlds, or No Man's Land?

Catherine A. Matos* and Mary Hudachek-Buswell, Clayton State University (1046-97-1489)
2:15pm Bluma's Method: A different way to solve

- (1288) quadratics. Preliminary report.

Richard Millman, Georgia Institute of Technology, and Eric L. Clark*, University of Kentucky (1046-97-75)
2:30pm How redesigning freshman classes can impact a

- (1289) whole department.

Tristan M. Denley, University of Mississippi (1046-97-1495)
2:45pm A constructivist theory of teaching mathematics:

- (1290) From concept to context.

Wendy Hageman Smith, Longwood University (1046-97-1550)
3:00pm Refocused algebra versus POGIL: Chemistry's

- (1291) solution and what mathematics can derive from it. Robert E. Wieman, Virginia State University (1046-97-1561)
3:15PM What will students do for 1 point in the land of no
- (1292) bonus? Preliminary report.

Robin Leigh Blankenship, Morehead State University (1046-97-2090)
3:30pm Problems encountered in trying to collaborate with

- (1293) mathematicians in the Third World.

Melvin Henriksen, Harvey Mudd College (1046-00-940)
3:45pm Building a high-performing mathematics

- (1294) program in the City of Baker using the Singapore mathematics curriculum. Preliminary report.
Scott J. Baldridge*, Louisiana State University, and Johnette Winfrey, The City of Baker School System (1046-97-2036)

AMS Session on Financial Mathematics

1:00 PM - 4:40 PM
1:00pm Volatility models of the yield curve.
(1295) Victor Goodman, Indiana University (1046-90-48)

1:15pm Stochastic optimization for portfolio selection
(1296) problem with mean absolute negative deviation measure.
Anton Abdulbasah Kamil*, Adli Mustafa and Khlipah Ibrahim, Universiti Sains Malaysia (1046-90-381)

1:30pm Option pricing in the presence of random arbitrage
(1297) return.

Jungmin Choi*, Florida State University, and
Max Gunzburger, Florida State University (1046-90-1288)

1:45pm On the convergence of adaptive stochastic search
(1298) methods for continuous global optimization.

Rommel G. Regis, Saint Joseph's University (1046-90-1976)

2:00pm Sensitivity analysis of asset flow differential
(1299) equations and a new volatility approach. Ahmet Duran, University of Michigan-Ann Arbor (1046-91-94)

2:15pm Stable trading strategy involving several options.
(1300) Anirban Dutta* and Qiji J. Zhu, Western Michigan University (1046-91-1095)

2:30pm A Turán type inequality for the Kummer function
(1301) arising in finance. Part I: The application.

Roger W. Barnard, Texas Tech University, Michael B. Gordy*, Senior Economist, Federal Reserve Board, and Kendall C. Richards, Southwestern University (1046-91-182)

2:45pm Break
3:00pm A Turán type inequality for the Kummer function
(1302) arising in finance. Part II: The verification. Roger W. Barnard, Texas Tech University, Michael B. Gordy, Federal Reserve Board, and Kendall C. Richards*, Southwestern University (1046-33-183)
3:15pm Portfolio optimization under subadditive
(1303) transaction cost.

Qingshuo Song, University of Southern California (1046-60-61)

3:30pm On moment conditions for Girsanov Theorem.
(1304) See Keong Lee, Universiti Sains Malaysia (1046-60-558)

3:45pm A Markov state model for wake-sleep transitions.

- (1305) Badal Joshi* and Janet Best, Ohio State University (1046-60-1835)
4:00pm An exact Malliavin weight for variance gamma and
(1306) normal inverse Gaussian processes: Sensitivity analysis of European style options. Preliminary report.
Dervis Bayazit* and Craig A. Nolder, Florida State University (1046-60-1 860)
4:15PM American option pricing under stochastic volatility.
- (1307) Hari P. Adhikari, University of South Florida (1046-00-1413)

4:30PM Possible evolutions of financial markets in a
(1308) Keynesian economy.

James M. Haley, Point Park University, Economics (1046-97-1919)

AMS Session on Number Theory, III

```
1:00 PM - 5:10 PM
    1:00pm An identity involving generalized Fibonacci
    (1309) numbers.
        Curtis N. Cooper, University of Central Missouri
        (1046-11-1706)
    1:15PM Chebyshev's bias in function fields.
    (1310) Byungchul Cha, Muhlenberg College (1046-11-42)
    1:30pm A Hecke correspondence theorem for automorphic
    (1311) integrals with symmetric rational period functions
        on the Hecke groups.
        Wendell Ressler, Franklin & Marshall College
        (1046-11-49)
    1:45pm New lower bounds for the Ihara function A(q)
    (1312) Laura L. Hall-Seelig, University of Massachusetts,
        Amherst (1046-11-283)
    2:00pm On the frequency of anomalous primes for elliptic
    (1313) curves. Preliminary report.
        Penny C. Ridgdill, University of Massachusetts
        (1046-11-308)
    2:15pm Characterizing limits of analytic continued
    (1314) fractions. Preliminary report.
        Kristen J. Campbell, Northern Illinois University
        (046-11-316)
    2:30pm Brauer-Manin obstructions and Sha of genus-2
    (1315) jacobians
        Patrick Corn, St. Mary's College of Maryland
        (1046-11-1329)
    2:45pm Maximal subbundles in coding theory.
    (1316) Emma Previato*, Boston University, and Drue
        Coles, Bloomsburg University (1046-11-1007)
    3:00pm Break
    3:15Pm Characteristic classes and root numbers for
    (1317) motives associated to GOn. Preliminary report.
        Asher N. Auel, University of Pennsylvania
        (1046-11-1655)
    3:30pm The search for base-2 Fibonacci pseudoprimes.
* (1318) Dominic W. Klyve, Carthage College
        (1046-11-1391)
    3:45pm A note on disjoint covering systems of congruences.
- (1319) Variations on a 2002 AIME problem.
    John W. Hoffman, W. Ryan Livingston and
        Jared M. Ruiz*, Youngstown State University
        (1046-11-1549)
    4:00Pm Eichler cohomology theorem for small weights.
    (1320) M. Knopp and H. Mawi*, Temple University
        (1046-11-1751)
    4:15pm On some fundamental properties and applications
- (1321) of continued fractions to coding theory. Preliminary
        report,
        Ahlam E. Tannouri* and Sam F. Tannouri, Morgan
        State University (1046-11-2048)
    4:30pm On integer polynomials that are small at a given
    (1322) cubic irrational.
        Kiryl I. Tsishchanka, DePaul University
        (1046-11-2071)
4:45pm Weyl group multiple Dirichlet series for type C.
(1323) Preliminary report.
    Jennifer Beineke*, Western New England College,
    Ben Brubaker, MIT, and Sharon Frechette, College
    of the Holy Cross (1046-11-1954)
5:00pm A refinement of Stark's Conjecture over complex
(1324) cubic number fields.
    Tian Ren*, Queensborough Community College,
    The City University of New York, and Robert
    Sczech, Rutgers University - Newark
    (1046-11-1144)
```


MAA Session on College Algebra: Focusing on Conceptual Understanding, Real-World Data, and Mathematical Modeling, I

1:00 PM - 5:55 PM
Organizers: Florence S. Gordon, New York Institute of Technology Laurette B. Foster, Prairie View A\&M University
Yajun Yang, Farmingdale State College
Ray E. Collings, Georgia Perimeter College
1:00pm A data-based project to enhance the teaching of - (1325) functions in college algebra.

Murray H. Siegel, Central Arizona College (1046-C1-164)
1:20Рm Revitalizing college algebra: A success story.
(1326) Preliminary report. Kimberly Muller, Lake Superior State University (1046-C1-29)

1:40pm Infusing real-life opportunities, questions, and (1327) concepts into the mathematics curriculum.

Erick B. Hofacker*, University of Wisconsin-River Falls, and Kathryn Ernie, University of Wisconsin River Falls (1046-C1-1478)
2:00pm Getting students to DIGMath: Dynamic interactive

- (1328) graphics in college algebra.

Sheldon P. Gordon, Farmingdale State College (1046-C1-175)
2:20pm Technology driven investigations for intermediate

- (1329) algebra for business majors.

Wendiann R. Sethi, Seton Hall University (1046-Cl-1879)
2:40pm Three interesting projects for college algebra.
(1330) Rich West, Francis Marion University (1046-Cl-1641)
3:00pm A math teacher sees the light: Photonics labs in an

- (1331) algebra class. Preliminary report.

June I. Decker, Three Rivers Community College (1046-C1-1136)
3:20pm Make COLLEGE algebra more meaningful for
(1332) non-calculus-bound majors.

Xuhui Li, California State University - Long Beach (1046-C1-1941)

3:40pm Social science applications in an applied college

- (1333) algebra course.

Lisa S. Yocco, Georgia Southern University (1046-C1-319)
4:00pm Making first year mathematics more relevant to

- (1334) science students: Connecting mathematics and science courses. Preliminary report.
Jose H. Giraldo, Texas A\&M University-Corpus Christi (1046-C1-2027)
4:20pm How mathematics can contribute to solving the
- (1335) problems facing the world; Building civic engagement into mathematics courses as a way to motivate and inspire students.
Victor J. Donnay, Bryn Mawr College (1046-C1-1681)
4:40pm College algebra in context: A learner-centered
- (1336) approach incorporating data-driven activities related to social issues.
Michael T. Catalano, Dakota Wesleyan University (1046-C1-1816)
5:00pm Focusing on algebraic understanding using a
(1337) student-centered questioning framework.

Jennifer J. Kosiak* and Jon Hasenbank, University of Wisconsin - La Crosse (1046-C1-1417)

5:20pm	Mathematical readiness of incoming college (1338) freshmen. Marko Kranjc, Western Illinois University (1046-C1-723)
5:40pm	News ways to compare NFL players, using model
(1339)	building. Jacqueline Brannon Giles, HCC Central College, Houston, Texas (1046-C1-180)

MAA Session on Statistics Resources on the Web

1:00 PM - 4:00 PM
Organizers: Dorothy W. Anway, University of Wisconsin, Superior
Patricia B. Humphrey, Georgia Southern University Christopher J. Lacke, Rowan University
1:00pm Statistics resources in a "Math for Practical Arts" - (1340) course.

Mary R. Parker*, Austin Community College, and
Hunter D. Ellinger, Exemplar Technologies (1046-W1-1646)
1:20pm The challenges and benefits of using e-books and
(1341) Web companion sites to organize statistics resources on the Web for statistics education. Deborah Lurie, Saint Joseph's University (1046-W1-1462)
1:40pm Utilizing Web-based statistical resources in teaching

- (1342) nontraditional undergraduate students in online learning environments. Preliminary report. Michael Miner*, American Public University System, and Darcel Ford, Strayer University (1046-W1-1482)
2:00pm A collection of resources for use in teaching
- (1343) statistics, including assessments, group activities, in and out of class calculator simulations, and several applets to demonstrate statistical concepts.
Rob Eby, Blinn College - Bryan Campus (1046-W1-1686)
2:20pm Two applets for teaching IID sampling, sampling
- (1344) distributions, and the central limit theorem.

Mark H. Inlow, Rose-Hulman Institute of Technology (1046-W1-1172)
2:40pm Interactive tools for exploring the standard normal

- (1345) curve and more.

Susan M. Barton, WVU Tech (1046-W1-1357)
3:00pm Should statistics tables be banned from the
(1346) curriculum?

Robin H. Lock, St. Lawrence University (1046-W1-2031)
3:15pm Discussion

MAA Session on Assessment of Student Learning in Undergraduate Mathematics

1:00 PM - 5:55 Рм
Organizers: William O. Martin, North Dakota State University
Bernard L. Madison, University of Arkansas
1:00pm "Pair-Quizzes": An instructional and an evaluative

- (1347) tool in mathematics classes. Preliminary report. Harrison W. Straley* and Lauren Dupee, Wheaton College (1046-A5-137)

1:20pm Students' understanding of slope and direction

- (1348) fields in a non-traditional differential equations class.
Samer S. Habre, Lebanese American University (1046-A5-173)
1:40pm Designing benchmarks for assessing
- (1349) undergraduate students' mathematics performances in general education. Preliminary report.
Xuhui Li, California State University Long Beach (1046-A5-379)
2:00pm Outcomes based assessment of student learning in
- (1350)

2:20pm

- (1351)

Ronald M. Brzenk, Hartwick College (1046-A5-400)
An examination of the Mathematics and Technology
Attitude Scale (MTAS): Implication to assessment of undergraduate mathematics.
Jerry Obiekwe, The University of Akron-Wayne College (1046-A5-1067)
2:40pm Basic skills exam in college algebra.

- (1352) Karla Marie Childs, Pittsburg State University (1046-A5-1131)
3:00pm Calculus assessment: Then and now. Preliminary
- (1353) report.

Sarah V. Cook, Washburn University (1046-A5-1347)
3:20pm Assessment across the curriculum; Varying

- (1354) strategies for varying situations.
J. Winston Crawley* and James E. Hamblin,

Shippensburg University of Pennsylvania
(1046-A5-1346)
3:40pm Evolution of a capstone course for prospective high
(1355) school mathematics teachers. Preliminary report. Michael D. Bice, California State University, Stanislaus (1046-A5-1884)
4:00pm Challenges of assessing mathematics content

- (1356) courses designed specifically for middle childhood education majors. Preliminary report. Joy Moore, Xavier University (1046-A5-1875)
4:20pm
(1357)

Heather Coughlin, California State University, Stanislaus (1046-A5-1848)
4:40PM Assessing quantitative literacy using a wide range

- (1358) of news stories. Preliminary report.

Milo Schield, W. M. Keck Statistical Literacy Projet (1046-A5-1820)
5:00Pm A control versus treatment evaluation of the
(1359) chemistry in calculus project at William and Mary.

George Rublein, College of William and Mary (1046-A5-1806)
5:20pm Assessment of the undergraduate mathematics

- (1360) program.

Melvin A. Nyman* and Robert Molina, Alma College (1046-A5-1759)
5:40PM Portfolio assessment of general education
(1361) mathematics. Preliminary report.

Rich West, Francis Marion University (1046-A5-1615)

MAA General Contributed Paper Session, VII

1:00 PM - 5:55 Рм

Organizer:	Sarah L. Mabrouk, Framingham State College
Moderators:Thomas Philip Wakefield, Slippery Rock University Larry Lewis, Spalding University	

Kyle Riley, South Dakota School of Mines \& Technology

Jim Fulmer, University of Arkansas at Little Rock
1:00pm 10 questions about numbers: A college algebra - (1362) writing assignment. Preliminary report. Elliott S. Elliott, University of Tennessee at Martin (1046-Z1-1114)

1:15pm Why is one usually first? Preliminary report.

- (1363) Sandra J. Schroeder, Ohio Northern University (1046-Z1-1138)

1:30pm Are you in or out? Mathematical lessons from

- (1364) fashion design.

Jeff A. Suzuki, Brooklyn College (1046-Z1-536)
1:45pm The continuous birthday problem.

- (1365) Dale K. Hathaway, Olivet Nazarene University (1046-Z1-918)

2:00pm Discovering Bernoulli number identities via

- (1366) Euler-Maclaurin summation. Preliminary report. Hieu D. Nguyen, Rowan University (1046-Z1-406)
2:15pm The role of external consultants as part of a
(1367) departmental self study.

Kyle L. Riley, SD School of Mines \& Technology (1046-Z1-147)
2:30pm Reconstructing graphs given only a few marked

- (1368) cards.

Michael D. Barrus* and Douglas B. West, University of Illinois (1046-Z1-978)

2:45PM Promoting responsibility and cooperation through
(1369) the use of discussion boards.

Janet L. Braunstein, United States Military Academy at West Point (1046-Z1-1516)
3:00pm Visualizing continuity and differentiability of

- (1370) functions of two variables.

Tom McMillan and Jim Fulmer*, University of Arkansas at Little Rock (1046-Z1-1895)

3:15pm The natural role of lower-division sequences and

- (1371) series as a pre-bridge course.

Scott F. Beaver, Western Oregon University (1046-Z1-937)
3:30pm Studying affect in undergraduate mathematics:

- (1372) Efforts to clarify students' experiences of learning mathematics. Preliminary report.
Marja-Liisa Hassi*, University of Colorado at Boulder, and Sandra Laursen, University of Colorado at Boulder (1046-Z1-810)
3:45pm Teacher versus student motivation: Who wins the
- (1373) game? Preliminary report.

Laura J. Schmidt, University of Wisconsin-Stout (1046-Z1-772)
4:00pm Pre/post tests for undergraduate mathematics.

- (1374) Preliminary report.

Jacob Sloujitel, Globe Institute of Technology (1046-Z1-592)
4:15pm Geometry: The hardest course? Preliminary report.

- (1375) H. A. Dye, McKendree University (1046-Z1-388)

4:30pm An examination of the social class backgrounds of

- (1376) California's mathematics professors.

Chris Pavone, Sophy Huck, California State
University, Chico, Megan K O'Connor, Western Michigan University, Carol A Wilson*, California State University, Sacramento, and Elizabeth Zapata, California State University, Chico (1046-Z1-386)
4:45pm Traditional vs. online homework in college algebra.

- (1377) Kimberly Jordan Burch* and Yu-Ju Kuo, Indiana University of Pennsylvania (1046-Z1-375)

5:00pm The role of the sampling distribution in student

- (1378) learning of inferential statistics.

Barbara Bennie, University of Wisconsin - La Crosse (1046-Z1-372)
5:15pm Elementary statistics: To lecture or not to lecture?

- (1379) That is the question.

Pamela K. Wovchko, West Virginia Wesleyan College (1046-Z1-239)
5:30pm Teaching technology to first year students.

- (1380) Preliminary report.

Luz M. DeAlba, Drake Universtiy (1046-Z1-399)
5:45pm The Kean STEM Scholarship Program: Successes in

- (1381) recruitment and retention of math and science majors.
Pablo Zafra, Louis M. Beaugris* and Kikombo Ngoy, Kean University (1046-Z1-1514)

MAA General Contributed Paper Session, VIII

1:00 PM - 3:10 PM
Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: William Goldbloom Bloch, Wheaton College
James Henderson, University of Pittsburgh-Titusville
1:00pm

- (1382)

Stabilizing vibrating beams with point-load
damping. Preliminary report.
Richard J. Marchand*, Slippery Rock University, and Timothy J. McDevitt, Elizabethtown College (1046-Z1-1452)
1:15PM Duplication, trisection, and quadrature by cheating.

- (1383) Charlie Smith, Park University (1046-Z1-1263)

1:30pm Digital signal processing in the service of

- (1384) mathematics courses.

Mohamed Allali, Chapman University (1046-Z1-1110)
1:45pm Waring's problem in number fields. Preliminary
(1385) report.

Ala' Jamil Alnaser, Kansas State University
(1046-Z1-1454)
2:00pm Ghosts of departed errors: Berkeley's mathematical

- (1386) objections to the calculus of Newton and Leibniz.

Eugene C. Boman, Penn State, Harrisburg campus (1046-Z1-1676)
2:15PM Estimating relatedness using Markov Chain Monte

- (1387) Carlo techniques.

Jennifer K. Angelosante* and Amy Anderson,
Western Washington University (1046-Z1-1869)
2:30pm Arbitrary roughness.

- (1388) Elijah Miguel Allen, Armstrong Atlantic State Univeristy (1046-Z1-1891)
2:45Pm The evolution of cooperation on random networks.
- (1389) Stephen Devlin*, University of San Francisco, and

Thomas Treloar, Hillsdale College (1046-Z1-2079)
3:00pm Toughness extended to infinite graphs.
(1390) Kevin K. Ferland, Bloomsburg University of PA (1046-Z1-2097)

MAA General Contributed Paper Session, IX

1:00 PM - 2:55 PM
Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: Jose Maria Menendez, University of Arizona
Anand L. Pardhanani, Earlham College

1:00pm Mathematics from work and home: Lessons learned.
(1391) José Maria Menéndez, The University of Arizona (1046-Z1-875)
1:15PM Optimizing data returned by pop up satellite tags.

- (1392) Preliminary report.

Joseph B. Liddle*, University of Alaska Southeast, and Michael Musyl, University of Hawaii (1046-Z1-1068)
1:30pm Mathematical models for call options on stocks.

- (1393) Nicole Stawasz, King's College (1046-Z1-923)

1:45pm Examples of embedded minimal spheres without

- (1394) area bounds.

Joel I. Kramer, The Johns Hopkins University (1046-Z1-726)
2:00PM Partial fraction decomposition extensions.

- (1395) Preliminary report.

Kevin E. Charlwood, Washburn University (1046-Z1-561)
2:15pm Models of undergraduate computational science (1396) curricula.

Ignatios Vakalis, Computer Science Department (1046-Z1-508)
2:30pm Chances of a cruise ship birthday match.

- (1397) David T. Atkinson, Olivet Nazarene University (1046-Z1-909)
2:45pm Synthetic mathematical thought.
- (1398) Timothy G. Hall, PQI Consulting (1046-Z1-172)

MAA Invited Paper Session on the Beauty and Power of Number Theory

```
1:00 PM - 2:55 PM
Organizers: Thomas Koshy, Framingham State College
Thomas Moore, Bridgewater State College
1:00PM Hooks and infinite product power series.
- (1399) Ken Ono, U. Wisconsin, Madison (1046-A2-694)
1:30pm Sociable numbers: New developments on an ancient - (1400) problem.
Mitsuo Kobayashi, Dartmouth College, Paul Pollack, University of Illinois at Urbana-Champaign, and Carl Pomerance*, Dartmouth College (1046-A2-712)
2:00pm Undecidability in number theory.
(1401) Kirsten Eisentraeger, The Pennsylvania State University (1046-A2-727)
2:30pm Surprises from Ramanujan's Lost Notebook.
- (1402) George E. Andrews, The Pennsylvania State University (1046-A2-697)
```


SIAM Minisymposium on Polar Climate Modeling

1:00 PM - 5:25 PM

Organizers: Kenneth M. Golden, University of Utah David M. Holland, Courant Institute of Mathematical Sciences-NYU
Moderator: Deborah L. Sulsky, University of New Mexico
1:00pm Observations and modeling of ice sheet-Ocean

- (1403) interaction. Preliminary report.

David M. Holland, Courant Institute of Mathematical Sciences (1046-76-748)
1:30pm Polar ice sheets: Observations and models.
(1404) Kenneth Jezek, The Ohio State University (1046-00-1301)
$\left.\begin{array}{ll}\text { 2:00pm } & \text { Sea ice modeling in the GCM context. } \\ \text { (1405) } & \begin{array}{l}\text { Elizabeth C. Hunke, Los Alamos National } \\ \text { Laboratory (1046-86-1242) }\end{array} \\ \text { 2:30pm } & \text { Sunlight, water, and ice: The sea ice-albedo } \\ \text { (1406) } \\ \text { feedback in a changing climate. } \\ \text { Donald K. Perovich, ERDC - Cold Regions Research } \\ \text { and Engineering Laboratory (1046-86-1056) }\end{array}\right\}$

NAM Granville-Brown-Haynes Session of

 Presentations by Recent Doctoral Recipients in the Mathematical Sciences
1:00 PM - 2:55 PM

1:00pm Maximal groups in the Stone-Cech Compactification

- (1412) the free semigroup.

Lakeshia R. Legette, Johnson C. Smith University (1046-54-1139)
1:30PM Development of an unsplit, time dependent, three
(1413) dimensional elastic perfectly matched layer for elasto-dynamic analyses.
Anthony N. Johnson, United States Military Academy (1046-35-775)
2:00pm Prime ideals in low-dimensional mixed
(1414) polynomial/power series rings. Preliminary report. Christina Eubanks-Turner*, University of Louisiana at Lafayette, Melissa Luckas, Madison, Wisconsin, and Serpil Saydam, University of Louisiana at Monroe (1046-13-348)
2:30pm Oscillation theory of dynamic equations on time
(1415) scales. Preliminary report.

Raegan J Higgins, Texas Tech University (1046-39-249)

MAA Panel Discussion

1:00 Рм - 2:20 Рм
Refocusing the courses below calculus: The view from the Dean's office.
Organizer: Sheldon P. Gordon, Farmingdale State College
Panelists: Bruce C. Crauder, Oklahoma State University
Judi H. Morrel, Butler University
Rhonda Mandel, SUNY Oswego
Reggie K. U. Luke, Middlesex County College

MAA Panel Discussion

1:00 PM - 2:20 PM
Power of three: How the public, private, and academic sector need to work together to restore education in America.
Organizer: Jim Whaley, Siemens Foundation

AMS Session on Ordinary Differential Equations

```
1:15 PM - 6:10 PM
```

 1:15pm Multiplicity of positive solutions for an even-order
 (1416) nonhomogeneous boundary value problem.
 Britney Hopkins, Baylor University (1046-34-40)
 1:30PM Basic results and stability criteria for set valued
 (1417) differential equations on time scales.
 S. Sivasundaram, Embry Riddle Aeronautical
 University (1046-34-547)
 1:45pm A numerical solution for a nonlinear
 (1418) integro-differential equation in a population model.
 Mohsen Razzaghi, Mississippi State University
 (1046-34-657)
 2:00pm A mass, a spring, and a string.
 (1419) Don Hinton, University of Tennessee, and Maeve L.
 McCarthy*, Murray State University (1046-34-698)
 2:15PM Stability of perturbed almost periodic ordinary
 (1420) differential equations. Preliminary report.
 Zhivko S. Athanassov, Bulgarian Academy of
 Sciences (1046-34-840)
 2:30PM Poisson stability and chaos of relay systems.
 (1421) Marat Akhmet, Middle East Technical University
 (1046-34-845)
 2:45pm A periodically forced, cubic-like, single neuron
 (1422) equation with multiple attractors.
 Robert J. Decker* and V. W. Noonburg, University
 of Hartford (1046-34-984)
 3:00pm Regular bursting emerging from synaptically
 - (1423) coupled elliptic bursters. Preliminary report.
Jianzhong Su and Humberto Perez*, University of
Texas at Arlington (1046-34-1074)
3:15PM The ultimate N-Body algorithm: Parameter-free,
(1424) adaptive, and parallel.
C. David Pruett*, James Madison University, and
William H. Ingham, James Madison University
(1046-34-949)
3:30pm Break
3:45pm Existence and uniqueness of traveling waves in a
(1425) class of unidirectional lattice differential equations.
Aaron Hoffman, Boston University, and Benjamin
Kennedy*, Gettysburg College (1046-34-790)
4:00pm On singular solutions of Clairaut-type differential
(1426) equations. Preliminary report.
M. Affouf, Kean University (1046-34-1161)
4:15pm Uniqueness implies existence and uniqueness
(1427) conditions for a Class of $(k+j)$-point boundary
value problems for nth order differential equations.
Paul W. Eloe*, University of Dayton, and Johnny
Henderson, Baylor University (1046-34-1253)
4:30pm On the Aizerman problem for second-order systems
(1428) with multiple delays.
Dmitry Altshuller, Crane Aerospace \& Electronics
(1046-34-1258)
4:45pm An application of the left-definite spectral theory to
(1429) the Jacobi differential equation for non-classical
parameters.
Andrea Bruder, Baylor University (1046-34-1355)

5:00pm
(1430)

5:15PM
(1431) focal-like boundary value problems.

5:30pm

- (1432)

5:45PM

- (1433)

Existence of bounded monotonic solutions of second order differential equations. Preliminary report. Lianwen Wang and Rhonda McKee*, University of Central Missouri (1046-34-1425)

Jeffrey A. Ehme*, Spelman College, and Aprillya Lanz, Virginia Military Institute (1046-34-1628)
Continuability and boundedness of solutions of differential equations without bounded assumption on nonlinear functions.
Brittney N. Hinds, University of Central Missouri (1046-34-1769)
dynamical structures and chaotic behavior.
Tyler Y. Takeshita*, University of Northern
Colorado, and Adrienne Amador, Kenyon College (1046-34-1922)
6:00pm Newton-like methods for convex-concave functions

- (1434) via the method of generalized quasilinearization. Preliminary report.
Cesar Martinez Garza, Pennsylvania State
University - Berks Campus (1046-34-2039)

ASL Contributed Paper Session

```
2:00 PM - 4:50 PM
    2:00pm The MP axiom of intensionality: Connecting types
    (1435) and sets.
            Sandro Skansi, University of Zagreb
    2:30pm Some theories concerning deontic implications of
    (1436) proof for belief.
    Billy Joe Lucas, Manhattanville College
    3:00Pm Canonicity in symmetric generalized Galois Logics.
    (1437) Katalin Bimbo*, University of Alberta, and J.
    Michael Dunn, Indiana University
    3:30pm Non-isomorphic automorphism groups of short
    (1438) recursively saturated models of PA.
    Erez Shochat, St. Francis College
    4:00pm Automorphisms of certain filters of L्L
    (1439) Rumen D. Dimitrov, Western Illinois University
    4:30PM Coding Turing degrees in geometric objects.
    (1440) W. Calvert*, Murray State University, V.S.
        Harizanov, The George Washington University, and
        A. Shlapentokh, East Carolina University
```


MAA Minicourse \#1 2: Part B

2:15 PM - 4:15 PM

SNAP Math Fairs in elementary education.
Organizers: Andrew C.-F. Liu, University of Alberta Tanya Thompson, ThinkFun, Inc.

MAA Minicourse \#2: Part B

2:15 PM - 4:15 PM

Using GeoGebra to create activities and applets for visualization and exploration.
Organizer: Michael K. May, Saint Louis University

MAA Minicourse \#7: Part B

2:15 PM - 4:15 PM
A Game Theory path to quantitative literacy.
Organizers: David L. Housman, Goshen College
Richard A. Gillman, Valparaiso
University

RMMC Board of Directors

```
2:15 PM - 4:10 PM
```

MAA Presentations by Teaching Awards Recipients
2:30 PM - 4:00 PM

Organizer: Martha J. Siegel, Towson University
Moderator: Joseph A. Gallian, University of Minnesota-Duluth
(1441) From groups to graphics: Stories of undergraduate research in visualizing abstract mathematics. Michael J. Bardzell, Salisbury University (1046-A0-220)
(1442) My teaching philosophy and the development of keystone method: A synergistic model for teaching and learning.
M. Vali Siadat, Richard J. Daley College (1046-A0-221)
(1443) How to beat the lecture/textbook trap! An active classroom via advance student reading and writing. David J. Pengelley, New Mexico State University (1046-A0-222)

AMS Committee on Science Policy Presentation
2:30 PM - 4:00 PM
Future federal science and technology budgets. Presenter: Kei Koizumi, AAAS

MAA Panel Discussion
2:30 Рм - 3:50 Рм
From the trenches: Middle school teachers look at their training.
Organizers: Florence D. Fasanelli, AAAS
George M. Rosenstein, Franklin \& Marshall College
Moderator: Hyman Bass, University of Michigan, Ann Arbor
Panelists: Beth Cole, St. Patrick Episcopal School Michelle Johncock, Edmund Burke School
Brieta Dougherty-Brill, Maya Angelou
Public Charter School
Marcia Cole, Clark Elementary School

MAA Special Film Presentation

3:00 PM - 4:00 PM

The story of maths (Part II).
Presenter: Robin Wilson, The Open University

MAA Open House

3:00 PM - 6:00 PM
Come see the MAA Dolciani Mathematical Center, the Halmos Carriage House, and the River of Bricks; shuttle service available from the Marriott's 24th St. entrance.

MAA Session on Research on the Teaching and Learning of Undergraduate Mathematics, II

3:15 Рм - 5:00 Рм
Organizers: Keith H. Weber, Rutgers University

Michelle J. Zandieh, Arizona State University
Karen A. Marrongelle, Portland State University
3:15pm Students' reasoning about the concept of limit in

- (1444) the context of reinventing the formal definition. Craig A. Swinyard, University of Portland (1046-U1-1916)
3:50pm Addressing student difficulties with negating
- (1445) mathematical statements and translating statements from English to symbolic form. Preliminary report.
Bonnie Gold, Monmouth University (1046-U1-504)
4:15pm Using a model-eliciting activity to teach exponential
(1446) growth: An investigation of student conceptions and affect.
Stacey A. Bowling, Arizona State University (1046-U1-1443)
4:40pm Designing and assessing hands-on statistics
- (1447) activities: The central limit theorem and hypothesis testing. Preliminary report.
Aaron D. Weinberg* and Thomas J. Pfaff, Ithaca College (1046-U1-1289)

MAA Poster Session on Research by Undergraduate Students

4:00 PM - 5:30 PM
Organizer:
Diana M. Thomas, Montclair State University

AMS Session on Behavioral Sciences

4:15 PM - 5:40 PM

4:15pm Studying voting paradoxes through representation

- (1448) theory.

Gregory Minton, New York, NY (1046-91-1603)
4:30pm Dice voting: A deterministic method for aggregating

- (1449) pairwise preferences. Preliminary report.

Eric A. Gilson*, University of Rochester, Chelsey A. Cooley, North Carolina State University, William M. Ella, University of Mary Washington, Micheal L. Follett and Lorenzo Traldi, Lafayette College (1046-91-1485)
4:45pm Clubs, beliefs, and entrapment.

- (1450) Scott Duke Kominers, Harvard University (1046-91-1432)
5:00PM Uncertainty quantification: Improved stochastic
(1451) finite element approach.

Oleg Roderick*, Argonne National Laboratory / Portland State University, Mihai Anitescu and Paul Fischer, Argonne National Laboratory (1046-90-666)
5:15pm Rational behavior in response to pandemic

- (1452) influenza, and consequences for control. Preliminary report.
Timothy C. Reluga, Pennsylvania State University (1046-91-1547)
5:30pm An optimal strategy for energy allocation in a
- (1453) multiple resource environment. Preliminary report. Anthony Tongen*, D. Brian Walton, Deena Hannoun and Leslie Hindman, James Madison University (1046-91-1791)

AMS Special Presentation on Congressional Fellowships

4:30 Рм - 6:30 Рм
Organizer: Samuel M. Rankin III, AMS

SIGMAA on Business, Industry, and Government Guest Lecture

5:00 PM - 6:00 PM
(1454) Calculus in orbit. Dan Kalman, American University

MAA Information Session

5:00 Рм - 7:00 Рм
Actuarial education; cosponsored by ACTEX, CAS, and SOA.
Organizers: Robert E. Buck, Slippery Rock University
Bettye Anne Case, Florida State University
Kevin E. Charlwood, Washburn University
Steve P. Paris, Florida State University
Panelists: James W. Daniel, University of Texas
at Austin
Ken Guthrie, Society of Actuaries
Bryan Hearsey, Lebanon Valley College
Emily Kessler, Society of Actuaries
Hwa Chi Liang, Washburn University

SIGMAA on Circles Business Meeting

6:00 PM - 7:00 PM

Mathematical Reviews Reception

6:00 PM - 7:00 PM

BIG SIGMAA RECEPTION

6:15 PM - 7:15 Рм

AMS Special Film Presentation

7:00 Pм - 8:30 Рм

Wolfgang Doeblin-A mathematician rediscovered.
SIGMAA on Mathematics and the Arts Special Presentation

7:00 PM - 9:00 Pм

Mathematics and love: A poetry reading.
Organizer: JoAnne Growney, Silver Spring, MD
Moderator: Sarah Glaz, University of Connecticut
Presenters: Karren LaLonde Alenier, Chevy
Chase, MD
Judith Baumel, Adelphi University
Marion Deutsche Cohen, Arcadia University
Jennifer Crow, West Falls, NY
Kathryn DeZur, SUNY Technical
College at Delhi
Sarah Glaz
Emily Grosholz, Pennsylvania State University
JoAnne Growney
Bob Grumman, Port Charlotte, FL
Israel Lewis, Silver Spring, MD

Kaz Maslanka, D3 Technologies Wilmer Mills, University of North Carolina
Wendy Mnookin, Emerson College Kyoko Mori, George Mason University Deanna Nikaido, Baltimore, MD Becky Dennison Sakellariou, Kifissia, GR
Elizabeth Anne Socolow, Evergreen Forum
John Vieira, Potomac, MD
Ellen Wehle, West Chester University

NAM Cox-Talbot Address

7:30 PM - 8:30 PM
(1455) State of a M.A.D. Union.

Leon Woodson, Morgan State University

MAA-Project NExT Reception

8:30 PM - 10:30 PM
All Project NExT Fellows, consultants, and other friends of Project NExT are invited.

Thursday, January 8

MAA Minority Chairs Breakfast Meeting

```
7:00 ам - 8:45 ам
```


Joint Meetings Registration

7:30 Ам - 2:00 Рм
AMS Special Session on Nonlinear Evolution Equations and Their Applications, I

```
7:30 ам - 10:55 ам
```

Organizers: Gaston N'Guerekata, Morgan State University
Alexander A. Pankov, Morgan State University
Guoping Zhang, Morgan State University
Xuming Xie, Morgan State University
Zhijun Qiao, University of Texas Pan
American
7:30am Stability of a combustion front.
(1456) Yuri Latushkin, University of Missouri (1046-35-2125)
8:30am Standing wave of the discrete nonlinear
(1457) Schroedinger equations with growing potentials. Preliminary report.
Guoping Zhang* and Alexander Pankov, Morgan State University (1046-39-722)
9:00am Bilinear equations, integrable semi-discretization,
(1458) and novel numerical computations of the Camassa-Holm equation.
Bao-Feng Feng*, The University of Texas-Pan American, Yasuhiro Ohta, Kobe University, Japan, and Ken-ichi Maruno, The University of Texas-Pan American (1046-35-1426)
$\left.\left.\begin{array}{rl}\text { 9:30AM } & \text { On a method of resolution of controllability } \\ \text { (1459) } & \begin{array}{rl}\text { problems for a semilinear heat equation: } \\ \text { Application to the sentinels. }\end{array} \\ & \text { Gisele Massengo Mophou*, Université des Antilles } \\ \text { et de la Guyanne (Campus de Fouillole), and }\end{array}\right\} \begin{array}{ll}\text { Ousseynou Nakoulima, Universite des Antilles et } \\ \text { de la Guyane (Campus de Fouillole) (1046-93-961) }\end{array}\right\}$ (1046-35-126)

AMS Special Session on Continued Fractions, II

7:30 Am - 10:50 Aм

Organizers: James G. McLaughlin, West Chester University
Nancy J. Wyshinski, Trinity College
7:30am Some types of multi-dimensional continued

- (1462) fractions. Preliminary report.

Khrystyna Kuchmins'ka, Pidstryhach Institute of Applied Problems of Mechanics and Mathematics of NAS of Ukraine (1046-40-606)
8:30Am Sequential closures of continued fractions.
(1463) Preliminary report.

Douglas Bowman, Northern Illinois University (1046-40-1793)
9:00am Classifying sequential closures of q-continued
(1464) fractions. Preliminary report.
D. Bowman and K. J. Campbell*, Northern Illinois University (1046-11-598)
9:30am Nearest square continued fractions, and related - (1465) results.

Keith R. Matthews, Univ. Of Queensland, Brisbane, and Australian Nat'I Univ., Canberra, John P.
Robertson*, Actuarial and Economic Services Division, National Council on Compensation Insurance, Boca Raton, FL, and Jim White, Australian National University, Canberra (1046-11-418)
10:00am Polynomial continued fractions and iterated

- (1466) function systems. Preliminary report.

Eugen Andrei Ghenciu, University of Alaska Fairbanks (1046-11-142)
10:30am Some new families of Tasoevian and Hurwitzian (1467) continued fractions.

James G. Mc Laughlin, West Chester University, PA (1046-11-127)

AMS-MAA Special Session on History of Mathematics, III

```
8:00 ам - 10:55 ам
```

Organizers: Joseph W. Dauben, Lehman College Karen H. Parshall, University of Virginia
Patti Hunter, Westmont College
Deborah Kent, Hillsdale College
8:00am On the history of algebra. Preliminary report.

- (1468) Victor J. Katz, University of the District of Columbia (1046-01-447)
8:30am The problem of word problems. Preliminary report.
(1469) Duncan J. Melville, St. Lawrence University (1046-01-639)

$\begin{array}{r} 9: 00 \mathrm{AM} \\ -\quad(1470) \end{array}$	Drawing diagrams and making arguments in mathematics. Nathan Sidoli, Osaka Prefecture University (1046-01-557)
$\begin{aligned} & \text { 9:30AM } \\ & (1471) \end{aligned}$	Ptolemy's indisputable mathematical tools. Jacqueline Feke, IHPST, University of Toronto (1046-01-719)
$\begin{array}{r} 10: 00 \mathrm{AM} \\ -\quad(1472) \end{array}$	From proofs to Suanli (mathematical principles) in Late Imperial China. Jiang-Ping Jeff Chen, St. Cloud State University (1046-01-238)
$\begin{array}{r} 10: 30 \mathrm{AM} \\ -\quad(1473) \end{array}$	George Sarton (1884-1956) and Chinese mathematics. Preliminary report. Yibao Xu, BMCC, CUNY (1046-01-242)

AMS-MAA Special Session on Inquiry-Based Learning, I

8:00 AM - 10:45 AM

Organizers: William B. Jacob, University of California Santa Barbara
Paul J. Sally, University of Chicago
Ralf J. Spatzier, University of Michigan
Michael Starbird, University of Texas at Austin
8:00am IBL analysis at The University of Texas. Preliminary
(1474) report.

Edward Odell, The University of Texas at Austin (1046-97-1259)
8:30am Inquiry about inquiry: Use of case studies to
(1475) develop mathematical ideas in courses for pre-service teachers.
Bill Jacob, University of California, Santa Barbara (1046-97-779)
9:00am Inquiry-based learning opportunities for secondary
(1476) teachers and students.

Bret Benesh, College of Saint Benedict, Andrew
Engelward, Harvard University, Thomas W.
Judson*, Stephen F. Austin University, and
Matthew Leingang, New York University (1046-97-489)
9:30am Outreach IBL at the University of Chicago.
(1477) Paul J. Sally, University of Chicago (1046-97-1380)

10:00am Discussion

AMS Special Session on Function Theoretic Operator Theory, I

8:00 ам - 10:50 ам

Organizers: John B. Conway, George Washington University
Sherwin Kouchekian, University of South Florida
William T. Ross, University of Richmond
8:00am Nehari's problem and matrix A_{2}.
(1478) Alexander L. Volberg*, Michigan State University, University of Edinburgh, and Peter Yuditskii, Univ. of Linz, Austria, MSU (1046-30-457)
8:30am Toeplitz kernels and Polya sets.
(1479) Alexei Poltoratski, Texas A\&M University (1046-30-320)
9:00am Asymptotics of polynomials orthogonal over planar
(1480) regions with analytic boundary. Preliminary report. Erwin Miña-Díaz*, University of Mississippi, and Peter Dragnev, Indiana-Purdue University Fort Wayne (1046-30-651)

9:30am Toeplitz-Composition algebras with several (1481) generators.
 Tom Kriete, Barbara MacCluer, University of Virginia, and Jennifer Moorhouse*, Colgate University (1046-46-1433)
 10:00am Multiplication operators on the Bloch space of a
 (1482) bounded homogeneous domain. Preliminary report. Robert F. Allen, George Mason University (1046-47-567)
 10:30am Hypercyclic operators with a prescribed spectrum.
 (1483) Preliminary report.
 Nathan S. Feldman, Washington \& Lee University (1046-47-914)

AMS Special Session on Commutative Rings, II

 8:00 ам - 10:50 амOrganizers: Jay A. Shapiro, George Mason University
David E. Dobbs, University of Tennessee, Knoxville
Shane P. Redmond, Eastern Kentucky University
Joe A. Stickles, Millikin University
8:00am Kronecker function rings of transcendental field (1484) extensions.

Olivier Kwegna Heubo, New Mexico State Univerity (1046-13-237)
8:30am Compact metric spaces and Prufer domains of
(1485) polynomials. Preliminary report.
K. Alan Loper*, Ohio State University - Newark, and Francesca Tartarone, University of Rome III (1046-13-1375)
9:00am Prufer domains with Clifford class semigroup.

- (1486) Warren Wm. McGovern, Bowling Green State University (1046-13-1238)
9:30am Straight rings, II. Preliminary report.
(1487) Gabriel Picavet*, Université Blaise Pascal, and D. E.

Dobbs, University of Tennessee, Knoxville (1046-13-851)
10:00am Gaussian properties of group rings. Preliminary
(1488) report.

Sarah Glaz, University of Connecticut (1046-13-1291)
10:30ам Finitistic projective and flat dimensions of
(1489) commutative rings.

Silvana Bazzoni, Padova University, Italy (1046-13-1204)

AMS Special Session on SAGE and Mathematical Research Using Open Source Software, I

```
8:00 Aм - 10:50 ам
```

Organizers: David Saunders, University of Delaware
David Harvey, Harvard University David Joyner, U.S. Naval Academy
8:00AM Undergraduate research in the mathematics of

- (1490) voting and choice using Sage. Preliminary report. Karl-Dieter Crisman, Gordon College (1046-91-102)
8:30am Sage in an early-graduate research course
- (1491) investigating the minimum rank problem. Jason Grout, Iowa State University (1046-15-1841)
9:00am zn_poly: A library for polynomial arithmetic.
(1492) Preliminary report.

David M. Harvey, New York University (1046-11-1822)

9:30am Fast multiplication with low space complexity.

- (1493) Preliminary report.

Daniel S. Roche, University of Waterloo (1046-68-1837)
10:00am Solutions, bounds, and finiteness of polynomial

- (1494) systems in Sage.

Marshall Hampton, University of Minnesota, Duluth (1046-13-20)
10:30am Rump's model problem and the computer search

- (1495) for records in number theory. Preliminary report. Erich Kaltofen, North Carolina State University (1046-11-2094)

AMS Special Session on Homotopy Theory and Higher Categories, III

8:00 AM - 10:50 Aм

Organizers: Thomas M. Fiore, University of Chicago
Mark W. Johnson, Penn State Altoona
James M. Turner, Calvin College
W. Stephen Wilson, Johns Hopkins University
Donald Yau, Ohio State University at Newark
8:00am The homotopy theory of n-fold categories.
(1496) Thomas M. Fiore*, University of Chicago, Simona Paoli, University of Haifa, and Dorette Pronk, Dalhousie University (1046-55-156)
8:30am Defining the units of equivariant ring spectra.
(1497) Rekha Santhanam, Johns Hopkins University (1046-55-1248)
9:00am Orientations and p-adic Analysis.
(1498) Barry John Walker, Northwestern University (1046-55-2105)
9:30am Level structures, Igusa tower and topological
(1499) modular forms.

Valentina Joukhovitski, University of Michigan (1046-55-1845)
10:00am The homology of topological modular forms.
(1500) Paul Thomas Pearson, University of Rochester (1046-55-1436)
10:30am Unstable module presentations for the cohomology
(1501) of real projective spaces. David Pengelley* and Frank Williams, New Mexico State University (1046-55-279)

AMS Special Session on Spectra of Matrix Patterns and Applications to Dynamical Systems, I
8:00 AM - 10:50 Aм
Organizers: Bryan L. Shader, University of Wyoming
Luz M. DeAlba, Drake University
Leslie Hogben, Iowa State University
In-Jae Kim, Minnesota State University
8:00Am Spectra of matrix patterns.
(1502) Leslie Hogben, Iowa State University \& American Institute of Mathematics (1046-15-671)
8:30Ам Spectra of matrices applied to dynamical models of
(1503) infectious disease.

Pauline van den Driessche, University of Victoria, Canada (1046-15-568)
9:00Am Spectral properties of nonnegative and eventually
(1504) nonnegative matrices.

Judith J. McDonald, Washington State University (1046-15-1339)

9:30Am	Should I stay or should I go? On the evolution of (1505) dispersal. Sebastian J. Schreiber, University of California,
Davis (1046-92-434)	
10:00am	Eigenvalues and the scrambling index for stochastic (1506) matrices. Mahmud Akelbek, Weber State University, and Steve Kirkland*, University of Regina (1046-15-1029)
10:30AM	Low rank perturbations and inertias of full
(1507)	symmetric sign patterns. Charles Waters and In-Jae Kim*, Minnesota State University, Mankato (1046-15-541)

AMS Special Session on Financial Mathematics, II

```
8:00 Aм - 10:50 ам
    Organizers: Erhan Bayraktar, University of
            Michigan
            Tim Siu-Tang Leung, Johns Hopkins
            University
            Birgit Rudloff, Princeton University
    8:00Am The recent financial turmoil and related research
- (1508) problems.
            Steven Kou, Columbia University (1046-91-744)
    8:30Am Stability and equilibria of financial markets.
    (1509) Preliminary report.
        Gordan Zitkovic, University of Texas at Austin
        (1046-91-759)
    9:00am Stock market insider trading in continuous time
    (1510) with imperfect dynamic information.
        Albina Danilova, Carnegie Mellon University
        (1046-91-1297)
    9:30am A Markov model for the dynamics of a limit order
    (1511) book.
        Sasha F. Stoikov*, Cornell, Rama Cont and Rishi
        Talreja, Columbia (1046-90-1450)
    10:00am No arbitrage conditions for simple trading
    (1512) strategies.
            Hasanjan Sayit*, Worcester Polytechnic Institute.,
            and Erhan Bayraktar, University of Michigan
            (1046-60-778)
    10:30am A note on admissible strategies for general
    (1513) stochastic processes and applications. Preliminary
        report.
        Sara Biagini, Universita' di Perugia, and Mihai
        Sirbu*, University of Texas at Austin
        (1046-60-1427)
```

AMS Special Session on Dynamical Systems and
Differential Equations: Theory and Applications, II
8:00 Ам - 10:50 ам
Organizers: Annalisa Crannell, Franklin \& Marshall
College
Suzanne Sindi, Brown University
8:00am An extension of the notion of zero-epi maps to the
(1514) context of topological spaces.
Alfonso Vignoli, Seconda Università di Roma -Tor
Vergata (1046-37-1651)
8:30am The minimal period problem of Mario Martelli.
(1515) Diana M. Thomas, Montclair State University
(1046-34-1587)
9:00am Multiple limit cycles in the standard model of three

- (1516) species competition for three essential resources.
Steve Baer, Arizona State University, Bingtuan Li,
University of Louisville, and Hal L. Smith*, Arizona
State University (1046-34-477)

9:30AM	Modeling the evolution of repetitive sequence in
(1517)	DNA. Suzanne S. Sindi, Brown University (1046-34-551)
10:00AM	Globally stable equilibria.
(1518)	Basilio Messano, University of Napoli (1046-37-711)
10:30AM	On the longitudinal librations of hyperion.
(1519)	Mario Umberto Martelli, Claremont Graduate University (1046-34-634)

AMS Special Session on Orderings in Logic and Topology, I

8:00 AM - 10:50 Aм

Organizers: Valentina S. Harizanov, George
Washington University
Jozef H. Przytycki, George
Washington University
8:30am Topology of spaces of orderings of groups.

- (1520) Preliminary report.

Adam S. Sikora, SUNY Buffalo (1046-06-1077)
9:30am The Conrad property for left orderings on groups
(1521) from a topological and a dynamical viewpoint.

Andres Navas, University of Santiago, Chile (1046-06-662)
10:30am Left ordered and discretely ordered groups.
(1522) Peter A. Linnell, Virginia Tech (1046-20-1073)

AMS Special Session on Scientific Computing and Advanced Computation, I

8:00 AM - 10:50 Am
Organizers: Edward Castillo Jr., University of California Irvine
James M. Rath, University of Texas at Austin
Sarah A. Williams, University of California Davis
8:00AM Asynchronous event-driven particle algorithms in
(1523) computational materials science. Aleksandar Donev, Lawrence Livermore National Laboratory (1046-68-1397)
8:30am A noisy adiabatic theorem and implications for

- (1524) quantum computing.

Dianne P. O'Leary, University of Maryland (1046-65-569)
9:00am The mathematics of scientific software automation.
(1525) L. Ridgway Scott, University of Chicago (1046-65-1205)
9:30am Computational optimization: Insights \& questions.

- (1526) Stephen G. Nash, George Mason University (1046-49-1228)
10:00am Experiences in computational science and the
- (1527) Department of Scientific Computing at FSU. Max Gunzburger, Florida State University (1046-65-2117)
10:30am Scientific computing at Stony Brook University.
- (1528) James Glimm, Stony Brook University (1046-76-1216)

AMS Session on Algebraic Geometry and K-Theory

8:00 ам - 10:55 ам

8:00am Differential Tannakian categories.
(1529) Alexey Ovchinnikov, University of Illinois at Chicago (1046-14-100)

	Motivic zeta-functions for curves with group actions. Justin D. Mazur, Indiana University (1046-14-5
$\begin{aligned} & 8: 30 \mathrm{AM} \\ & (1531) \end{aligned}$	On splice quotients of the form $\left\{z^{n}=f(x, y)\right\}$. Elizabeth A. Sell, Millersville University (1046-14-169)
$\begin{aligned} & 8: 45 \\ & (153 \end{aligned}$	K3 surfaces and modular parametrizations. Ursula A. Whitcher, University of Washington (1046-14-312)
0A	Translation covers among triangular billiards surfaces. Preliminary report. Jason P. Schmurr, Oregon State University (1046-14-535)
	Birational geometry of the moduli space of curves with marked points. David Jensen, University of Texas at Austin $(1046-14-996)$
9:30am	Break
$\begin{array}{r} 9: 45 \mathrm{AM} \\ -\quad(1535) \end{array}$	Weighted homogeneous polynomials and the Jacobian in two variables. Preliminary report. James Price, Purdue University (1046-14-935)
$\begin{array}{r} \text { 10:00АА } \\ (1536) \end{array}$	Bounded category of an exact category. Seshendra Pallekonda, King's College (1046-19-700)
$\begin{array}{r} 10: 15 \mathrm{AM} \\ (1537) \end{array}$	Localization formulae in odd K-theory. Preliminary report. Florentiu Daniel Cibotaru, University of Notre Dame (1046-19-1134)
$\begin{array}{r} 10: 30 \mathrm{AM} \\ (1538) \end{array}$	Solving polynomial systems on a parallel computer with PHCpack and PHClab. Yun Guan* and Jan Verschelde, University of Illinois at Chicago (1046-14-1873)
$\begin{array}{r} 10: 45 \mathrm{AM} \\ (1539) \end{array}$	Some syzygies of the generators of the ideal of a border basis scheme. Preliminary report. Mark E. Huibregtse, Skidmore College (1046-14-1239)

AMS Session on Combinatorics, III
8:00 ам - 10:55 ам
8:00am Reduced decompositions with few repetitions and
(1540) permutation patterns.

Daniel Daly, University of Denver (1046-05-836)
8:15am Subsets of finite groups exhibiting additive
(1541) regularity.

Todd M. Gutekunst, King's College (1046-05-888)
8:30am On the Erdos-Sos and Komlos Sos Conjecture for

- (1542) graphs without a K(2,s).

Suman Balasubramanian* and Edward Dobson,
Mississippi State University (1046-05-986)
8:45Am The critical independence number of a graph and

- (1543) an independence decomposition.

Craig Larson, Virginia Commonwealth University (1046-05-1042)
9:00am Extremal functions of forbidden double permutation (1544) matrices.

Jesse T. Geneson, Harvard University (1046-05-829)
9:15Am Break.
9:30am Secondary domination graphs of tournaments.
(1545) Kim A.S. Factor, Marquette University, and Larry J. Langley*, University of the Pacific (1046-05-868)
9:45am Extending generating functions to $S_{k} \backslash S_{n}$.

- (1546) Andrew G. Niedermaier, University of California -

San Diego (1046-05-816)
10:00am The Hall-Paige conjecture in non-associative

- (1547) contexts.

Kyle Pula, University of Denver (1046-05-1168)

10:15am Non-embeddable quasi-residual Menon designs.

- (1548) Tariq A. Alraqad*, Northern State University, and Mohan Shrikhande, Central Michigan University (1046-05-1184)
10:30am Enumerating Rook paths and Queen paths.
- (1549) Preliminary report.

Martin J. Erickson, Truman State University (1046-05-1220)
10:45am The rainbow index of a graph.

- (1550) Futaba Okamoto*, University of Wisconsin - La Crosse, Gary Chartrand and Ping Zhang, Western Michigan University (1046-05-1226)

AMS Session on Manifolds and Cell Complexes

8:00 AM - 10:55 AM

8:00am Dean knots.
(1551) Brandy J. Guntel, The University of Texas at Austin (1046-57-64)
8:15Am Surgery equivalence invariants of generalized
(1552) colored knots.

Steven D. Wallace, Macon State College (1046-57-552)
8:30am Circular thin position for knots.

- (1553) Manjarrez-Gutierez Fabiola, UC Davis (1046-57-1282)
8:45am The bridge number of knots and links which differ
(1554) from a split link by a rational tangle replacement. Scott A. Taylor, Colby College (1046-57-1340)
9:00Am The growth of the quantum hyperbolic invariants of
(1555) the figure eight knot. Preliminary report.

Heather M. Molle, The University of Iowa (1046-57-1702)
9:15am On knot Floer homology of satellite (1,1) knots.
(1556) Philip J. P. Ording, Medgar Evers College, CUNY (1046-57-676)
9:30am Three manifold cobordisms and homotopy Lie
(1557) algebras.

Benjamin J. Cooper, University of California, San Diego (1046-57-1470)
9:45am High distance knots in 3-manifolds.
(1558) Marion Moore* and Matt Rathbun, University of California at Davis (1046-57-1872)
10:00am Relative critical sets: Structure and application.

- (1559) Jason E. Miller, Truman State University (1046-57-1950)
10:15Am Pictures of the second homotopy module of a
(1560) two-complex. Preliminary report.

Katherine S. Byler Kelm, California State University, Fresno (1046-57-1764)
10:30Am The space of regular polygons.

- (1561) Angela L. Pile, Lock Haven University of Pennsylvania (1046-57-616)
10:45am Cohomology of cohomogeneity-one manifolds.
(1562) Shari K. Ultman, Oregon State University (1046-57-286)

MAA Session on College Algebra: Focusing on Conceptual Understanding, Real-World Data, and Mathematical Modeling, II

8:00 Aм - 10:55 Am
Organizers: Florence S. Gordon, New York Institute of Technology
Laurette B. Foster, Prairie View A\&M University
Yajun Yang, Farmingdale State College

Ray E. Collings, Georgia Perimeter College
8:00am Engaging precalculus students in the complete (1563) process of mathematical modeling.

Paula Shorter*, Mairead Greene and Zdenka Guadarrama, Rockhurst University (1046-C1-1878)
8:20am Involving students in conceptual learning in college

- (1564) algebra and pre-calculus.

Joyati Debnath, Winona State University
(1046-C1-1146)
8:40am Elementary modeling across the two-year college

- (1565) curriculum.

Alice Eiko Pierce* and Ray E. Collings, Georgia Perimeter College (1046-C1-1745)
9:00am Teaching modeling college algebra for 2000

- (1566) students: Garnering support from faculty and administrators.
Bill Haver* and Kim Shannon, Virginia
Commonwealth University (1046-C1-1858)
9:20am Teaching modeling college algebra for 2000
- (1567) students: Providing professional development and course materials for instructors.
Ed Eades* and Bill Haver, Virginia Commonwealth University (1046-C1-1862)
9:40am Changing the culture: Professional development for
(1568) an activity-based modeling approach to teaching college algebra.
Barbara E. Edwards, Oregon State University, Corvallis, OR (1046-C1-1808)
10:00am Students' conceptual understanding and attitudes
(1569) in an activity-based modeling approach to teaching college algebra.
Stephanie Bowers*, Barbara E. Edwards, Charisse Hake, Gulden Karakok and Ching-chia Ko, Oregon State University (1046-C1-1800)
10:20am Implementation of refocused college algebra at
- (1570) Howard University.
J. F. McGowan, Howard University (1046-C1-1276)

10:40AM "I'd rather be approximately right than precisely

- (1571) wrong": Moving beyond mathematicians' natural obsession with the exact in college algebra. Preliminary report.
Suzanne I. Dorée, Augsburg College (Minneapolis, MN) (1046-C1-408)

MAA Session on Developmental Mathematics
 Education: Helping Under-Prepared Students Transition to College-Level Mathematics

8:00 Ам - 10:55 ам

Organizers: J. Winston Crawley, Shippensburg University
Kimberly Presser, Shippensburg University
8:00am Building bridges to college mathematics.
(1572) Preliminary report.

Dora Cardenas Ahmadi, Morehead State University (1046-F1-1167)
8:20am "Rock Math" - Helping under-prepared students

- (1573) make the transition to college mathematics.

Robert E. Burks Jr., United States Military Academy (1046-F1-1199)
8:40am Females in mathematics: Why aren't they

- (1574) persisting? And what can we do to encourage them to stay? Preliminary report.
Carla V. Gerberry, Purdue University (1046-F1-686)

9:00am Combination of formative and summative

- (1575) assessment instruments in elementary algebra classes at the college. Preliminary report.
Euguenia V. Peterson and M. Vali Siadat*, Richard J. Daley College (1046-F1-358)

9:20am Some thoughts from teaching math for business
(1576) course.

Yun Lu, Kutztown University of Pennsylvania (1046-F1-830)
9:40am RASM reconstruction of the developmental

- (1577) mathematics program.

Clyde L. Greeno, MALEI Mathematics Institute (1046-F1-1178)
10:00am Statistics: The key to college success for

- (1578) educationally under-prepared students. Preliminary report.
John F. Loase, Concordia College (1046-F1-18)
10:20am Integration of the Keystone Methodology with
(1579) computer technology.

Cyrill Oseledets, Vali Siadat and Ming-Jer Wang*, Richard J. Daley College (1046-F1-921)
10:40am Successfully transitioning under-prepared first-year

- (1580) pre-calculus students.

Joy Moore, Xavier University (1046-F1-1302)
MAA Session on Mathematics and the Arts, II
8:00 ам - 10:55 ам
Organizer: Douglas E. Norton, Villanova University
8:00am Mathematical photo scavenger hunt.

- (1581) Dale K. Hathaway, Olivet Nazarene University (1046-J1-920)
8:20Am On the beauty of mathematics.
- (1582) Olya V. Sahakyan, Armenian State Pedagogical University after Kh. Abovyan (1046-J1-1180)
8:40AM Cracking open the books: Encouraging
(1583) undergraduates to interact with mathematic(al) texts. Preliminary report.
Jeffrey P. Smith, Otterbein College (1046-J1-45)
9:00am Newton and Fibonacci: Estimating The Golden Ratio.
- (1584) Michelle Y. Penner, Central Virginia Community College (1046-J1-1707)
9:20am Mathematics of southern Appalachian folk pottery.
- (1585) Michelle Krolikowski* and Elizabeth C Rogers, Piedmont College (1046-J1-2021)
9:40am Recreating a decagonal star polygon design.
- (1586) B. Lynn Bodner, Monmouth University (1046-J1-461)
10:00am On Ricochet compositions for N -gons. Preliminary
- (1587) report.

Gary R. Greenfield, University of Richmond (1046-J1-407)
10:20am A brief study of designs on the surfaces of some

- (1588) swing-hinged dissections.

Reza Sarhangi, Towson University (1046-J1-436)
10:40am The symmetry of M.C. Escher's Circle Limit IV

- (1589) pattern and related patterns. Preliminary report. Douglas Dunham, University of Minnesota Duluth (1046-J1-1965)

MAA Session on Promoting Deep Learning for Mathematics Majors through Experiential Learning, Writing, and Reflection, I

8:00 ам - 10:55 ам

Organizers: Murphy Waggoner, Simpson College Chuck Straley, Wheaton College

8:00am Semi inquiry-based learning in undergraduate real

- (1590) analysis. Preliminary report. Jialing Dai, The University of the Pacific (1046-S1-2070)
8:20am How to stop a British ship: Projectile motion, the
- (1591) Revolutionary War, and West Point.

Doug M. Fletcher*, United States Military Academy, West Point, and Gary Kramlich, 82d Airborne Division, Fort Bragg, NC (1046-S1-1578)
8:40Am Inquiry-based learning in a discrete mathematics
(1592) with graph theory course. Preliminary report. Feryal Alayont, Grand Valley State University (1046-S1-1900)
9:00am Discussion and revisiting of calculus concepts to

- (1593) gain understanding of main concepts. Preliminary report.
Jose H. Giraldo, Texas A\&M University-Corpus Christi (1046-S1-2045)
9:20am Calculus field trips.
(1594) Despina Prapavessi*, Karen Edwards and C. Samuel Needham, Diablo Valley College (1046-S1-482)
9:40am Midwest Math-in: 24 hours of math.
- (1595) Benjamin J. Galluzzo, University of Iowa (1046-S1-1524)
10:00am Escalating writing assignments in calculus 1.
- (1596) Brian P. Kelly, Bryant University (1046-S1-1747)

10:20am Developing future secondary teachers'

- (1597) mathematics knowledge (for teaching) with student presentations. Preliminary report.
Erica L. Johnson, St. John Fisher College (1046-S1-1905)
10:40am Implementing SENCER ideals into an introductory
- (1598) statistics course. Preliminary report.

Katarzyna Potocka, Ramapo College of New Jersey (1046-S1-528)

MAA General Contributed Paper Session, X

8:00 AM - 10:55 AM

Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: Lawrence D’Antonio, Ramapo College of New Jersey
Stephen Szydlik, University of Wisconsin-Oshkosh
Stan VerNooy, College of Southern Nevada
Carlos Bovell, Mercer Community College
8:00am a few new approaches to teach remedial math in

- (1599) the college. Preliminary report.

Haishen Yao, CUNY Queensborough Community College (1046-Z1-1689)
8:15am Bilingual and English language learners

- (1600) understanding and solving mathematics problems. Preliminary report.
Heather Cavell, Liana Dawson, Kathleen Ross
and Belin Tsinnajinnie*, University of Arizona (1046-Z1-1779)
8:30am Coordinating tutoring with the calculus I classroom.
- (1601) Preliminary report.

Sharon S. Emerson-Stonnell* and Robert D. Markey, Longwood University (1046-Z1-844)
8:45am Engagement across the disciplines. Preliminary

- (1602) report.

Laura J. Schmidt* and Eileen M. Zito, University of Wisconsin-Stout (1046-Z1-741)

9:00am What is mathematics and what kind of answers will

- (1603) satisfy this question?

Carlos R. Bovell, Northern Burlington County Regional High School (1046-Z1-71)
9:15am What if your precalculus student asks a good

- (1604) question?

Stan VerNooy, College of Southern Nevada (1046-Z1-1063)
9:30am The WiVaM Consortium REU-RET. Preliminary report.

- (1605) Colin L Starr* and Inga Johnson, Willamette University (1046-Z1-870)
9:45am Is mathematics an exact science?
- (1606) Lawrence A. D'Antonio, Ramapo College of New Jersey (1046-Z1-403)
10:00am A moment of truth: Teaching an honors seminar
- (1607) course.

Stephen D. Szydlik, University of
Wisconsin-Oshkosh (1046-Z1-1688)
10:15am Tiings, compositions, and generalizations.

- (1608) Ralph P. Grimaldi, Rose-Hulman Institute of Technology (1046-Z1-904)
10:30am Making effective use of the uniform distribution in
- (1609) an introductory probability theory course.

Paul S. Rossi, College of Saint Elizabeth (1046-Z1-1300)
10:45am Problems in combining rational expressions and
(1610) factorization of a special kind of quadratic trinomial.
Bernardo Rivera Marquez, Ateneo de Naga University (1046-Z1-1187)

SIAM Minisymposium on the Mathematics of Energy Conversion

8:00	55 ам
	Organizer: Keith Promislow, Michigan State University
$\begin{aligned} & \text { 8:00ам } \\ & (1611) \end{aligned}$	Intercalation dynamics in rechargeable batteries. Martin Z. Bazant, Stanford University (1046-00-1142)
$\begin{aligned} & 8: 30 \text { Ам } \\ & (1612) \end{aligned}$	Non-linear dynamics of transport and mechanical properties in PEM fuel cells. Jay Benziger, Princeton University (1046-74-1243)
$\begin{aligned} & \text { 9:00AM } \\ & (1613) \end{aligned}$	Proton conduction in polymer electrolyte membranes. Keith S. Promislow, Michigan State University (1046-70-881)
$\begin{aligned} & \text { 9:30Ам } \\ & (1614) \end{aligned}$	Existence of positive solutions to a nonlinear PDE system, modeling fuel cell dynamics near a triple phase boundary. Arian Novruzi*, University of Ottawa, and Al-Arydah Mo'Tassem, University of Ottawa (1046-35-1416)
$\begin{array}{r} \text { 10:00Ам } \\ (1615) \end{array}$	Simulation of microstructures in energy conversion systems. Katsuyo Thornton, University of Michigan (1046-80-1529)
$\begin{array}{r} 10: 30 \mathrm{AM} \\ (1616) \end{array}$	Gamma convergence for functionalized energies. Preliminary report. Yang Li* and Keith S. Promislow, Michigan State University (1046-35-1982)

ASL Invited Addresses and Contributed Paper Sessions

8:00 Ам - 5:30 Рм

AWM Workshop
8:20 AM - 4:30 PM
This session has several parts that will be
listed separately by time in this program. All
presentations are open to all JMM participants.

AMS Session on Approximations and Expansions

8:30 Ам	AM
$\begin{aligned} & 8: 30 \mathrm{AM} \\ & (1617) \end{aligned}$	Functions with strongly unique best approximates are dense in vector valued approximation. Martin Bartelt*, Christopher Newport University, and John Swetits, Old Dominion University (1046-41-331)
$\begin{aligned} & 8: 45 \text { ам } \\ & (1618) \end{aligned}$	Statistical learning methods for uniform approximation bounds in multiresolution spaces. Mark A. Kon, Boston University, and Louise A. Raphael*, Howard University (1046-41-473)
$\begin{aligned} & \text { 9:00AM } \\ & (1619) \end{aligned}$	On smoothness of nonlinear subdivision schemes. Esfandiar Nava-Yazdani, Drexel University (1046-41-803)
$\begin{aligned} & 9: 15 \mathrm{AM} \\ & (1620) \end{aligned}$	A generalization of a result of G. Pólya and its application to a continuous extension of the de la Vallée Poussin means. Alfred S. Cavaretta and Terence G. Hanchin*, Kent State University (1046-41-1246)
$\begin{aligned} & \text { 9:30AM } \\ & (1621) \end{aligned}$	Statistical approximation for stochastic processes. George A. Anastassiou*, University of Memphis, Oktay Duman, TOBB Economics and Technology University, and Esra Erkus-Duman, Gazi University (1046-41-58)
9:45am	Break
$\begin{array}{r} \text { 10:00ам } \\ (1622) \end{array}$	Vector field decomposition on the sphere using radial basis functions. Edward J. Fuselier*, United States Military Academy, and Grady B. Wright, Boise State University (1046-41-572)
$\begin{array}{r} 10: 15 \mathrm{AM} \\ (1623) \end{array}$	A context for sylvester's theorem on sums of shifted monomial powers. Preliminary report. Alfred S. Cavaretta* and Terence Hanchin, Kent State University (1046-41-1318)
$\begin{array}{r} 10: 30 \mathrm{AM} \\ (1624) \end{array}$	Approximating Bessel functions of the first kind using super-Gaussians. Patricia Mellodge* and S. S. Townsend, University of Hartford (1046-41-1474)
$\begin{array}{r} 10: 45 \mathrm{AM} \\ (1625) \end{array}$	Applying expansion techniques of multivariate expansion base method and extended Hensel construction to cryptography. Preliminary report. Maki Iwami, Osaka University of Economics and Law (1046-41-2040)

AMS Session on Mechanics

```
8:30 AM - 10:55 AM
```

 8:30am A family of orbits in the Newtonian three-body
 - (1626) problem.
Elizabeth A. Zollinger, Hiram College
(1046-70-256)
8:45am Explicit symplectic integration of compact lie
(1627) Poisson systems.
Steven Benzel, Berry College (1046-70-1274)
9:00Am Three-dimensional equilibrium crystal shapes with
(1628) corner energy regularization.
Antonio Mastroberardino*, Penn State Erie,
and Brian J. Spencer, University at Buffalo
(1046-70-1429)

9:30am A 3-D nonlinear anisotropic elastodynamic model
(1630) for rapid enlargement of intracranial saccular aneurysms. Preliminary report.
Janet Chen Daniel, Anthony Tongen, Paul G.
Warne and Debra Polignone Warne*, James Madison University (1046-74-1314)
9:45am Break
10:00am Relaxed matching for stabilization of mechanical (1631) systems.

David A. Long*, North Carolina State University, Anthony M. Bloch, University of Michigan, Jerrold E. Marsden, California Institute of Technology, and Dmitry V. Zenkov, North Carolina State University (1046-70-549)
10:15am Stability results for a multilayer Mead-Markus
(1632) beam.

Aaron A. Allen* and Scott W. Hansen, Iowa State University (1046-74-809)
10:30am Numerical results for energy decay in thermoelastic
(1633) beams. Preliminary report.

Tim McDevitt, Elizabethtown College (1046-74-1714)
10:45am F dot ds...simple calculus, deep physics. Preliminary

- (1634) report.

Lawrence S. Braden, St. Paul's School (1046-01-166)

AMS Session on Logic and Computer Science

8:30 AM - 10:55 Aм

8:30am Convergence with a fixed regulator in residuated
(1635) lattices.

Lavinia Corina Ciungu, State University of New York at Buffalo (1046-03-337)
8:45AM Reducts of generalized random bipartite graph.
(1636) Yun Lu, Kutztown University of Pennsylvania (1046-03-824)
9:00am Separating the degree spectra of structures.
(1637) Tyler J. Markkanen, University of Connecticut (1046-03-1799)
9:15am Investigating KeeLoq.

- (1638) Amber M. Rogers*, Northern Kentucky University, and Brad Fox, Transylvania University (1046-68-718)
9:30am Computable dimension of ordered fields.
(1639) Oscar Levin, University of Connecticut (1046-03-1337)
9:45am Break
10:00Am Reverse mathematics of theorems involving the
(1640) coloring number of graphs.

Matthew A. Jura, University of Connecticut (1046-03-1677)
10:15Am The inverse fixed point theorem and image
(1641) encoding. Preliminary report.

Chokri Cherif* and Avraham Goldstein, BMCC/City University of New York (1046-68-1023)
10:30am Can you hear me now? Preliminary report.

- (1642) Le Gui, University of Iowa (1046-94-274)

10:45am Infinite families of recursive formulas generating
(1643) power moments of Kloosterman sums: Symplectic case.
Dae San Kim, Sogang University (1046-94-1176)

AWM Workshop: Research Presentations by Recent Ph.D.'s, I

8:30 Aм - 10:20 Aм
8:30am On the Casimir fields of $q(n)^{(1)}$. Preliminary report
(1644) Jennifer D. Berg, Fitchburg State College (1046-22-263)
9:00am Elliptic curves of large rank in towers of function (1645) fields.

Lisa A. Berger, Stony Brook University (1046-11-288)
9:30am Sobolev estimates for the Green potential
(1646) associated with the Robin-Laplacian.

Tunde Jakab*, Irina Mitrea, University of Virginia, and Marius Mitrea, University of Missouri-Columbia (1046-35-208)
10:00am Ray class groups.
(1647) Jing Long Hoelscher, University of Arizona (1046-11-258)

AMS Committee on Education Panel Discussion
8:30 ам - 10:00 ам
The future of school mathematics education. Moderator: William G. McCallum, University of Arizona
Panelists: Scott J. Baldridge, Louisiana State University
Daniel Chazan, University of Maryland
Solomon A. Garfunkel, COMAP
Kristin Umland, University of New Mexico

AMS Invited Address

9:00 ам - 9:50 ам
(1648) On Nash, Brouwer, and other nonconstructive proofs.
Christos Papadimitriou, University of California Berkeley

ASL Invited Address

9:00 ам - 9:50 ам
(1649) Computable structure theory. Barbara Csima, University of Waterloo (1046-03-105)

AMS Special Session on New Connections Between Topology, Combinatorics, and Physics, I

9:00 Aм - 10:45 ам
Organizers: Paul Fendley, University of Virginia Slava Krushkal, University of Virginia
9:00am Diagrammatics of biadjoint functors and beyond.
(1650) Mikhail Khovanov, Columbia University (1046-18-738)
10:00am Self-duality and generalized differential
(1651) cohomology.

Gregory W. Moore, Rutgers University (1046-81-931)

MAA Minicourse \#1 3: Part B
9:00 AM - 11:00 Aм
Directing undergraduate research.
Organizer: Aparna W. Higgins, University of Dayton

MAA Minicourse \#3: Part B
9:00 ам - 11:00 ам
Educating about the state of the planet and sustainability while enhancing calculus.
Organizer: Thomas J. Pfaff, Ithaca College

MAA Minicourse \#8: Part B

9:00 ам - 11:00 ам

Taking symbols seriously: Teaching form and function in college algebra.
Organizers: Deborah Hughes Hallett, University of Arizona and Harvard University
Patti Frazer Lock, St. Lawrence University
William G. McCallum, University of Arizona
Patricia D. Shure, University of Michigan

AMS Session on Calculus of Variations and Control

9:00 ам - 10:55 ам

9:00am Finding explicitly the value function for an optimal
(1652) control problem.

Jesus A. Pascal, American University of Nigeria (1046-49-683)
9:15AM Optimal quadrature formulae related to solutions
(1653) of initial boundary value problems.

Anna S. Bulanova*, University of Alaska, Fairbanks, Sergei A. Avdonin, University of Alaska, Fairbanks, and Dmitri A. Ovsyannikov, Saint Petersburg State University (1046-49-2063)
9:30am Convexity in Hamilton-Jacobi theory with

- (1654) measurable dependent time.

Lingyan Huang, Louisiana State University (1046-49-2103)
9:45AM Variational characterizations of the yield set of a
(1655) polycrystal: Some model cases.

Marian Bocea, North Dakota State University (1046-49-96)
10:00am Multiobjective optimization and nonlinear
(1656) programming.

Qingxia Li* and Peter Wolenski, Louisiana State University (1046-49-2099)
10:15am A distribution approach to (bi)simulation relations
(1657) for nonlinear control systems. Preliminary report. Laura Munteanu, The State University of New York, College at Oneonta (1046-93-1160)
10:30am Controlling the motion of charged particles in a

- (1658) vacuum electromagnetic field from boundary.

Luis R. Suazo*, University of Central Arkansas, and Weijiu Liu, University Of Central Arkansas (1046-93-1438)
10:45am Tracking control of nonlinear systems with
(1659) uncertainties in the presence of hysteresis and saturation.
Dinesh B. Ekanayake* and Ram V. Iyer, Texas
Tech University (1046-93-2046)

MAA Session on Research on the Teaching and
Learning of Undergraduate Mathematics, III
9:00 am - 10:45 am
Organizers: Keith H. Weber, Rutgers University
Michelle J. Zandieh, Arizona State
University
Karen A. Marrongelle, Portland State
University

SIGMAA on Statistics Education Panel Discussion

9:00 ам - 10:20 ам

Technology in statistics education.
Organizers: Patricia B. Humphrey, Georgia Southern University Chris J. Lacke, Rowan University Michael A. Posner, Villanova University
Moderator: Michael A. Posner
Panelists: Patricia B. Humphrey
John D. McKenzie, Babson College
Paul L. Myers, Woodward Academy
Chris J. Lacke
NAM Panel Discussion
9:00 ам - 10:00 ам
Title to be announced.
Exhibits and Book Sales
9:00 AM - NOON
Student Hospitality Center
9:00 Am - 2:00 PM
Employment Center
9:00 AM - NOON

MAA-Project NExT Panel Discussion

9:30 ам - 10:45 ам
Designing and teaching a geometry course for preservice secondary mathematics teachers.
Organizers: James E. Hamblin, Shippensburg University

William O. Martin, North Dakota State University
Todd D. Oberg, Illinois College
Panelists: William E. Fenton, Bellarmine University
Angela M. Hodge, North Dakota State University
Barbara E. Reynolds, Cardinal Stritch University
Thomas Q. Sibley, St. John's University

ASL Invited Address

10:00 Aм - 10:50 ам
(1664) Set theoretic methods in model theory. Jouko Väänänen, University of Amsterdam, ILLC (1046-03-110)

NAM Business Meeting

10:00 ам - 10:55 ам

MAA Invited Address

```
10:05 ам - 10:55 ам
```

(1665) Geometreks. Ivars Peterson, MAA (1046-A0-10)

AWM Workshop: Poster Session with Presentations

 from Women Graduate Students| 10:30 ам | am |
| :---: | :---: |
| $\begin{array}{r} 10: 30 \mathrm{am} \\ -\quad(1666) \end{array}$ | Planar algebras and knots. Preliminary report. Emily Peters*, University of California, Berkeley, Scott Morrison, Microsoft, Station Q, and Noah Snyder, University of California, Berkeley (1046-57-197) |
| $\begin{array}{r} 10: 30 \mathrm{AM} \\ -\quad(1667) \end{array}$ | Embedded minimal surfaces with finite topology. Preliminary report.
 Christine Breiner, Johns Hopkins University (1046-53-2111) |
| $\begin{array}{r} 10: 30 \mathrm{AM} \\ (1668) \end{array}$ | Bockstein basis and resolution theorems in extension theory.
 Vera Tonic, University of Oklahoma (1046-54-213) |
| $\begin{array}{r} 10: 30 \mathrm{Aм} \\ -\quad(1669) \end{array}$ | State complexes and special cube complexes. Valerie J. Peterson, University of Illinois at Urbana-Champaign (1046-55-214) |
| $\begin{array}{r} \text { 10:30Ам } \\ (1670) \end{array}$ | Noise tolerant planar curve matching using invariants.
 Kathleen M. Iwancio, North Carolina State University (1046-14-232) |
| $\begin{array}{r} \text { 10:30Ам } \\ (1671) \end{array}$ | Reconstructing free surfaces for a flow of ideal fluid around supercavitating wedges.
 Yuri Antipov and Anna Zemlyanova*, Louisiana State University (1046-76-235) |
| $\begin{array}{r} 10: 30 \text { Ам } \\ (1672) \end{array}$ | Some results on approximate liftings.
 Weihua Li* and Don Hadwin, University of New
 Hampshire (1046-46-246) |
| $\begin{array}{r} 10: 30 \mathrm{Am} \\ -\quad(1673) \end{array}$ | Prior knowledge and calculus performance. Jana R. Talley, University of Oklahoma (1046-97-250) |
| $\begin{array}{r} 10: 30 \mathrm{AM} \\ (1674) \end{array}$ | An uncoupled EMP formulation of a Bianchi I scalar field cosmology.
 Jennie D'Ambroise, University of Massachusetts Amherst (1046-83-261) |

	Yang Mills functional on a deformed Heisenberg C^{*}-algebra. Sooran Kang, University of Colorado, at Boulder (1046-53-267)
	Weighted L^{2} estimates for dissipative nonlinear wave equations with space-time dependent potential. Maisa M. Khader, University of Tennessee (1046-35-268)
$\begin{array}{r} 10: 30 \mathrm{AM} \\ -\quad(1677) \end{array}$	The effect of diffusion on calcium oscillations. Preliminary report. Nessy Tania* and James P. Keener, University of Utah (1046-92-273)
	A new approach to killing forms. Audrey Malagon, Emory University (1046-17-296)
$\begin{array}{r} \text { 10:30Ам } \\ (1679) \end{array}$	A geometric and combinatorial construction of the Springer representation. Heather M. Russell* and Julianna S. Tymoczko, University of Iowa (1046-57-304)
	Homogenizing the acoustics of cancellous bone. Ana Vasilic, University of Delaware (1046-35-325)
$\begin{array}{r} \text { 10:30Ам } \\ (1681) \end{array}$	The mechanics and dynamics of DNA as an elastic rod. Eva M. Strawbridge, University of California, Davis (1046-92-326)

MAA Business Meeting
11:10 ам - 11:40 ам
Organizer: Martha J. Siegel, Towson University Moderator: Joseph A. Gallian, University of Minnesota-Duluth

AMS Business Meeting

11:45 AM - 12:15 PM

Luncheon in Honor of Retiring MAA Associate Secretary James Tattersall

12:15 PM - 2:00 PM

NAM Claytor-Woodard Lecture

1:00 PM - 1:50 PM

(1682) The Hoffman-Wielandt inequality revisited. Earl R. Barnes, Morgan State University

ASL Invited Address

1:00 PM - 1:50 PM

- (1683) Can we make the Second Incompleteness Theorem coordinate free?
Albert Visser, Utrecht University (1046-03-109)

| AMS-MAA Special Session on History of Mathematics, |
| :--- | :--- |
| IV |

1:00pm Saving the phenomena: Limits from Maclaurin to

- (1684) Cauchy. Preliminary report.

Robert E. Bradley, Adelphi University (1046-01-720)
1:30pm Euler, Lagrange and Cauchy: Three perspectives on

- (1685) the "Euler Identity".
C. Edward Sandifer, Western Connecticut State University (1046-01-769)
2:00pm Andrew Ellicott: Mathematician, surveyor, teacher.
- (1686) Preliminary report.

Florence D. Fasanelli, AAAS (1046-01-413)
2:30pm Edwin Abbott and the mathematics of Flatland.

- (1687) William Lindgren*, Slippery Rock University, and Joan Richards, Brown University (1046-01-696)
3:00pm Elliptic functions via invariant theory: Cayley's
(1688) partial anticipation of the Weierstrass $\wp-$-function.

Adrian Rice, Randolph-Macon College (1046-01-369)
3:30pm Teacher and mentor: Gösta Mittag-Leffler's

- (1689) influence on the Swedish mathematical community through his role as professor at Stockholm's högskola. Preliminary report.
Laura E. Turner, University of Aarhus (1046-01-688)
4:00pm What led Ronald Fisher to the concept of
- (1690) randomization? A re-examination. Preliminary report.
Nancy S. Hall, University of Delaware (1046-01-538)
4:30pm Integral equations: a "Revolution" in mathematics in
- (1691) the early 20th Century?

William T. Archibald*, Simon Fraser University, and Rossana Tazzioli, Universit'e de Lille I, Lille, France (1046-01-506)
5:00pm The center problem in complex dynamics,

- (1692) 1913-1942. Preliminary report.

Daniel S. Alexander, Drake University (1046-01-1126)

5:30pm The real inventor of the computer. Preliminary

- (1693) report.

Sanford L. Segal, University of Rochester (1046-01-562)

AMS-MAA Special Session on Inquiry-Based Learning,

 II
1:00 PM - 5:50 PM

Organizers: William B. Jacob, University of California Santa Barbara Paul J. Sally, University of Chicago Ralf J. Spatzier, University of Michigan Michael Starbird, University of Texas at Austin

1:00pm Inquiry based learning at University of Michigan.

- (1694) Preliminary report.

Ralf J. Spatzier, University of Michigan (1046-97-1002)
1:30pm Two very different inquiry based learning courses
(1695) at the University of Michigan. Morton Brown, University of Michigan (1046-97-513)

2:00pm Upper-level undergraduate IBL mathematics classes
(1696) at the University of Chicago.

John D. Boller, University of Chicago (1046-97-728)
2:30pm Real Analysis-an inquiry-based approach.
(1697) Carol S. Schumacher, Kenyon College (1046-97-642)

3:00pm	
(1698)	Restraint and coverage: A characterization of instructor change. Stan T. Yoshinobu, Cal State Dominguez Hills (1046-97-1341)
3:30pm	

3:00pm Restraint and coverage: A characterization of (1698) instructor change.

Stan T. Yoshinobu, Cal State Dominguez Hills (1046-97-1341)

3:30pm Student-to-student discussions: The roles of the

- (1699) instructor and students in discussions in an inquiry-oriented transition to proof course. Stephanie R. Nichols, Anoka-Ramsey Community College (1046-97-1545)
4:00pm Inquiring about inquiry: Progress on research and evaluation studies of Inquiry-Based Learning in undergraduate mathematics at four campuses Sandra L. Laursen* and Marja-Liisa Hassi, University of Colorado, Boulder (1046-97-742)

Incorporating Inquiry-Based Learning in the M. Padraig McLoughlin, Kutztown University of Pennsylvania (1046-97-553)
5:00pm IBL in freshman calculus at the University of Diane Herrmann, University of Chicago (1046-97-730)
5:30pm Guided discovery: Teaching

- (1703) mathematics/transforming lives. Preliminary Michael Starbird, The University of Texas at Austin (1046-97-627)

AMS Special Session on Function Theoretic Operator Theory, II

1:00 PM - 5:50 PM
Organizers: John B. Conway, George Washington University
Sherwin Kouchekian, University of South Florida
William T. Ross, University of Richmond
1:00pm "Fingerprints" of the two dimensional shapes and - (1704) lemniscates. Preliminary report.

Peter Ebenfelt, UCSD La Jolla, Dima Khavinson*, University of South Florida, and Harold S. Shapiro, Royal Institute of Technology Stockholm (1046-30-134)
1:30pm One to one compressions of composition operators
(1705) and the Klein-Gordon equation. Preliminary report. Hakan Hedenmalm, Royal Institute of Technology, Sweden, and Alfonso Montes-Rodriguez*, Universidad de Sevilla (1046-47-731)
2:00pm Examples in Bergman and Hardy Spaces.
(1706) John R. Akeroyd, University of Arkansas (1046-30-351)
2:30pm Multiplicative isometries and isometric
(1707) zero-divisors.

Alexandru Aleman, Lund University, Peter L. Duren, Maria J. Martin*, University of Michigan, and Dragan Vukotic, Universidad Autonoma de Madrid (1046-30-653)
3:00pm On some bilinear symmetric forms and

- (1708) meromorphic continuation of analytic functions. Preliminary report.
Vasiliy A. Prokhorov*, University of South Alabama, and Dmitri V. Prokhorov, University of South Florida (1046-41-595)

Preliminary report.
Catherine Beneteau*, University of South
Florida, Brent Carswell, Allegheny College, and Sherwin Kouchekian, University of South Florida (1046-30-1052)
4:00pm Invariant subspaces and composition operators.
(1710) Manuel Ponce-Escudero*, Alfonso

Montes-Rodríguez, Universidad de Sevilla, and Stanislav Shkarin, Queen's University Belfast (1046-47-1753)
4:30pm Weighted composition operators on the Bloch space
(1711) in \mathbb{C}^{n}.

Robert F. Allen and Flavia Colonna*, George Mason University (1046-47-660)
5:00PM Compact approximation of integral operators with
(1712) applications to composition operators.

Pekka J. Nieminen, University of Helsinki (1046-47-1577)
5:30pm Extremals for the families of commuting spherical
(1713) contractions and their adjoints. Preliminary report.

Stefan Richter* and Carl Sundberg, University of Tennessee (1046-47-884)

AMS Special Session on Complex Dynamics and Complex Function Theory

1:00 PM - 5:50 PM

Organizers:	Stephanie Edwards, Hope College
	Rich L. Stankewitz, Ball State
	University

1:00pm Boundaries of bounded Fatou components of (1714) quadratic maps.

Ross Flek, Graduate Center, CUNY, and Linda Keen*, Graduate Center and Lehman College, CUNY (1046-30-882)
1:30pm A generalized version of the McMullen domain.
(1715) Elizabeth D. Russell, Boston University (1046-37-632)
2:00pm Singular perturbations of complex polynomials.

- (1716) Sebastian M. Marotta, University of the Pacific (1046-37-635)
2:30pm Holomorphic motions and Hénon maps.
(1717) Philip P. Mummert, Taylor University
(1046-30-1463)
3:00pm Approximable quasidisks.
(1718) Ngin-Tee Koh, University of Illinois at Urbana-Champaign (1046-30-681)
3:30pm Convex combinations of harmonic mappings.
- (1719) Michael Dorff* and Magdalena Woloszkiewicz, Brigham Young University (1046-30-113)
4:00pm Discrete conformal flows in circle packing.
(1720) Preliminary report.

Ken Stephenson*, University of Tennessee, Knoxville, Elias Wegert and David Bauer, University of Freiberg, Germany (1046-30-350)
4:30pm Multiplier sequences for generalized Laguerre
(1721) bases. Preliminary report.

Tamas Forgacs, California State University, Fresno, and Andrzej Piotrowski*, University of Alaska Southeast (1046-30-565)
5:00pm Behavior of $\int \exp (r z-b(r)) d r$ for smooth b :
(1722) Connections with the Szegö projection operator. Jennifer Halfpap, University of Montana (1046-32-1713)
5:30pm Weighted homogeneous pluripotential theory.
(1723) Malgorzata S. Stawiska*, University of Kansas, and Maritza M. Branker, Niagara University (1046-32-191)

AMS Special Session on Commutative Rings, III
1:00 PM - 5:50 PM
Organizers: Jay A. Shapiro, George Mason University
David E. Dobbs, University of Tennessee, Knoxville
Shane P. Redmond, Eastern Kentucky University
Joe A. Stickles, Millikin University
1:00pm Derivations, formal fibers and bad Noetherian
(1724) rings. Preliminary report.

Bruce M. Olberding, New Mexico State University (1046-13-603)
1:30pm On the t-spectrum of a Noetherian domain.
(1725) Preliminary report.

Evan Houston*, University of North Carolina at Charlotte, and Abdeslam Mimouni, King Fahd University of Petroleum \& Minerals (1046-13-1308)
2:00pm Seminormality and weak normality.
(1726) Marie A. Vitulli, University of Oregon (1046-13-410)
2:30pm On n-absorbing ideals of commutative rings. - (1727) Preliminary report.

David F. Anderson, The University of Tennessee, Knoxville, and Ayman R Badawi*, American University Of Sharjah, United Arab Emirates (1046-13-478)
3:00pm Some characterizations of generalized GCD (1728) domains.

Hwankoo Kim, Hoseo University, Korea (1046-13-179)
3:30pm Krull-dimension of a power series ring over a
(1729) nonSFT-domain.

Byung Gyun Kang* and Phan Thanh Toan, Pohang University of Science and Technology (1046-13-1636)
4:00pm Elasticity of Krull domains with infinite class
(1730) groups. Preliminary report.

Benjamin R. Lynch, University of Tennessee (1046-13-1255)
4:30PM Block diagonalization and 2-unit sums of matrices
(1731) over Prufer domains. Preliminary report.

Peter Vamos, University of Exeter, and Sylvia
Wiegand*, University of Nebraska (1046-13-862)
5:00pm Cut vertices and zero-divisor graphs. Preliminary
(1732) report.
M. Axtell*, University of St. Thomas, and J.

Stickles, Millikin University (1046-13-1345)
5:30pm Generalized Boolean rings, idealizations, and
(1733) zero-divisor graphs. Preliminary report.

Ryan E. Clark, University of Tennessee Knoxville (1046-13-1266)

AMS Special Session on New Connections Between Topology, Combinatorics, and Physics, II

```
1:00 PM - 5:45 PM
Organizers: Paul Fendley, University of Virginia Slava Krushkal, University of Virginia
1:00pm Certain enumeration problems in 2-dimensional (1734) topology.
Vladimir Turaev, Indiana University (1046-57-293)
2:00pm Quantum noise and the entanglement entropy of (1735) fermions.
Israel Klich, University of Virginia (1046-81-1509)
3:00pm Blob homology.
(1736) Scott Morrison, Microsoft Station Q (1046-57-925)
```

4:00pm Quantum Hall wavefunctions and topological (1737) quantum field theories.

Nicholas Read, Yale University (1046-81-736)
5:00pm Invariants of links with flat connections in the
(1738) complement.

Nicolai Reshetikhin, University of California, Berkeley (1046-57-1026)

AMS Special Session on Geometry, Algebra, and Topology of Character Varieties

1:00 PM - 5:50 PM

Organizers: Sean Lawton, Instituto Superior Tecnico
Elisha Peterson, United States Military Academy
1:00pm Metabelian $S L(n, C)$ representations of knot groups.
(1739) Hans U. Boden*, McMaster University, and Stefan Friedl, University of Warwick (1046-57-1240)
1:30pm Characteristic subsurfaces, character varieties and
(1740) Dehn fillings.

Marc Culler*, University of Illinois at Chicago,
Steve Boyer, Université du Québec à Montréal,
Peter B. Shalen, University of Illinois at Chicago, and Xingru Zhang, State University of New York at Buffalo (1046-57-1507)
2:00pm 3-manifolds whose character varieties are not
(1741) Lagrangian. Preliminary report.
S. Adam Sikora, SUNY Buffalo (1046-53-1081)

2:30pm Bers slices are Zariski dense.
(1742) David Dumas*, University of Illinois at Chicago, and Richard P. Kent, Brown University (1046-30-1260)
3:00pm Deformations of maximal representations in the
(1743) real symplectic group. Preliminary report.

Steven Bradlow, University of Illinois, Oscar
Garcia-Prada, CSIC, Madrid, and Peter Gothen*, Centro de Matematica da Universidade do Porto (1046-14-441)
3:30pm Ergodicity of subgroups of mapping class groups on
(1744) SU(2)-character varieties.

William M. Goldman*, University of Maryland, and
Eugene Z. Xia, National Center for Theoretical Science (South), National Cheng-Kung University (1046-57-1191)
4:00pm Dynamics of the modular group action on certain
(1745) character varieties of the two generator free group. William M. Goldman, University of Maryland College Park, Greg McShane, Laboratoire Emile Picard Universite Paris Paul Sabatier, France, George Stantchev, Center for Scientific Computation and Mathematical Modelling, University of Maryland College Park, and Ser P. Tan*, National University of Singapore (1046-57-752)
4:30pM Cohomology of SL(2,C) character varieties of (1746) surface groups and the action of the Torelli group. Georgios D. Daskalopoulos, Brown University, and Richard A. Wentworth*, Johns Hopkins University and the University of Maryland (1046-32-1208)
5:00pm The topology of the moduli of free group
(1747) representations.

Sean Lawton*, University of Maryland, and Carlos Florentino, Instituto Superior Tecnico (1046-14-749)
5:30Pm Trace diagram recurrences and central functions of
(1748) SL(2,C)-character varieties. Preliminary report.

Elisha Peterson*, United States Military Academy (West Point), and Sean Lawton, Instituto Superior Técnico (1046-14-1394)

```
AMS Special Session on SAGE and Mathematical
Research Using Open Source Software, II
```

```
1:00 PM - 4:50 PM
```

```
1:00 PM - 4:50 PM
```

```
1:00 PM - 4:50 PM
    Organizers: David Saunders, University of
    Organizers: David Saunders, University of
    Organizers: David Saunders, University of
            Delaware
            Delaware
            Delaware
                    David Harvey, Harvard University
                    David Harvey, Harvard University
                    David Harvey, Harvard University
                    David Joyner, U.S. Naval Academy
                    David Joyner, U.S. Naval Academy
                    David Joyner, U.S. Naval Academy
    1:00pm Siegel modular forms in Sage.
    1:00pm Siegel modular forms in Sage.
    1:00pm Siegel modular forms in Sage.
    (1749) Craig Citro, University of California - Los Angeles,
    (1749) Craig Citro, University of California - Los Angeles,
    (1749) Craig Citro, University of California - Los Angeles,
        Alexandru Ghitza, University of Melbourne, Nathan
        Alexandru Ghitza, University of Melbourne, Nathan
        Alexandru Ghitza, University of Melbourne, Nathan
        C. Ryan*, Bucknell University, and Nils-Peter
        C. Ryan*, Bucknell University, and Nils-Peter
        C. Ryan*, Bucknell University, and Nils-Peter
        Skoruppa, Universitat Siegen (1046-11-266)
        Skoruppa, Universitat Siegen (1046-11-266)
        Skoruppa, Universitat Siegen (1046-11-266)
    1:30pm Nilpotent orbits associated to Coxeter cells.
    1:30pm Nilpotent orbits associated to Coxeter cells.
    1:30pm Nilpotent orbits associated to Coxeter cells.
    (1750) Steven Glenn Jackson and Alfred G. Noël*,
    (1750) Steven Glenn Jackson and Alfred G. Noël*,
    (1750) Steven Glenn Jackson and Alfred G. Noël*,
        University of Massachusetts Boston (1046-22-272)
        University of Massachusetts Boston (1046-22-272)
        University of Massachusetts Boston (1046-22-272)
    2:00Pm Coding theory and combinatorics in Sage.
    2:00Pm Coding theory and combinatorics in Sage.
    2:00Pm Coding theory and combinatorics in Sage.
    (1751) David Joyner*, U.S. Naval Academy, and
    (1751) David Joyner*, U.S. Naval Academy, and
    (1751) David Joyner*, U.S. Naval Academy, and
        Robert Miller, University of Washington, Seattle
        Robert Miller, University of Washington, Seattle
        Robert Miller, University of Washington, Seattle
        (1046-05-758)
        (1046-05-758)
        (1046-05-758)
    2:30pm Numerical analysis tools for LLL lattice basis
    2:30pm Numerical analysis tools for LLL lattice basis
    2:30pm Numerical analysis tools for LLL lattice basis
- (1752) reduction. Preliminary report.
- (1752) reduction. Preliminary report.
- (1752) reduction. Preliminary report.
Gilles Villard, CNRS, University of Lyon, France
Gilles Villard, CNRS, University of Lyon, France
Gilles Villard, CNRS, University of Lyon, France
        (1046-68-1571)
        (1046-68-1571)
        (1046-68-1571)
    3:00pm Break
    3:00pm Break
    3:00pm Break
    3:30pm Ultra-sparse matrix reduction to reduced
    3:30pm Ultra-sparse matrix reduction to reduced
    3:30pm Ultra-sparse matrix reduction to reduced
    (1753) Row-Echelon form for matrices over GF(2).
    (1753) Row-Echelon form for matrices over GF(2).
    (1753) Row-Echelon form for matrices over GF(2).
        Gregory V. Bard*, Fordham University, and
        Gregory V. Bard*, Fordham University, and
        Gregory V. Bard*, Fordham University, and
            Robert Miller, The University of Washington
            Robert Miller, The University of Washington
            Robert Miller, The University of Washington
        (1046-15-1959)
        (1046-15-1959)
        (1046-15-1959)
    4:00pm Modular ranks of the adjacency matrices of
    4:00pm Modular ranks of the adjacency matrices of
    4:00pm Modular ranks of the adjacency matrices of
- (1754) strongly regular graphs arising from semifields.
- (1754) strongly regular graphs arising from semifields.
- (1754) strongly regular graphs arising from semifields.
        Qing Xiang, University of Delaware (1046-05-1752)
        Qing Xiang, University of Delaware (1046-05-1752)
        Qing Xiang, University of Delaware (1046-05-1752)
    4:30Pm On matrix rank modulo small primes. Preliminary
    4:30Pm On matrix rank modulo small primes. Preliminary
    4:30Pm On matrix rank modulo small primes. Preliminary
    (1755) report.
    (1755) report.
    (1755) report.
        B. David Saunders, University of Delaware
        B. David Saunders, University of Delaware
        B. David Saunders, University of Delaware
        (1046-15-2007)
```

```
        (1046-15-2007)
```

```
        (1046-15-2007)
```

```
```

AMS Special Session on SAGE and Mathematical Research Using Open Source Software, II
*

```
                *
```

 *
    ```

\section*{AMS Special Session on Group Actions on Curves \\ AMS Special Session on Group Actions on Curves}
```

1:00 PM - 5:50 PM
Organizers: Darren Glass, Gettysburg College
Amy E. Ksir, United States Naval
Academy
1:00PM Fields of moduli of three point covers.
(1756) Andrew S. Obus, University of Pennsylvania
1:30PM Cartier operator on Kummer covers of the
1:30pm Cartier operator on Kummer covers of the
(1757) projective line.
Arsen Elkin, Colorado State University
(1046-14-1009)
2:00pm Abelian formulas for cyclic curves.
(1758) Emma Previato*, Boston University, and Shigeki
Matsutani, Sagamihara, Japan (1046-14-1062)
2:30PM Admissible group actions on curves. Preliminary
(1759) report.
David Harbater*, University of Pennsylvania, Julia
Hartmann, RWTH Aachen, and Daniel Krashen,
University of Georgia (1046-16-1155)
3:00PM Minimal-genus G-actions. Preliminary report.
(1760) Robert GuraInick, University of Southern
California, and Michael Zieve*, Rutgers University
(1046-14-433)
3:30pm Katz Gabber covers of curves with extra
(1761) automorphisms. Preliminary report.
Ted Chinburg*, University of Pennsylvania, Frauke
M. Bleher, University of Iowa, and Peter Symonds,
University of Manchester (1046-14-247)
s Naval

```
        (

5:30pm Quenching phenomena due to a concentrated
(1775) nonlinear source in \(\mathbb{R}^{N}\).

Patcharin Tragoonsirisak, University of Louisiana at Lafayette (1046-35-62)
6:00pm \(\quad C^{(n)}\)-almost automorphic solutions of some
(1776) nonautonomous differential equations.

Valerie N. Nelson*, Gaston M. N'Guerekata, Morgan State University, and Khalil Ezzinbi, Universite Cadi Ayyad, Faculte des Sciences Semlalia (1046-34-910)
6:25pm Spherical averaged endpoint Strichartz estimate for
(1777) the two-dimensional Schrödinger equation with inverse square potential.
I-Kun Chen, University of Maryland, College Park (1046-35-591)

AMS Special Session on Spectra of Matrix Patterns and Applications to Dynamical Systems, II

1:00 PM - 5:50 PM
Organizers: Bryan L. Shader, University of Wyoming
Luz M. DeAlba, Drake University Leslie Hogben, Iowa State University In-Jae Kim, Minnesota State University
1:00PM Spectrally arbitrary patterns over finite fields.
(1778) Elizabeth J. Bodine, Washington State University (1046-15-1342)
1:30pM Potentially nilpotent full sign patterns.
- (1779) I.-J. Kim, Minnesota State University, Mankato, D. D. Olesky, University of Victoria, B. L. Shader, University of Wyoming, P. van den Driessche, University of Victoria, H. van der Holst, Eindhoven University of Technology, and K. N. Vander Meulen*, Redeemer University College (1046-15-628)
2:00pm Minimum rank of various matrix patterns.
- (1780) Preliminary report.

Shaun M. Fallat, University of Regina (1046-15-1268)
2:30pm Minimum rank of graph powers. Preliminary report.
- (1781) Richard Brualdi, Louis Deaett, University of Wisconsin, Madison, Luz DeAlba, Drake University, Jason Grout*, Iowa State University, In-Jae Kim, Minnesota State University, Mankato, Steve Kirkland, University of Regina, Raphael Loewy, Technion-Israel Institute of Technology, Judith McDonald, Washington State University, Pauline van den Driessche, University of Victoria, and Amy Yielding, Washington State University (1046-15-1422)
3:00рм Minimum rank of skew-symmetric matrices - (1782) described by a graph.

Colin Garnett, University of Wyoming (1046-15-1903)
3:30pm Discovery of principles of nature from
(1783) mathematical modeling of DNA microarray data: Computational prediction and experimental verification.
Orly Alter, University of Texas at Austin (1046-15-766)
4:00PM On m-convertible matrices. Preliminary report.
(1784) Adam H. Berliner, University of Wisconsin Madison (1046-15-708)
4:30pm Graph-theoretic criteria for injectivity and unique
(1785) equilibria in biochemical reaction networks.

Gheorghe Craciun, University of
Wisconsin-Madison (1046-37-788)

5:00PM Signed domination number of a matrix. Preliminary - (1786) report.

Adam Berliner, Richard A. Brualdi*, Louis Deaett, Kathleen P. Kiernan, Seth Myer and Michael Schroeder, University of Wisconsin - Madison (1046-05-574)
5:30pm Problem Session

\section*{AMS Special Session on Financial Mathematics, III}

1:00 PM - 5:50 PM
Organizers: Erhan Bayraktar, University of Michigan
Tim Siu-Tang Leung, Johns Hopkins University
Birgit Rudloff, Princeton University
\(1: 00 \mathrm{PM}\)
(1787)

1:30Рм
(1788)

2:00pm
(1789)

\section*{}

2:30PM
(1790)

Exponential hedging with optimal stopping and static-dynamic hedging.
Tim S. T. Leung, Johns Hopkins University (1046-60-2042)
3:00pm Volatility derivatives on time-changed Levy
(1791) processes.

Roger Lee*, University of Chicago, and Peter Carr, Bloomberg LP and NYU Courant Institute (1046-60-2032)
3:30PM A stochastic volatility alternative to \(S A B R\).
(1792) Chris Rogers, University of Cambridge, and Luitgard Veraart*, University of Karlsruhe (1046-60-1 107 )
4:00pm A Hilbert transform approach to options pricing.
(1793) Liming Feng, University of Illinois at Urbana-Champaign (1046-00-1232)
4:30pm Time changed Markov processes in unified
(1794) credit-equity modeling.

Rafael Mendoza*, Vadim Linetsky, Northwestern University, and Peter Carr, New York University, Courant Institute (1046-60-365)
5:00pm An information reduction model for credit risk
(1795) based on level crossings of a diffusion.
A. Deniz Sezer, University of Calgary (1046-60-907)

5:30pm Credit portfolio optimization. Preliminary report.
(1796) Jack Kim* and Kay Giesecke, Stanford University (1046-60-1193)

\section*{AMS Special Session on The Redistricting Problem}

\section*{1:00 PM - 6:50 PM}

Organizers: Daniel Goroff, Harvey Mudd College Daniel Ullman, George Washington University
1:00pm The mathematical redistricting problem.
- (1797) Preliminary report.

Daniel H. Ullman, The George Washington University (1046-91-917)
```

 1:20pm The law and policy of redistricting. Preliminary
 (1798) report.
 Richard Pildes, NYU School of Law (1046-00-1412)
 1:40Pm A proposal for redistricting reform: A model state
 - (1799) constitutional amendment.
Sam Hirsch, Jenner \& Block LLP (1046-91-1674)
2:10pm The promises and perils of optimal redistricting.
- (1800) Micah Altman, Institute for Quantitative Social
Science, Harvard University (1046-90-1592)
2:30Pm The redistricting problem: Second-order bias.
- (1801) Preliminary report.
Michael P. McDonald, George Mason University
(1046-91-1498)
3:00Pm Lessons from a court-appointed nonpartisan
(1802) redistricter.
Nathaniel Alfred Persily, Columbia University
(1046-00-796)
3:20pm Partisan fairness in districting. Preliminary report.
- (1803) Andrew Gelman*, Columbia Univ, and David
Epstein, Columbia Univ (1046-91-834)
3:40Pm Empirical consequences of redistricting in the U.S.
(1804) James M. Snyder, Massachusetts Institute of
Technology (1046-91-2101)
4:20pm A fair division solution to the problem of
- (1805) redistricting.
Zeph Landau*, University of California, Berkeley,
Ilona Yershov and Oneil Reid, City College of New
York (1046-91-680)
4:40pm A measure of bizareness.
(1806) Christopher P. Chambers and Alan D. Miller*,
California Institute of Technology (1046-91-1166)
5:00pm A new approach to measuring the racial impact of
(1807) redistricting
Jonathan N. Katz*, California Institute of
Technology, Andrew Gelman, Columbia University,
and Gary King, Harvard University (1046-91-947)
5:30pm Drivers of redistricting trends. Preliminary report.
- (1808) Michael S. Teitelbaum, Alfred P. Sloan Foundation
(1046-00-1353)
5:50PM Will contiguous redistricting create competitive
(1809) races for legislative elections?
Richard B. Freeman, Harvard University
(1046-05-1653)
6:10pm Reflections upon almost 30 years involvement with
- (1810) redistricting.
Charles R. Hampton, The College of Wooster and
Calvin College (1046-00-1372)
6:30pm Continuing discussion of the redistricting problem.
- (1811) Preliminary report.
Daniel L. Goroff, Harvey Mudd College
(1046-91-1888)

```

\section*{AMS Special Session on Orderings in Logic and Topology, II}
```

1:00 PM - 5:50 PM

```

Organizers: Valentina S. Harizanov, George Washington University
Jozef H. Przytycki, George Washington University
1:00Pm Non-right-orderable 3-manifold groups.
(1812) Rachel Roberts* and John Shareshian, Washington University in St Louis (1046-57-1765)
1:30pm Computability theoretic aspects of ordered groups
(1813) David Reed Solomon, University of Connecticut (1046-03-1298)
2:00pm Discussion

2:30pm Real computability and manifolds. Preliminary (1814) report.

Wesley Calvert, Murray State University, and Russell Miller*, Queens College \& The Graduate Center, C.U.N.Y. (1046-03-1667)
3:00pm A geometrical approach to the braid conjugacy
(1815) problem. Preliminary report.

Ivan A. Dynnikov, Moscow State University (1046-57-2121)
3:30pm Countable groups and their orderings.
(1816) Jennifer Chubb, George Washington University (1046-03-1054)
4:00pm Palindromes and orderings in Artin groups
- (1817) Florian L. Deloup, Institut de Mathematiques, Université de Toulouse III, France (1046-20-1844)
4:30pm Compactness of the space of left orders.
- (1818) Mieczyslaw K. Dabkowski*, Malgorzata A. Dabkowska, UTD, Valentina S. Harizanov, Jozef H. Przytycki and Michael A. Veve, GWU (1046-54-2061)
5:00pm Limit points in the space of left orderings of a
(1819) group. Preliminary report

Adam J. Clay* and Dale P. O. Rolfsen, University of British Columbia (1046-06-942)
5:30pm Pseudotrees under the interval topology.
(1820) Preliminary report.

Jennifer Anne Brown, California State University, Channel Islands (1046-06-2095)

\section*{AMS Special Session on Scientific Computing and} Advanced Computation, II

1:00 PM - 5:50 Рм
Organizers: Edward Castillo Jr., University of California Irvine
James M. Rath, University of Texas at Austin
Sarah A. Williams, University of California Davis
1:00pm Networking Meet \& Greet for Scientific Computing Community
2:00pm
2:30pm
(1821)

Computational methods in coastal engineering.
Jerry L. Bona, University of Illinois at Chicago
(1046-86-1620)
3:00pm Low mach number modeling of type ia supernovae.
- (1822) Preliminary report.

Ann S. Almgren*, John B. Bell, Andy J. Nonaka, Lawrence Berkeley National Laboratory, and Mike Zingale, Stony Brook University (1046-85-1795)
3:30pm Numerical methods and software for hazardous
- (1823) free-surface geophysical flows.

David L. George, USGS Cascades Volcano Observatory (1046-65-877)
4:00pm Linear algebra challenges in parallel circuit
(1824) simulation.

Erik G. Boman, David M. Day, Robert J. Hoekstra
and Heidi K. Thornquist*, Sandia National Laboratories (1046-15-1902)
4:30pm Scalable solution methods via optimal control
(1825) reformulation.

Denis Ridzal* and Pavel Bochev, Sandia National Labs (1046-49-1923)
5:00pm Generalized finite element methods, meshless
- (1826) methods, and quadrature

John E. Osborn, University of Maryland at College Park (1046-65-906)

5:30pm Goal-oriented error estimation and multilevel
(1827) preconditioning for the Poisson-Boltzmann equation.
Stephen D. Bond*, University of Illinois at Urbana-Champaign, Burak Aksoylu, Louisiana State University, Eric C. Cyr, University of Illinois at Urbana-Champaign, and Michael J. Holst, University of California at San Diego (1046-65-1472)

\section*{MAA Minicourse \#14: Part B}

1:00 PM - 3:00 PM
Teaching a course in the history of mathematics.
Organizers: V. Frederick Rickey, U.S. Military Academy
Victor J. Katz, University of the District of Columbia

2:45pm Higher order convergence of an SDG method for
(1834) scalar conservation laws. Preliminary report. Yangsuk Ko, California State University, Bakersfield (1046-65-1910)
3:00pm Developing 3rd, 4th and 5th order difference
- (1835) techniques on a singular perturbation problem and their stability comparison. Preliminary report. F. Olcay Ilicasu*, Rowan University, David H. Schultz, UW-Milwaukee, and Bakhadirzhon Siddikov, Ferris State University (1046-65-1935)
A fast inversion algorithm for linearized diffuse optical tomography with large data sets. Preliminary report. Gunay Dogan*, NIST, and George Biros, Georgia Tech (1046-65-2025)
3:30Рм
(1837)

On the orthogonal expansion of functions on the cylinder.
Jeremy Wade, University of Oregon (1046-65-2047)

\section*{AMS Session on Combinatorics, IV}

\section*{1:00 PM - 5:25 PM}

1:00pm On Seymour's second neighborhood conjecture.
- (1838) James N. Brantner, Erskine College (1046-05-1278)

1:15PM Structure and randomness in additive
- (1839) combinatorics.

Philip Matchett Wood*, Linh Tran, and Van Vu, Rutgers University (1046-05-1281)
1:30Pm The diameter of random spanning trees in a given
(1840) graph.

Fan Chung, Paul K. Horn*, UC San Diego, and
Linyuan Lu, University of South Carolina (1046-05-1400)
1:45pm Towards a general tree decomposition theory for
(1841) matroids.

Jeremy M. Aikin* and James Oxley, Louisiana State University (1046-05-1406)
2:00pm Universal cycles on simple graphs.
- (1842) Emma E. Snively*, Rose-Hulman Institute of Technology, Bill Kay, University of South Carolina, and Greg Brockman, Harvard College (1046-05-1457)
2:15pm The Gale-Berlekamp switching game. Preliminary
- (1843) report.

Garry S. Bowlin, Binghamton University (1046-05-1610)
2:30pm On \(\gamma\)-labeling almost-bipartite 2 -regular graphs.
- (1844) Ryan Bunge*, Saad El-Zanati and Charles Vanden Eynden, Illinois State University (1046-05-1712)
2:45pm Elements of finite order in the Riordan group.
(1845) Marshall M. Cohen, Morgan State University (1046-05-1782)
3:00pm Enumeration of the distinct shuffles of
- (1846) permutations. Preliminary report.

Camillia Smith, Department of Mathematics (1046-05-1352)
3:15PM Break
3:30pm Haar graphs for groups that are non-cyclic.
- (1847) Preliminary report.

Charlie A. McIntosh, Wesleyan University (1046-05-2019)
3:45pm Further results on labeling the \(r\)-path with a
- (1848) condition at distance two.

John P. Georges, David W. Mauro*, Trinity College, and Yan Wang, Millsaps College (1046-05-1811)

4:00pm Selectivity Schur numbers for a finite number of
- (1849) colors.

Daniel Schaal*, South Dakota State University, Mike Bergwell, Southeast Technical Institute, and Scott Jones, Milliman Inc. (1046-05-1812)
4:15pm A deletion-contraction theorem for internally
- (1850) 4-connected graphs.

Carolyn B. Chun*, James Oxley, Louisiana State University, and Dillon Mayhew, Victoria University of Wellington (1046-05-1946)
4:30pm Isomorphic components of direct products of
- (1851) bipartite graphs.

Richard Hammack, Virginia Commonwealth University (1046-05-2084)
4:45pm The incidence game chromatic number.
- (1852) John Y. Kim, MIT (1046-05-2119)

5:00pm Binary rank and path invariance for reductions of
- (1853) signed graphs.

Nathan K. Pflueger, Stanford University
(1046-05-2120)
5:15PM Super-exponential families of nonisomorphic
(1854) matroids having the same Tutte polynomial.

Ken Shoda, The George Washington University (1046-05-1262)

\section*{AMS Session on Statistics and Probability}
```

1:00 PM - 5:55 PM

```

1:00pm On anticipating linear stochastic differential (1855) equations. Julius N. Esunge* and Hui-Hsiung Kuo, Louisiana State University, Baton Rouge, LA (1046-60-1721)
1:15Pm Time discretization of Markov chains: Kick it up a
- (1856) notch. Preliminary report.

Bogdan Doytchinov, Elizabethtown College (1046-60-1790)
1:30pm Evolution systems of measures for non-autonomous
(1857) stochastic differential equations with Lévy noise. Robert D. Wooster, University of Connecticut (1046-60-1938)
1:45pm On mean advantage over inferiors ordering and
(1858) weighted distributions.

Broderick Oluyede*, Georgia Southern University, and Norou Diawara, Old Dominion University (1046-62-483)
2:00pm Measurement errors in the generalized
- (1859) Poisson-Poisson regression model. Preliminary report.
Mavis Pararai, Indiana University of Pennsylvania (1046-62-125)
2:15PM Tests for the equality of the means in the analysis
- (1860) of clustered count data.
K. K. Saha, Central Connecticut State University (1046-62-580)
2:30pm All-pairwise comparisons for populations with
(1861) unequal error variances. Preliminary report.

Hong Li, Bowling Green State University (1046-62-629)
2:45pm Image reconstruction in multi-channel model under
(1862) Gaussian noise.

Veera Holdai*, Wayne State University/Salisbury University, and Alexander Korostelev, Wayne State University (1046-62-699)
3:00pm A spectral look at the serial test of randomness.
- (1863) Preliminary report.

Abbas M. Alhakim, Clarkson University (1046-62-797)
3:15pm Break

3:30pm
(1864)

3:45PM
(1865)

Jiaping Competing risks data.
Jiaping Wang*, Qiqing Yu, SUNY at Binghamton, and George George Y. C. Wong, Strang Cancer Prevention Center (1046-62-977)
4:00pm Spatial analysis of archaeological sites associated
- (1866) with subsistence resources in coastal south central Alaska. Preliminary report.
Joseph B. Liddle*, University of Alaska Southeast,
Aron Crowell, Arctic Studies Center, Smithsonian Institution, Anchorage, and Mark Matson, Matanuska-Susistna Bourough, Palmer, Alaska (1046-62-1061)
4:15PM On the two-sided power distribution.
- (1867) Amol Kapila*, Brown University, and Stephanie

Sapp, Johns Hopkins University (1046-62-1198)
4:30pm Statistical analysis of aggregated, spatiotemporally
(1868) clustered proportions. Preliminary report. Boubakari Ibrahimou, University of South Florida (1046-62-1245)
4:45PM Rainflow cycles counting method to assess time
(1869) series models for terrain profiles.
Jinfeng Wei*, Maryville University of St. Louis, and
T.C. Sun, Wayne State University (1046-62-1519)

5:00pm Proving the 100 Swiss Francs conjecture.
(1870) Mingfu Zhu*, Shuhong Gao, Clemson University, and Guangran Jiang, Zhejiang University (1046-62-1535)
5:15PM Omnibus sequences.
- (1871) Greg Brockman*, Harvard College, and Sunil Abraham, The University of Oxford (1046-62-1542)
5:30PM Nonparametric statistics applied on simulated data
- (1872) and some Gene Expression data. Preliminary report. Akram M. Almohalwas, Central Michigan University (1046-62-1783)
5:45PM A computational model for functional mapping of
(1873) genes that regulate HIV drug therapy and virus load.
William W. Hager, University of Florida Gainesville, Jiangtao Luo*, University of Florida, Gainesville, and Rongling Wu, University of Florida, Gainesville (1046-62-1901)

\section*{AMS Session on Group Theory}

\section*{1:00 PM - 5:25 PM}

1:00pm Residual solvability of one-relator groups.
(1874) Delaram Kahrobaei, City Univesity of New York (1046-20-124)
1:15pm New classification of 2 -generated \(p\)-groups of class (1875) 2.

Arturo Magidin*, University of Louisiana at Lafayette, Robert F. Morse, University of Evansville, and Azhana Ahmad, Universiti Teknologi Malaysia (1046-20-218)
1:30pm Hyperbolic groups which fiber in infinitely many
(1876) ways.

Taralee Mecham* and Antara Mukherjee, University of Oklahoma (1046-20-262)
\(1: 45 \mathrm{pm} \quad\) Cartesian products of sets satisfying the central
(1877) sets theorem.

Neil Hindman*, Howard University, and Dona Strauss, University of Leeds (1046-20-364)

2:00pm The probability that a product of \(n\) group elements
(1878) is equal to a rearrangement of itself.

Thomas Langley*, Rose-Hulman Institute of
Technology, David Levitt, Carnegie Mellon University, and Joseph Rower, California Lutheran University (1046-20-397)
2:15PM Singleton doubly-twisted conjugacy classes in free (1879) groups.
P. Christopher Staecker, Messiah College (1046-20-648)
2:30pm The structure of finite groups with conditions on
- (1880) fixed-point-free automorphims.

Gary L. Walls, Southeasern Louisiana University (1046-20-865)
2:45pm On n-Scorza groups. Preliminary report.
- (1881) Luise-Charlotte Kappe, State University of New York at Binghamton (1046-20-866)
3:00pm Break
3:15pm The point-pushing subgroup of the punctured
(1882) mapping class group is not realizable by diffeomorphisms.
Mladen Bestvina, University of Utah, Thomas Church*, University of Chicago, and Juan Souto, University of Michigan (1046-20-1928)
3:30pm The development of Sylow \(p\)-subloops in finite (1883) Moufang loops.

Stephen M. Gagola III, The University of Arizona (1046-20-2055)
3:45pm Characterizing subgroups satisfying the strong
(1884) Frattini argument in a direct product.

Joseph Evan, King's College (1046-20-929)
4:00pm A note on irreducible, infinite Coxeter groups.
- (1885) Dongwen Qi, Georgia Southwestern State University (1046-20-1089)
4:15pm Quasi-multiplicative bases for the center of the (1886) Iwahori-Hecke algebra of Type \(A_{n}\). Preliminary report.
Andrew Francis, University of Western Sydney, and Lenny Jones*, Shippensburg University (1046-20-1211)
4:30pm On an algorithm for low dimensional group
(1887) homology. Preliminary report.

Josh Roberts, University of Kentucky (1046-20-1321)
4:45pm Centers of cyclotomic Sergeev superalgebras.
(1888) Oliver Ruff, University of Toledo (1046-20-1336)

5:00PM On the covering number of small alternating (1889) groups.

Luise-Charlotte Kappe, State University of New York at Binghamton, and Joanne L Redden*, Elmira College (1046-20-1504)
5:15pm IA-automorphisms of center by metabelian groups.
(1890) Preliminary report.

Margaret H. Dean*, Marcos Zyman, Borough of Manhattan Community College / CUNY, and Katalin
A. Bencsáth, Manhattan College (1046-20-1670)

\section*{AMS Session on Difference and Functional Equations}
```

1:00 PM - 4:40 PM

```

1:00pm Oscillation of sublinear Emden-Fowler dynamic - (1891) equations on time scales.

Allan C. Peterson*, Lynn H. Erbe, University of Nebraska-Lincoln, and Baoguo Jia, Univesity of Nebraska-Lincoln (1046-39-805)
1:15pm The dynamic Lyapunov Equation on time scales::
(1892) Preliminary report.

Alice A. Ramos, Baylor University, Waco, TX (1046-39-1360)

1:30pm Homoclinic orbits for a \(2 n^{\text {th }}\) order nonlinear
(1893) difference equation.

Heidi Berger, Simpson College (1046-39-1461)
1:45pm Adaptive control in the Nabla Setting.
(1894) Billy J. Jackson, Valdosta State University (1046-39-1473)
2:00pm Nonhyperbolic dynamics for competitive systems in
(1895) the plane and global period-doubling bifurcations. Senada Kalabusic, University of Sarajevo, Bosnia and Herzegovina (1046-39-1575)
2:15pm The use of formative assessment in university level
- (1896) mathematics courses.

Judith C. Stull, Temple University (1046-39-1593)
2:30pm Symmetric functions and difference equations with
(1897) asymptotically periodic solutions.

Richard T. Guy* and Kenneth S. Berenhaut, Wake Forest University (1046-39-1963)
2:45pm Break
3:00pm Morphing Lord Brouncker's continued fraction for
- (1898) pi into the product of Wallis.

Thomas J. Osler, Rowan University (1046-40-522)
3:15PM Weakly nonlinear boundary value problems on time
(1899) scales.

Rebecca Burton Kalhorn* and Jesus Rodriguez, North Carolina State University (1046-39-1781)
3:30pm Equations of convolution type with monotone
(1900) coefficients.

Kenneth S. Berenhaut and Nathaniel G Vish*, Wake Forest University (1046-39-1890)
3:45pm Some conditions for convergence and subsequential
- (1901) convergence of regularly generated sequences. Ibrahim Canak* and Umit Totur, Adnan Menderes University (1046-40-534)
4:00pm Treating power series through topoliogical
- (1902) concepts.

Mokhtar Aouina* and Mohammad Khadivi, Jackson State University (1046-40-905)
4:15PM Reverse sharp inequalities for the
- (1903) sequence-to-function Hausdorff transformation. Preliminary report.
Constantine Georgakis, DePaul University (1046-40-1975)
4:30pm Sequence design in wireless communication.
- (1904) Corneliu Alexandru Bodea*, Matthew F. Der, Calina Anamaria Copos and David O'Neal, University of Richmond (1046-40-2037)

AMS Session on Fields, Polynomials, Homological Algebra

\section*{1:00 PM - 5:10 PM}

1:00pm Order in the conjugacy poset of a reductive monoid.
(1905) Preliminary report.

Ryan K. Therkelsen, North Carolina State University (1046-06-121)
1:15PM MV-pairs.
(1906) Elena Vinceková* and Silvia Pulmannová, Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia (1046-06-774)
1:30PM A topology on lattice ordered groups. Preliminary
(1907) report.

Homeira Pajoohesh, Medgar Evers College, CUNY (1046-06-1071)
1:45pm Natural poset extensions of the lattice of integer
(1908) partitions. Preliminary report.

Michael E. Detlefsen, Slippery Rock University (1046-06-1630)
\(\left.\begin{array}{ll}\text { 2:00pm } & \begin{array}{l}\text { Some result in lattices. } \\ \text { (1909) } \\ \text { Omid Ghayour*, Mehrdad Namdari, Shahid } \\ \\ \text { Chamran University, and M. Motamedi, Chamran }\end{array} \\ & \text { University (1046-06-1777) }\end{array}\right\}\)

\section*{AMS Session on Mathematical Physics}
```

1:00 PM - 4:10 PM
1:00pm Spatial bounds on the effective complex permittivity
(1921) for time-harmonic waves in random media.
Lyubima Boteva Simeonova* and David C.
Dobson, University of Utah (1046-78-260)
1:15PM Calculation of the EM fields for scattering from
(1922) large cavities.
Weiwei Zhang, King's College (1046-78-1154)
1:30pm Existence and uniqueness of the critical wave
(1923) number for the asymmetric planar Benard
problem. Preliminary report.
Matthew Glomski, Marist College (1046-80-1866)
1:45pm Quantum non-singularity of spacetimes with higher
(1924) order diverging differential curvature invariants.
Deborah A. Konkowski*, U.S. Naval Academy, and
Thomas M. Helliwell, Harvey Mudd College
(1046-83-1833)
2:00pm Collinear four-body problem.
(1925) Tiancheng Ouyang and Duokui Yan*, Provo, UT
(1046-85-1188)

```

2:15PM
- (1926)

2:30PM
2:45pm A new family of periodic orbits with singularities in
- (1927) the 2D n-body problem.

Skyler C. Simmons*, Duokui Yan and Tiancheng Ouyang, Brigham Young University (1046-85-1818)
Type Ia Supernova Luminosity Data and the LTB
(1928) Model: A well-posedness problem. Preliminary report.
Christopher J. Winfield, UW-Oshkosh (1046-85-1012)
3:15pm Long's equation in terrain following coordinates.
(1929) Mayer Humi, Worcester Polytechnic Institute (WPI) (1046-86-144)
3:30PM An algorithm for seismic imaging and amplitude
- (1930) correction derived from scattering theory.

Bogdan G. Nita, Montclair State University (1046-86-382)
3:45pm Inverse problem of heat conduction, reconstruction
(1931) of the temperature profile.

Elchin E. Jafarov*, Dmitry J. Nicolsky, Victor S. Mikhaylov and Vladimir E. Romanovsky, Univ Alaska Fairbanks (1046-86-1569)
4:00PM Parameter determination for subsurface fluid flow
(1932) modeling. Preliminary report.

Benjamin J. Galluzzo, University of Iowa (1046-86-2074)

\section*{MAA Session on Guided Discovery in Mathematics Education}

1:00 PM - 5:40 PM
Organizer: Jerome S. Epstein, Polytechnic University
1:00pm Introduction, Jerome Epstein
1:05PM Using "real world problems" to guide mathematics
- (1933) learning: Challenges in instructional practice and research.
Joan Ferrini-Mundy* and Karen Marrongelle,
National Science Foundation (1046-H1-1949)
1:40pm Discussion
2:15pm The calculus concept inventory - New data.
- (1934) Correlation with teaching methodology. Jerome Epstein, The STEM Center for Research in Educational Assessment and Teaching Enhancement (1046-H1-1458)
2:40pm Guided inquiry and mathematical sophistication.
- (1935) preliminary report.

Jennifer Earles Szydlik*, University of Wisconsin Oshkosh, and Carol E. Seaman, University of North Carolina at Greensborro (1046-H1-780)
3:00pm An electronic classroom model for mathematics
- (1936) content courses: Influences on K-12 classroom teaching.
Brooke Evans* and Patricia McKenna, Metropolitan State College of Denver (1046-H1-954)
3:20pm Teaching number theory: A deductive inquiry
- (1937) approach.

Shlomo Libeskind, University of Oregon (1046-H1-1112)
3:35pm Break
3:45 PM Embedded assessments of discovery-based learning.
(1938) Susan D. Nickerson* and Cassondra Brown, San Diego State University (1046-H1-1957)

4:05PM Assessing The effectiveness of inquiry-oriented
- (1939) teaching in the context of TA professional development. Preliminary report.
Ian Whitacre* and Susan D. Nickerson, San Diego State University (1046-H1-1943)
4:25pm Teaching calculus coherently. Preliminary report.
- (1940) Tevian Dray, Oregon State University (1046-H1-1780)
4:45pm Student proof scheme development in an
(1941) introductory proof course. Preliminary report.

Todd CadwalladerOlsker* and Nicole Engelke, California State University, Fullerton (1046-H1-1761)
5:05pm Guided discovery in a discrete mathematics course
(1942) for middle school teachers. Preliminary report. Reva Kasman, Salem State College (1046-H1-1350)
5:25PM Comparisons of guided discovery and problem
- (1943) based learning.

Marie P. Sheckels, University of Mary Washington (1046-H1-1331)

\section*{MAA Session on Mathematics and the Arts, III}

1:00 PM - 5:35 PM
Organizer: Douglas E. Norton, Villanova University
1:00pm The Four R's in math education: Reading, WRiting,
- (1944) ARithmetic, and Rhyme.

Karen D. Ivy, New Jersey City University (1046-J1-983)
1:20pm Potential literature and group theoretical poetry.
- (1945) Preliminary report.

Patrick Bahls, University of North Carolina, Asheville (1046-J1-1600)
1:40pm Playing with poetry: Using mathematics to discover
(1946) new verses.

JoAnne Growney, Silver Spring, MD (emerita professor Bloomsburg University, PA) (1046-J1-470)
2:00pm Fractal gardens. Preliminary report.
- (1947) Anne M. Burns, Long Island University, C.W. Post Campus (1046-J1-328)
2:20pm Weaving mathematics.
- (1948) Susan McBurney, Western Springs, Illinois (1046-J1-327)
2:40pm Cut my cote: When geometry met fashion.
- (1949) Jeff A. Suzuki, Brooklyn College (1046-J1-540)

3:00pm Symmetry groups of Chokwe Sona drawings.
- (1950) Preliminary report.

Darrah P. Chavey, Beloit College, Beloit, Wisc. (1046-J1-1908)
3:20pm Modeling heraldry using shape grammars.
- (1951) Preliminary report.

Barbara Ashton, Borough of Manhattan Community Collge , CUNY (1046-J1-1596)
3:40pm Group theory art. Preliminary report.
- (1952) Hayden Harker, Vassar College (1046-J1-715)

4:00pm How long was Vermeer's studio? Preliminary report.
- (1953) Helmer Aslaksen* and Aditya Liviandi, National University of Singapore (1046-J1-1050)
4:20pm The golden ratio in the arts: A skeptic's inquiry.
- (1954) John F. Putz, Alma College (1046-J1-1396)

4:40pm Albrecht Dürer's trochoidal woodcuts.
- (1955) Andrew J. Simoson, King College (1046-J1-190)

5:00pm Complex visualizations and sculpture: An
- (1956) interdisciplinary project for undergraduates. Preliminary report.
Zdenka Guadarrama, Rockhurst University (1046-J1-2068)

5:20pm Parameters, patterns, and the phase plane.
- (1957) Preliminary report.

Douglas E. Norton, Villanova University (1046-J1-1680)

\section*{MAA Session on Promoting Deep Learning for} Mathematics Majors through Experiential Learning, Writing, and Reflection, II
```

1:00 PM - 3:55 PM
Organizers: Murphy Waggoner, Simpson College
Chuck Straley, Wheaton College
1:00PM Deepening mathematical concepts through
(1958) presentations and writing research findings.
Joyati Debnath, Winona State University
(1046-S1-1147)
1:20pm Using discussion boards to enhance understanding

- (1959) in mathematics courses. Preliminary report.
Edwin P. Herman, University of Wisconsin, Stevens
Point (1046-S1-1488)
1:40pm Using peer reviews in proof-based mathematics
(1960) courses.
Ryan J. Zerr* and Jessica M. Zerr, University of
North Dakota (1046-S1-692)
2:00pm Thoughts on a modified moore method course in
(1961) undergraduate analysis. Preliminary report.
Alex Meadows, St. Mary's College of Maryland
(1046-S1-1972)
2:20pm The role of an inquiry-based classroom in
(1962) promoting deep learning for mathematics majors:
A case study.
Mairead Greene, Rockhurst University
(1046-S1-1986)
2:40pm Writing in undergraduate mathematics: From
- (1963) special topics course to an integrated approach.
Jeffrey W. Clark, Elon University (1046-S1-161)
3:00PM Does service-learning make sense when I hate
(1964) math?
Rachelle M. Ankney, North Park University
(1046-S1-1719)
3:20pm Learning through generalization: Using first
- (1965) semester calculus concepts to teach multivariable
calculus. Preliminary report.
Thomas W. Milligan, University of Central
Oklahoma (1046-S1-1420)
3:40pm Why should I take statistics? - Let's "talk".
- (1966) Sarah L. Mabrouk, Framingham State College
(1046-S1-1173)

```

\section*{MAA General Contributed Paper Session, XI}

1:00 PM - 5:25 Рм
Organizer: Sarah L. Mabrouk, Framingham State College
Moderators: Thomas B. Fox, University of Houston-Clear Lake
Jay L. Schiffman, Rowan University Russell Blyth, Saint Louis University Ximena Catepillan, Millersville University
1:00PM Problem-centered learning in mathematics
- (1967) education.

Tracey Keck, WSSU (1046-Z1-2038)
1:15PM Which solution or proof is better and why?
- (1968) Shlomo Libeskind, University of Oregon (1046-Z1-1101)

1:30pm Circluar insights into geometry.
- (1969) Jeffery T. McLean, University of St. Thomas (1046-Z1-1583)
1:45PM A project-oriented undergraduate course in discrete
(1970) geometry.

Bill Wood, Hendrix College (1046-Z1-1508)
2:00pm The Sheffer B-type 1 orthogonal polynomial
- (1971) sequences. Preliminary report.

Daniel Joseph Galiffa, University of Central Florida (1046-Z1-1116)
2:15pm Examining the box topology on the Cartesian
- (1972) product of connected spaces. Preliminary report. Jeremy D. Hauze, Kings College (1046-Z1-886)
2:30pm Ancient Inca mathematics. Preliminary report.
- (1973) Ximena Catepillan*, Millersville University of Pennsylvania, and Waclaw Szymanski, West Chester University of Pennsylvania (1046-Z1-1801)
2:45pm Recent developments in derivative-free
- (1974) optimization. Preliminary report.

Rommel G. Regis, Saint Joseph's University (1046-Z1-2054)
3:00pm Discovering theorems in abstract algebra using (1975) GAP. Russell D. Blyth* and Julianne G. Rainbolt, Saint Louis University (1046-Z1-1978)
3:15pm Developing conceptual underpinnings of the
- (1976) derivative in courses before calculus. Thomas B. Fox, University of Houston-Clear Lake (1046-Z1-2015)
3:30pm Do the ends justify the lengths? Actin polymer
- (1977) length distribution.

Csilla Szabo* and Donald Drew, Rensselaer Polytechnic Institute (1046-Z1-2056)
3:45pm Group work: Motivation, challenges, and how to
- (1978) make it work. Preliminary report.

Theresa Lynn Jeevanjee, Fontbonne University (1046-Z1-1468)
4:00pm Retention programs for women in STEM fields with
- (1979) a significant mathematical emphasis. Preliminary report.
Elizabeth K. Mauch, Bloomsburg University of Pennsylvania (1046-Z1-493)
4:15pm Multipliers for the lower central series of strictly
(1980) upper triangular matrices.

Louis A. Levy, North Carolina State University (1046-Z1-43)
4:30pm Generalizations of Varignon's and Steiner's
- (1981) theorems to simplexes using set partitions. John D. Pesek, University of Delaware (1046-Z1-2004)
4:45PM A geometric complexity problem in a length space.
(1982) David W. Shoenthal, Longwood University (1046-Z1-1072)
5:00pm A cunning trap must be set!
- (1983) Maria C. Walpole, Kings College (1046-Z1-1456)

5:15pm Group presentations, Cayley graphs, \& Markov
- (1984) processes. Preliminary report.

Peter T. Olszewski, City University of New York (1046-Z1-184)

\section*{SIAM Education Minisymposium: Professional}

Development and Career Choices for Students

\footnotetext{
1:00 PM - 4:25 PM
Organizer: William L. Briggs, University of Colorado at Denver
}

1:00pm Good choices for great careers in the mathematical
- (1985) sciences.

Mac Hyman, Los Alamos National Laboratory (1046-00-1736)
2:00PM Career preparation of mathematics and statistics
- (1986) students through interdisciplinary research and consulting.
Matthias K. Gobbert* and Nagaraj K. Neerchal, University of Maryland, Baltimore County (1046-97-618)
2:30pm Opportunities in mathematics at the National
- (1987) Institutes of Health.

Arthur S. Sherman, National Institutes of Health (1046-00-867)
3:00pm How to thrive as a mathematician at a small
(1988) college.

Kurt M. Bryan, Rose-Hulman Institute of Technology (1046-00-1125)
3:30pm Job opportunities for mathematics students in the
- (1989) Navy labs.

Angela Mejeur, Naval Surface Warfare Center, Dahlgren Division (1046-97-1221)
4:00pm Being applied in a pure world.
- (1990) Keith E. Howard, Mercer University (1046-37-1322)

\section*{MAA Panel Discussion}

\section*{1:00 PM - 2:20 PM}

Beyond T.A. training: Calculus curriculum development by graduate teaching assistants.
Organizers: Timothy Lucas, Pepperdine University Joseph A. Spivey, Wofford College
Moderator: Joseph A. Spivey
Panelists: Jack Bookman, Duke University Paul L. Bendich, Pennsylvania State University
Abraham D. Smith, Duke University
Rann Bar-On, Duke University
Timothy Lucas

\section*{MAA Special Presentation}

\section*{1:00 PM - 3:00 PM}

Math Club in a box.
Organizers: Kay B. Somers, Moravian College
Elizabeth Mayfield, Hood College

\section*{AWM Workshop Panel Discussion}

\section*{1:00 Рм - 2:00 Рм}

What is the right job for me?
Moderator: Gail D. L. Ratcliff, East Carolina University
Panelists: Deanna Haunsperger, Carleton College
Magnhild Lien, California State University Northridge
David C. Manderscheid, University of Nebraska-Lincoln
Carol S. Wood, Wesleyan University

AMS Session on Biology, III
```

1:15 PM - 4:55 PM

```

1:15pm Bifurcations in an SEIQR model for childhood
- (1991) diseases.

David J. Gerberry, Purdue University
(1046-92-1486)
1:30pm Average distance and the Cantor Set.
- (1992) Christopher C. Leary, SUNY Geneseo (1046-92-1668)

1:45pm An integral projection model analysis for an
- (1993) endangered plant.

Joseph Briggs, North Carolina State University, Kathryn Dabbs*, University of Tennessee, Knoxville, and Daniel Riser-Espinoza, Swarthmore College (1046-92-1701)
2:00pm Predicting viscoelastic properties of the arterial (1994) wall.

Kasey Crompton, University of South Carolina, Andrew Davis, Clarkson University, Satoru Ito*, NC State University, Amanda Olsen, LaGrange College, Gregory Morton, Morehouse College, Daniela Valdez and Mette Olufsen, NC State University (1046-92-1717)
2:15pm A mathematical model of erythropoiesis subject to
(1995) malaria infection.

Jeremy J. Thibodeaux, University of Central Oklahoma (1046-92-1718)

2:30pm A mathematical model for the nociceptive
- (1996) withdrawal response of rats.

Deena M. Hannoun*, Joseph Schutte, Anthony Tongen and Corey Cleland, James Madison University (1046-92-1726)

2:45pm Exploring male dimorphism in the dung beetle - (1997) using a discrete-time stochastic population model. Preliminary report.
D. Brian Walton*, Anthony Tongen, James Madison University, Phillip Andreae, Emory University, Adam Falk, Grand Valley State University, Sarah Mecholsky, Agnes Scott College, and Theresa Klinkhammer, Saint Mary's College (1046-92-1847)
3:00pm Break
3:15pm Modeling microRNA targets via clustering of mRNA
- (1998) microarray data. Preliminary report.

Frederick A. Adkins, Indiana University of Pennsylvania (1046-92-1896)
3:30pm Mathematical models of kleptoparasiting behavior.
- (1999) Jan Rychtar*, The University of North Carolina at Greensboro, and Mark Broom, University of Sussex, UK (1046-92-1757)

3:45pm On the forest transient dynamics in the perfect
(2000) plasticity approximation model. Preliminary report. Nikolay S. Strigul, Stevens Institute of Technology (1046-92-1947)
4:00pm Modeling frequency-dependent selection in a (2001) population of fish. Sheree L. Arpin*, Framingham State College, and J. M. Cushing, University of Arizona (1046-92-1995)

4:15pm Extracting information from genotype data of
- (2002) closely related individuals. Preliminary report. Giulio Genovese, Dartmouth College (1046-92-2026)

4:30pm Horizontal gene transfer of kinetic network in
(2003) aquifer media. Preliminary report.

Mahbubur M. Rahman, University of North Florida (1046-92-2098)

4:45pm Interaction of tumor with its microenvironment: A
- (2004) mathematical model.

Yangjin Kim*, Avner Friedman, Mathematical Biosciences Institute, Ohio State University, Julie Wallace, Fu Li and Michael Ostrowski, Human Cancer Genetics, Ohio State University (1046-92-2114)

\section*{ASL Contributed Paper Session}
\begin{tabular}{rl} 
2:30 PM - 5:20 pm \\
2:30pm & Ramsey-like cardinals. \\
(2005) & Victoria Gitman, New York City College of \\
& Technology \\
3:00pm & Set-theoretic geology. \\
(2006) & Jonas Reitz, The New York City College of \\
& Technology \\
3:30pm & van Lambalgen's Theorem and weaker randomness \\
(2007) & notions. \\
& Johanna N.Y. Franklin, National University of \\
& Singapore \\
4:00pm & Random closed sets and probability. \\
(2008) & Logan Axon, University of Notre Dame \\
4:30pm & Reducts of the generalized random bipartite graph. \\
(2009) & Yun Lu, Kutztown University of PA \\
5:00pm & The strength of the polarized Ramsey's Theorem. \\
(2010) & Jeffry L. Hirst, Appalachian State University, and \\
& Damir D. Dzhafarov, University of Chicago
\end{tabular}

\section*{AWM Workshop: Research Presentations by Recent} Ph.D.'s, II

\section*{2:30 PM - 4:20 PM}

2:30pm Evaluation of rotavirus models with coinfection and
- (2011) vaccination.

Omayra Y. Ortega, Arizona State University (1046-34-59)
3:00pm An introduction to enumeration schemes.
- (2012) Lara K. Pudwell, Valparaiso University (1046-05-240)
3:30pm Counting paths in digraphs.
(2013) Blair D. Sullivan, Oak Ridge National Laboratory (1046-05-277)
4:00PM The centers of spin hyperoctahedral group
(2014) algebras.

Jill E. Tysse, Hood College (1046-20-185)

\section*{MAA Panel Discussion}

\section*{2:30 PM - 3:50 PM}

Mathematics and public policy.
Organizer: Philippe M. Tondeur, University of Illinois at Urbana-Champaign
Chair: Philippe Tondeur
Panelists: Vernon J. Ehlers, U. S. Congressman, Michigan
Jerry McNerney, U. S. Congressman, California
Douglas N. Arnold, University of Minnesota
Daniel Ullman, George Washington University

\section*{American Mathematical Society}

\section*{New Book}

\section*{Structure} and Randomness
pages from year one
of a mathematical blog

\section*{Terence Tao}

IIII

\section*{Structure and Randomness}

\section*{pages from year one of a mathematical blog}

\section*{Terence Tao, University of California,} Los Angeles, CA

This collection of articles from Tao's research blog captures the insight, the inquisitiveness and even the playfulness of a great mathematician at the height of his influence. His contributions in diverse areas of mathematics allow him to establish connections between seemingly disparate subjects. An informal approach to the writing focuses on general ideas rather than detailed techniques.
```

2008; 298 pages; Softcover; ISBN: 978-0-82 I 8-4695-7;

``` List US\$35;AMS members US\$28; Order code MBK/59

1-800-321-4AMS (4267), in the U. S. and Canada, or 1-401-455-4000 (worldwide); fax:1-401-455-4046; email: cust-serv@ams.org.
www.ams.org/bookstore

MAA Minicourse \#10: Part B
3:30 PM - 5:30 Рм
The ubiquitous Catalan numbers and their applications.
Organizer: Thomas Koshy, Framingham State College

MAA Minicourse \#5: Part B
3:30 PM - 5:30 PM
Developing departmental self-studies.
Organizers: Donna L. Beers, Simmons College Richard A. Gillman, Valparaiso University

\section*{AMS-MAA-SIAM Gerald and Judith Porter Public Lecture}

6:00 PM - 7:00 PM
(2015) The story of a mathematical friendship. Steven Strogatz, Cornell University (1046-00-1405)

AMS-MAA-SIAM Joint Reception
7:00 PM - 7:45 РM
AMS Banquet
7:45 PM - 10:00 PM
Bernard Russo
AMS Associate Secretary
Irvine, California

James J. Tattersall MAA Associate Secretary Providence, Rhode Island

\section*{Meetings and Conferences of the AMS}

\section*{Associate Secretaries of the AMS}

Western Section: Michel L. Lapidus, Department of Mathematics, University of California, Surge Bldg., Riverside, CA 92521-0135; e-mail: 1apidus@math.ucr.edu; telephone: 951-827-5910.

Central Section: Susan J. Friedlander, Department of Mathematics, University of Illinois at Chicago, 851 S. Morgan (M/C 249), Chicago, IL 60607-7045; e-mail: susan@math.nwu.edu; telephone: 312-996-3041.

Eastern Section: Lesley M. Sibner (until January 31, 2009), Department of Mathematics, Polytechnic University, Brooklyn,

NY 11201-2990; e-mail: 1sibner@duke.poly. edu; telephone: 718-260-3505. Steven H. Weintraub (after January 31, 2009), Department of Mathematics, Lehigh University, Bethlehem, PA 18105-3174; e-mail: steve.weintraub@1ehigh.edu; telephone: 610-758-3717.

Southeastern Section: Matthew Miller, Department of Mathematics, University of South Carolina, Columbia, SC 29208-0001, e-mail: mi11er@math.sc.edu; telephone: 803-777-3690.

2009 Washington, DC, Meeting: Bernard Russo, Department of Mathematics, University of California, Irvine, CA 92697-3875, e-mail: brusso@math.uci .edu; telephone: 949-824-5505.

The Meetings and Conferences section of the Notices gives information on all AMS meetings and conferences approved by press time for this issue. Please refer to the page numbers cited in the table of contents on this page for more detailed information on each event. Invited Speakers and Special Sessions are listed as soon as they are approved by the cognizant program committee; the codes listed are needed for electronic abstract submission. For some meetings the list may be incomplete. Information in this issue may be dated. Up-to-date meeting and conference information can be found at www.ams.org/meetings/.

\section*{Meetings:}

\section*{2008}

December 17-21 Shanghai, People's
Republic of China p. 90

\section*{2009}

January 5-8
March 27-29
April 4-5
April 25-26
April 25-26
Oct. 16-18
Oct. 24-25

Oct. 30-Nov. 1
Nov. 7-8

2010
January 13-16
March 27-28
April 10-11
April 17-18
May 22-23
June 2-5
Washington, DC
Annual Meeting
Urbana, Illinois
p. 92

Raleigh, North Carolina
p. 95

Worcester, Massachusetts p. 98
San Francisco, California p. 99
Waco, Texas
University Park,
Pennsylvania
p. 100

Boca Raton, Florida
p. 100

Riverside, California
p. 101

Conferences: (seehttp://www.ams.org/meetings/for the most up-to-date information on these conferences.)
Co-sponsored conferences:
February 12-16, 2009: AAAS Meeting in Chicago, IL (see page 86 for more information).
June 13-July 3, 2009: Mathematics Research Communities, Snowbird, UT (seewww.ams.org/amsmtgs/mrc.htm7for more information).

\section*{CAMBRIDGE}

\section*{Start the New Year off Right with New Titles from Cambridge!}

Forthcoming...
How to Think Like a Mathematician A Companion to Undergraduate Mathematics
Kevin Houston
\$85.00: Hb: 978-0-521-89546-0
\$34.99: Pb: 978-0-521-71978-0: 275 pp.

Forthcoming...
Analytic Number Theory
Essays in Honour of Klaus Roth
Edited by W. W. L. Chen
W. T. Gowers
H. Halberstam
W. M. Schmidt
R. C. Vaughan
\$120.00: Hb: 978-0-521-51538-2:
500 pp .

\section*{Algebraic Theory} of Differential
Equations
Edited by
Malcolm A. H. MacCallum Alexander V. Mikhailov
London Mathematical Society Lecture Note Series \$80.00: Pb: 978-0-521-72008-3: 248 pp.

Synthetic CDOs
Modeling, Valuation and Risk Management
C. C. Mounfield

Mathematics,
Finance and Risk
\$90.00: Hb: 978-0-521-89788-4: 392 pp.


Second Edition!
A First Course in the Numerical Analysis of Differential Equations
Arieh Iserles
Cambridge Texts in Applied Mathematics
\(\$ 60.00\) : Pb: 978-0-521-73490-5: 480 pp.

Applied Solid
 Mechanics
Peter Howell Gregory Kozyreff John Ockendon
Cambridge Texts in Applied Mathematics
\(\$ 140.00\) : Hb : 978-0-521-85489-4 \(\$ 60.00\) : Pb : 978-0-521-67109-5: 464 pp.

Eighth Edition!
The Higher
Arithmetic
An Introduction to the Theory of Numbers
H. Davenport
\$48.00: Pb: 978-0-521-72236-0: 248 pp .


Second Edition!
The Concepts and Practice of Mathematical Finance
Mark S. Joshi
Mathematics,


Finance and Risk
\$80.00: Hb: 978-0-521-51408-8:
560 pp.


Leibniz
An Intellectual
Biography
Maria Rosa Antognazza
\$39.95: Hb: 978-0-521-80619-0:
652 pp .

Quantum
Computing
for Computer Scientists
Noson S. Yanofsky
Mirco A. Mannucci
\$70.00: Hb : 978-0-521-87996-5:
368 pp.


Prices subject to change.

\section*{Hilbert Transforms}

Frederick W. King
Encyclopedia of Mathematics and its Applications
Volume 1
\(\$ 150.00: \mathrm{Hb}: 978-0-521-88762-5: 720 \mathrm{pp}\).

Hilbert Transforms
Volume 2
\$150.00*: Hb: 978-0-521-51720-1: 720 pp.
Hilbert Transforms Set
\$280.00*: 2 Hb books: 978-0-521-51723-2: 1,440 pp.


Attending the Joint Mathematics Meeting? Stop by the Cambridge booth \#210 for \(20 \%\) off all titles on display!

\section*{Notable Titles from the AMS}

Roots to Research


A Vertical
Development
of
Mathematical
Problems

Judith D. Sally
Paul J. Sally, Jr.
(10) - - -

COURSE ADOPTION

\author{
Roots to Research
}

\author{
A Vertical Development of Mathematical Problems
}

Judith D. Sally, Northwestern University, Evanston, IL, and Paul
J. Sally, Jr., University of Chicago, IL

Many references are given but the book is largely self-contained. The authors have done a remarkable job of giving a seamless presentation of material at very different levels of difficulty. Teachers and students will appreciate this book both for the information it contains and as a model of expository writing.
-Mathematical Reviews
Certain contemporary mathematical problems have captivated the field because their study originates in the elementary school curriculum and proceeds through the high school, college and university levels. This book traces the full range of mathematics needed to understand the emergence of five such problems:The Four Numbers Problem, Rational Right Triangles, Lattice Point Geometry, Rational Approximation, and Dissection.

The five problems are discussed in five separate chapters, each beginning with the elementary mathematics involved at the source of the problem. For four of the problems, the discussion proceeds to an examination of important results in contemporary research. For example, the chapter on Lattice Point Geometry traces the path of study from the properties of lattice polygons in the early grades to the study of Minkowski's theorem on lattice points in convex regions and Ehrhart's theorem at the university level.

The discussion of the full range of mathematics for these five problems makes this book ideal for students and teachers at all levels, as well as for working mathematicians who are curious about results in fields other than their own. Students who begin reading the book in high school can return to it as their experience allows them to delve into more advanced aspects of the problems.
In its coverage of all levels of mathematics pertinent to the understanding of these five problems, this book offers unprecedented depth in its presentation of these important mathematical topics.

2007; 338 pages; Hardcover; ISBN: 978-0-8218-4403-8; List US\$49; AMS members US\$39; Order code MBK/48

\section*{Mathematical Omnibus}

Thirty Lectures on


\title{
Mathematical Omnibus
}

Thirty Lectures on Classic Mathematics
Dmitry Fuchs, University of California, Davis, CA, and Serge Tabachnikov, Pennsylvania State University, University Park, PA

This is an enjoyable book with suggested uses ranging from a text for an undergraduate Honors Mathematics Seminar to a coffee table book. It is appropriate for either. It could also be used as a starting point for undergraduate research topics or a place to find a short undergraduate seminar talk. This is a wonderful book that is not only fun to read, but gives the reader new ideas to think about.
-MAA Reviews
The 30 lectures on diverse subjects that make up this highly rewarding book were selected to reflect mathematics' beauty and unity. Brought together in this way, the lectures convey a broad sense of the mathematical landscape, and will inspire advanced thought in readers already interested in mathematics.

Each lecture can be read independently of the others, although readers will find some recurring themes throughout the book. The reader who is curious about mathematical topics will be engaged with a question at the start of each lecture. The subjects included in this book are accessible in that they will strike readers as ones they could have theorized about.

Questions answered in the lectures include:"Can a Number Be Approximately Rational?", "How Many Roots Does a Polynomial Have?", and "Can One Make a Tetrahedron Out of a Cube?" Mathematics judged over time to be the highest-quality of its kind is the focus in the selected lectures. Each lecture resembles its own novel in a collection of likeminded works. The book also features about 200 exercises, many with solutions provided, and is lavishly illustrated.
While the book will challenge the reader in following the details of all arguments presented, it also will reward in filling the reader with awe over the harmony of the subject. Each lecture leads to discoveries that demonstrate that the subject merited the reader's curiosity. This will leave the reader seeking to learn more about these compelling subjects.

2007; 463 pages; Hardcover; ISBN: 978-0-8218-4316-1; List US\$59; AMS members US\$47; Order code MBK/46

\title{
Read a review of both books at www.ams.org/notices/200811/tx081101415p.pdf or page 1415 in the December 2008 issue of Notices of the AMS
}

1-800-321-4AMS (4267), in the U. S. and Canada, or 1-401-455-4000 (worldwide); fax:1-401-455-4046;
email: cust-serv@ams.org. American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA
For many more publications of interest,
visit the AMS Bookstore

\title{
New And Noteworthy from Springer
}

Stochastic
Control of
Hereditary
Systems
and Appli-
cations
M. Chang, U.S.
Army Research

Office, Durham, NC, USA
This research monograph develops the Hamilton-Jacobi-Bellman theory, a very active research area. It is intended for researchers and advanced graduate students who have special interest in optimal control theory and applications of stochastic hereditary systems.
2008. XVIII, 406 p. (Stochastic Modelling and Its Applications, Volume 59) Hardcover ISBN 978-0-387-75805-3 \$ \(\mathbf{7 9 . 9 5}\)

Implemen-
ting Models
in Quan-
titative
Finance:
Methods
and Cases
G. Fusai, Università del Piemonte Orientale, Novara, Italy; A. Roncoroni, ESSEC Graduate Business School, Cergy Pontoise, France
This book puts numerical methods in action for the purpose of solving practical problems in quantitative finance. It fills a gap in the current published literature by delivering a case-study collection together with a self-contained course on major numerical methods developed and used by the finance industry.
2008. XXIII, 608 p. 150 illus., 5 in color. (Springer Finance) Hardcover ISBN 978-3-540-22348-1 \(\boldsymbol{\$ 7 9 . 9 5}\)


Twentieth Anniver-
sary Volume:
Discrete \& Computational Geometry J. E. Goodman,

City College, CUNY, NY, USA; J. Pach, R. Pollack, Courant Institute, NYU, NY, USA (Eds.)
This commemorative book contains twenty-eight major articles that present a comprehensive picture of the current state of discrete and computational geometry. Many of the articles solve long-outstanding problems in the field.
2009. XVIII, 635 p. 212 illus. Softcover ISBN 978-0-387-87362-6 - \$89.95
\begin{tabular}{|l|}
\hline Graduate Texts \\
in Mathematics \\
Aleturdraium \\
A Course in \\
Commutative \\
Banach Algebras \\
\\
e- \\
\hline
\end{tabular}

A Course in Commutative Banach Algebras
E. Kaniuth, Paderborn University,

\section*{Paderborn, Germany}

This book provides a thorough and selfcontained introduction to the theory of commutative Banach algebras, aimed at graduate students with a basic knowledge of functional analysis, topology, complex analysis, measure theory, and group theory. At the core of this text are the chapters on Gelfand's theory, regularity and spectral synthesis. Special emphasis is placed on applications in abstract harmonic analysis and on treating many special classes of commutative Banach algebras.
2009. XII, 353 p. (Graduate Texts in Mathematics, Volume 246) Hardcover ISBN 978-0-387-72475-1 - \$69.95

\section*{Handbook of Optimization} in Medicine
P. Pardalos, H. E. Romeijn, University of Florida, Gainesville, Florida, U.S.A. (Eds.)
This book is devoted to examining the dramatic increase in the application of effective optimization techniques to the delivery of health care. The articles, written by experts from the areas of operations research, computer science, and medicine, focus on models and algorithms that have led to more efficient and sophisticated treatments of patients.
2009. Approx. 456 p. 129 illus. (Springer Optimization and Its Applications, Volume 26) Hardcover

ISBN 978-0-387-09769-5 - \$149.00


From the Reviews - The author has written an attractive book that recreates one of the great mathematical personalities of our century. Both mathematicians and nonspecialists will enjoy it. Doru Stefanescu, Mathematical Reviews
2009. Approx. 265 p. 46 illus. Softcover ISBN 978-0-387-09429-8 \$ \(\mathbf{3 9 . 9 5}\)

\section*{Subdivision Surfaces}
J. Peters, University of Florida, Gainesville, FL, USA; U. Reif, TU Darmstadt, Germany
2008. XVI, 204 p. 52 illus., 8 in color. (Geometry and Computing, Volume 3) Hardcover
ISBN 978-3-540-76405-2 - \$69.95

\footnotetext{
Easy Ways to Order for the Americas - Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA
- Call: (toll free) 1-800-SPRINGER - Fax: 1-201-348-4505 - Email: orders-ny@springer.com or for outside the Americas
- Write: Springer Customer Service Center GmbH, Haberstrasse 7, 69126 Heidelberg, Germany Call: +49 (0) 6221-345-4301
\(\rightarrow\) Fax : +49 (0) 6221-345-4229 Email: orders-hd-individuals@springer.com - Prices are subject to change without notice. All prices are net prices.
}```


[^0]:    A version of this article appeared in IMU-Net, September 2008.
    ${ }^{1} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ and the Single CPU (I), March 1990, and (II) December 1991.

[^1]:    Alfio Quarteroni is professor of mathematics at the Ecole Polytechnique Fédérale de Lausanne and the Politecnico of Milan. His email address is alfio.quarteroni@ epf1.ch.

[^2]:    David M. Bressoud is DeWitt Wallace Professor of Mathematics at Macalester College and president elect of the Mathematical Association of America. His email address is bressoud@macalester.edu.
    ${ }^{1}$ Most precollege or remedial mathematics is taught at 2 -year colleges where it now accounts for $61 \%$ of all mathematics taught at these colleges.
    ${ }^{2}$ Introductory level includes College Algebra, Precalculus, and Math for Liberal Arts. Calculus level is Calculus I through Differential Equations, Linear Algebra, and Discrete Math. Advanced is everything above calculus level including Introduction to Proofs. Statistics courses are not included in these numbers.

[^3]:    ${ }^{3}$ The CBMS categories of 4-year institutions are based on the highest degree offered in mathematics: Ph.D., M.A., or B.A. The labels "research university", "comprehensive

[^4]:    ${ }^{4}$ The number of freshmen intending to major in mathematics dropped from $1.1 \%$ in 1985 to $0.5 \%$ in 2000. It has since grown to $0.8 \%$, approximately the current percentage of graduates who earn majors in mathematics.

[^5]:    Alex Kasman is associate professor of mathematics at the College of Charleston. As a hobby, he maintains a list of works of "mathematical fiction", available at http://math.cofc.edu/kasman/MATHFICT/. His email address is kasmana@cofc.edu.

[^6]:    James Propp is professor of mathematics at the University of Massachusetts Lowell. His homepage is http:// jamespropp.org

[^7]:    Valentin Ovsienko is a Centre National de la Recherche Scientifique researcher at Université Claude Bernard Lyon 1. His email address is ovsienko@math.univlyon1.fr.
    Sergei Tabachnikov is professor of mathematics at Pennsylvania State University, University Park. His email address is tabachni@math.psu.edu.
    Partially supported by an NSF grant DMS-0555803.

[^8]:    -Bill Casselman, Valentin Ovsienko, and Sergei Tabachnikov

[^9]:    Annals of Mathematics Studies
    Phillip A. Griffiths, John N. Mather, and Elias M. Stein, Series Editors
    Paper \$45.00 978-0-691-13822-0
    Cloth \$80.00 978-0-691-13821-3 February

[^10]:    Alan Huckleberry is professor of mathematics at the Ruhr Universität Bochum. His email address is ahuck@cp1x.ruhr-uni-bochum.de.
    ${ }^{1}$ The present article, reprinted with the kind permission of the Deutsche Mathematiker-Vereinigung is a mildly modified version of the article by Huckleberry that appeared in the DMV Mitteilungen, volume 16, number 2, 2008.

[^11]:    Margaret A. M. Murray works in the Development Division at ACT, Inc., and is adjunct professor of mathematics at the University of Iowa. Her email address is margaret-a-murray@uiowa.edu.

[^12]:    Allyn Jackson is senior writer and deputy editor of the Notices. Her email address is axj@ams.org.
    ${ }^{1}$ See "New York City programs provide a model for National Teaching Corps", by Allyn Jackson, Notices, March 2007; and "Math for America and the Math Science Teaching Corps", by Irwin Kra, Notices, December 2006.

[^13]:    -Masaki Maruyama, Masayoshi Miyanishi, Shigefumi
    Mori, and Tadao Oda, on behalf of Nagata's students

[^14]:    * 4-9 2nd Dolomites Workshop on Constructive Approximation and Applications (DWCAA09), Alba di Canazei, Trento, Italy. Description: DWCAA09 proposes 8 main invited lectures, 4 sessions of contributed talks and a poster session.

[^15]:    -Edward Aboufadel, Secretary of Section A of the AAAS

