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an Elliptic Genus?
Serge Ochanine

An elliptic genus is a special type of genus developed
as a tool for dealing with questions related to quan-
tum field theory. We first define the general notion
of a genus and discuss Hirzebruch’s theory of multi-
plicative genera, into which elliptic genera fit nicely.

Genera. A multiplicative genus, or simply a genus, is

a rule that to every closed oriented smooth manifold
Mn associates an element ϕ(Mn) of a commutative
unital Q-algebra Λ and satisfies the following condi-
tions:

(1) ϕ(Mn ∐Nn) = ϕ(Mn)+ϕ(Nn).
Here Mn∐Nn is the disjoint union of two closed ori-
ented manifolds of dimension n.

(2) ϕ(Mn × Vm) =ϕ(Mn)ϕ(Vm).

(3) ϕ(Mn) = 0,
ifMn = ∂W n+1 is the oriented boundary of a compact
oriented manifold W n+1.

Properties (1) and (3) imply that if Mn and Nn

are cobordant, i.e., if there is a compact oriented
manifold W n+1 with boundary Mn ∐ (−Nn), where
−Nn stands for Nn with reversed orientation, then

ϕ(Mn) = ϕ(Nn). In other words, ϕ(Mn) depends
only on the element [Mn] represented by Mn in the
oriented cobordism ring ΩSO∗ , and we may view ϕ as
a ring homomorphism

ϕ : ΩSO∗ -→ Λ.

The structure of ΩSO∗ is rather complicated. How-

ever, ΩSO∗ ⊗Q is the polynomial ringQ[[CP2], [CP4],
[CP6], . . .] in the cobordism classes of the complex
projective spacesCP2k. This implies that a genus van-
ishes on manifolds whose dimension is not divisible

by 4 and is completely determined by its values on
CP2k. The formal power series

g(u) = u+ ϕ(CP
2)

3
u3 + ϕ(CP

4)

5
u5 + · · · ∈ Λ[[u]]
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is called the logarithm of ϕ. It satisfies

g(−u) = −g(u), g(u) = u + o(u)
and completely determinesϕ. Conversely, every such
series is the logarithm of a multiplicative genus.

Maybe the best known example of a genus is the
signature σ(Mn) of a closed oriented manifold of di-
mension n = 4m. It can be defined in terms of the
de Rham cohomology H∗

DR(M
n) as follows: If α and β

are closed 2m-forms on M4m, then the formula

〈α,β〉 =
∫

M
α∧ β

defines a nonsingular symmetric bilinear form on the

finite-dimensional vector space H2m
DR (M

n). The index
of this form is by definition the signature of M4m. It
follows from Poincaré duality that σ is a cobordism
invariant. It can be viewed as a genus with logarithm

g(u) = u+ u
3

3
+ u

5

5
+ · · · = tanh

−1(u).

Another important example of a genus is given by

the Â-genus whose logarithm is g(u) = 2 sinh−1(u/2).

The Â-genus has important connections with the
arithmetic genus in algebraic geometry.

Hirzebruch’s Formalism. In the early 1950s
F. Hirzebruch discovered a beautiful way of ex-
pressing multiplicative genera in terms of other

cobordism invariants, the Pontrjagin numbers. If
Mn is a Riemannian manifold, the Pontrjagin class
pi ∈ H4i

DR(M
n) is represented by a closed 4i-form ρi

extracted from the curvature tensor of Mn. If n = 4m
and ω = (i1, i2, . . . , is) is a partition of m, then the
Pontrjagin number pω[M

n] is defined by

pω[M
n] =

∫

M
ρi1 ∧ ρi2 ∧ . . .∧ ρis .

R. Thom’s pioneering work showed that any homo-
morphism ΩSOn -→ Λ is a linear combination (over

Λ) of Pontrjagin numbers. This applies, in particu-
lar, to multiplicative genera. Let ϕ be a genus with
logarithm g(u), and let s(u) ∈ Λ[[u]] be the formal
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functional inverse of g(u), i.e., g(s(u)) = u. This se-

ries has properties similar to those of g(u): s(−u) =
−s(u), s(u) = u+ o(u). Consider the product

N∏

i=1

ui

s(ui)
,

where u1, u2, . . . , uN are some formal variables of
weight 2 (N is assumed to be large). Since this is a

symmetric expression in u1, u2, . . . , uN , and even in
each variable, it can be expressed in terms of elemen-
tary symmetric functions of u2

1, u
2
2, . . . , u

2
N . Substitute

pi for the i-th elementary symmetric function and let

Km(p1, p2, . . . , pm) be the part of the result that lies
in H4m

DR (M). Hirzebruch’s theorem says that

ϕ(M4m) = Km(p1, p2, . . . , pm)[M
4m].

Strict Multiplicativity. Like any genus, the signature
satisfies σ(Mn×Nk) = σ(Mn)σ(Nk). It follows from
a theorem of S. S. Chern, F. Hirzebruch, and J.-P. Serre
that in fact a much stronger kind of multiplicativity
holds. Let G be a compact connected Lie group, and

let E be a principal G-bundle over a closed oriented
manifold B. Let a smooth action of G on a closed ori-
ented manifold V be given. Then one can form the
associated bundle E×GV over B with fiber V . Assum-
ing that the orientation on E×G V is compatible with
the orientations of B and V , we have

σ(E ×G V) = σ(B)σ(V),
which is often referred to as the strict multiplicativi-
ty of the signature. As an example, consider a com-
plex vector bundle ξ over B of complex dimension

k, and let CP(ξ) be the associated projective bundle.
The fiber of CP(ξ) over a point b ∈ B is the projec-
tive space CP(ξb) ≅ CPk−1 , and strict multiplicativity
implies

σ(CP(ξ)) = σ(B)σ(CPk−1).

In particular, if k is even,σ(CP(ξ)) = 0 for dimension

reasons.

Elliptic Genera. A multiplicative genusϕ is an elliptic
genus if it vanishes on manifolds of the form CP(ξ),
where ξ is an even-dimensional complex vector bun-

dle over a closed oriented manifold B. The origin of
the term “elliptic” is in the following theorem, which
features an elliptic integral:

Theorem 1. A genusϕ is elliptic if and only if its log-
arithm g(u) satisfies

g(u) =
∫ u

0

dt√
1− 2δt2 + εt4

,

for some constants δ, ε ∈ Λ.

Notice that for Λ = C and δ2 ≠ ε ≠ 0 (i.e., when
the polynomial under the square root has four dis-
tinct roots), g−1(u) is the expansion at 0 of an odd

elliptic function s. When δ2 = ε or ε = 0, the elliptic
genus is called degenerate. The two main examples

are the signature (δ = ε = 1) and the Â-genus (δ =
−1/8, ε = 0).

The projective space CPk−1 (k even) is an example
of a spin manifold. A manifold Vn is a spin manifold
if the structural group of its tangent bundle can be

reduced to the group Spin(n), the two-fold cover

of SO(n). Alternatively, Vn is a spin manifold if its
tangent bundle can be trivialized over the 2-skeleton
of any triangulation of Vn. The following theorem
is equivalent to the Rigidity Theorem of R. Bott and
C. Taubes:

Theorem 2. Let G be a compact connected Lie group,
let E be a principal G-bundle over a closed oriented
manifold B, and let V be a closed spin manifold with a

smooth G-action. Then for every elliptic genus ϕ, we
have

ϕ(E ×G V) = ϕ(B)ϕ(V).

Modularity. Consider a non-degenerate elliptic genus
ϕ over C with parameters δ, ε ∈ C. It is well-known
that the Jacobi quartics

Y 2 = X4 − 2δX2 + ε
can be parametrized by points τ in the upper half-

planeH = {τ ∈ C | Im(τ) > 0}. With this parametriza-
tion, δ and ε become level 2 modular forms for a
certain subgroup Γ0(2) of the group of Möbius
transformations of H. Since the values ϕ(M4m) are
polynomials in δ and ε, they are modular forms
themselves and one can think of ϕ as an elliptic

genus over the ring Λ = M∗(Γ0(2)) of modular forms
for Γ0(2).
Loop Spaces. Elliptic genera have a beautiful in-
terpretation, due to E. Witten, in terms of elliptic
operators on the free loop space LM of M , i.e.,
the infinite-dimensional manifold of smooth loops

S1 -→ M . Such operators play an important role in
quantum field theory. The mathematical theory of
such operators is still being developed, but conjec-
tural extension of index theory to these operators
has resulted in some remarkable insights. The Dirac
operator on LM commutes with a natural circle ac-

tion on LM , and its index is an infinite-dimensional
representation of S1. Witten showed that the charac-
ter of this representation can be naturally identified
with the M∗(Γ0(2))-valued elliptic genus of M .

Further Reading
Elliptic genera first appeared in [1]. The proceed-
ings of the 1986 Princeton conference [3] contain,
among many others, a paper by Witten that pro-

vides the physics interpretation of elliptic genera.
The proof of the rigidity theorem is given in [4].
Finally, [2] is an elegant detailed introduction to
the subject.
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