WHAT 1§,

an EHiptiC Genus?

An elliptic genus is a special type of genus developed
as a tool for dealing with questions related to quan-
tum field theory. We first define the general notion
of a genus and discuss Hirzebruch’s theory of multi-
plicative genera, into which elliptic genera fit nicely.

Genera. A multiplicative genus, or simply a genus, is
a rule that to every closed oriented smooth manifold
M™ associates an element @ (M") of a commutative
unital Q-algebra A and satisfies the following condi-
tions:

(1) @(M" LI N™) = (M") + @(N™).

Here M" 11 N" is the disjoint union of two closed ori-
ented manifolds of dimension n.

@) eM"x V™) =@M")p(V™M).

(3) @(M™) =0,
if M = 9W"*! is the oriented boundary of a compact
oriented manifold w"+1,

Properties (1) and (3) imply that if M" and N"
are cobordant, i.e., if there is a compact oriented
manifold W"*! with boundary M" II (-N"), where
—N" stands for N" with reversed orientation, then
@(M") = @(N"). In other words, @ (M") depends
only on the element [M"] represented by M" in the
oriented cobordism ring Q5°, and we may view @ as
a ring homomorphism

@00 — A.

The structure of Q3° is rather complicated. How-
ever, Q39 ® Q is the polynomial ring Q[[CP?], [CP*],
[CP®],...] in the cobordism classes of the complex
projective spaces CP2¥, This implies that a genus van-
ishes on manifolds whose dimension is not divisible
by 4 and is completely determined by its values on
CP2%k, The formal power series
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is called the logarithm of @. It satisfies
g(—u) = —g(u),
and completely determines @. Conversely, every such
series is the logarithm of a multiplicative genus.
Maybe the best known example of a genus is the
signature o (M™") of a closed oriented manifold of di-
mension n = 4m. It can be defined in terms of the
de Rham cohomology Hpjz (M™) as follows: If & and B
are closed 2m-forms on M*™, then the formula

(e, B) :erxAB

defines a nonsingular symmetric bilinear form on the
finite-dimensional vector space H%ﬁ (M™). The index
of this form is by definition the signature of M*™, It
follows from Poincaré duality that o is a cobordism
invariant. It can be viewed as a genus with logarithm
woow 1
g(u):u+§+€+---:tanh (u).

Another important example of a genus is given by
the A-genus whose logarithmis g(u) = 2 sinh™! (u/2).
The A-genus has important connections with the
arithmetic genus in algebraic geometry.

gu) =u+o(u)

Hirzebruch’s Formalism. In the early 1950s
F. Hirzebruch discovered a beautiful way of ex-
pressing multiplicative genera in terms of other
cobordism invariants, the Pontrjagin numbers. If
M" is a Riemannian manifold, the Pontrjagin class
pi € Hpk(M") is represented by a closed 4i-form p;
extracted from the curvature tensor of M". If n = 4m
and w = (iy,io,...,Is) is a partition of m, then the
Pontrjagin number p,,[M"] is defined by

pw[Mn] = JMpil A Piy N ooo A Pig.

R. Thom’s pioneering work showed that any homo-
morphism Q3° — A is a linear combination (over
A) of Pontrjagin numbers. This applies, in particu-
lar, to multiplicative genera. Let @ be a genus with
logarithm g(u), and let s(u) € A[[u]] be the formal
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functional inverse of g(u), i.e., g(s(u)) = u. This se-
ries has properties similar to those of g(u): s(—u) =
—s(u),s(u) = u+ o(u). Consider the product

N

[T

i1 s(up) '
where uj,up,...,uy are some formal variables of
weight 2 (N is assumed to be large). Since this is a
symmetric expression in uy,uy,..., Uy, and even in
each variable, it can be expressed in terms of elemen-
tary symmetric functions of u?, u3,...,u%. Substitute
p; for the i-th elementary symmetric function and let
K., (p1,p2,...,Pm) be the part of the result that lies
in HAZ (M). Hirzebruch’s theorem says that

@M*™) = Kin(p1, P2, -, ) [M*™].

Strict Multiplicativity. Like any genus, the signature
satisfies o (M" x NX) = g (M")o (N¥). It follows from
a theorem of S. S. Chern, F. Hirzebruch, and J.-P. Serre
that in fact a much stronger kind of multiplicativity
holds. Let G be a compact connected Lie group, and
let E be a principal G-bundle over a closed oriented
manifold B. Let a smooth action of G on a closed ori-
ented manifold V be given. Then one can form the
associated bundle E x; V over B with fiber V. Assum-
ing that the orientation on E X V is compatible with
the orientations of B and V, we have

0(ExgV)=0(B)o(V),

which is often referred to as the strict multiplicativi-
ty of the signature. As an example, consider a com-
plex vector bundle & over B of complex dimension
k, and let CP (&) be the associated projective bundle.
The fiber of CP(&) over a point b € B is the projec-
tive space CP(&,) = CP*-!, and strict multiplicativity
implies

o (CP(§)) = 0 (B)o (CP* ).
In particular, if k is even, o (CP(&)) = 0 for dimension
reasons.

Elliptic Genera. A multiplicative genus @ is an elliptic
genus if it vanishes on manifolds of the form CP (&),
where € is an even-dimensional complex vector bun-
dle over a closed oriented manifold B. The origin of
the term “elliptic” is in the following theorem, which
features an elliptic integral:

Theorem 1. A genus @ is elliptic if and only if its log-
arithm g(u) satisfies

ey p——
g 0o V1-2602 + et?’
for some constants 6, ¢ € A.

Notice that for A = C and &2 # ¢ # 0 (i.e.,, when
the polynomial under the square root has four dis-
tinct roots), g~!(u) is the expansion at 0 of an odd
elliptic function s. When 52 = € or € = 0, the elliptic
genus is called degenerate. The two main examples
are the signature (6 = € = 1) and the A-genus 6 =
-1/8,e =0).

The projective space CPX~! (k even) is an example
of a spin manifold. A manifold V" is a spin manifold
if the structural group of its tangent bundle can be
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reduced to the group Spin(n), the two-fold cover
of SO(n). Alternatively, V" is a spin manifold if its
tangent bundle can be trivialized over the 2-skeleton
of any triangulation of V. The following theorem
is equivalent to the Rigidity Theorem of R. Bott and
C. Taubes:

Theorem 2. Let G be a compact connected Lie group,
let E be a principal G-bundle over a closed oriented
manifold B, and let V be a closed spin manifold with a
smooth G-action. Then for every elliptic genus @, we
have

PEXcV) =@B)p((V).

Modularity. Consider a non-degenerate elliptic genus
@ over C with parameters 6, ¢ € C. It is well-known
that the Jacobi quartics

Y2 =X*-256X%+¢

can be parametrized by points T in the upper half-
plane H = {T € C | Im(T) > 0}. With this parametriza-
tion, 6 and ¢ become level 2 modular forms for a
certain subgroup I;(2) of the group of Mobius
transformations of H. Since the values @ (M*™) are
polynomials in 6 and &, they are modular forms
themselves and one can think of @ as an elliptic
genus over the ring A = M, (I5(2)) of modular forms
for IH(2).

Loop Spaces. Elliptic genera have a beautiful in-
terpretation, due to E. Witten, in terms of elliptic
operators on the free loop space LM of M, i.e.,
the infinite-dimensional manifold of smooth loops
S — M. Such operators play an important role in
quantum field theory. The mathematical theory of
such operators is still being developed, but conjec-
tural extension of index theory to these operators
has resulted in some remarkable insights. The Dirac
operator on LM commutes with a natural circle ac-
tion on £M, and its index is an infinite-dimensional
representation of S!'. Witten showed that the charac-
ter of this representation can be naturally identified
with the M, (I (2))-valued elliptic genus of M.

Further Reading

Elliptic genera first appeared in [1]. The proceed-
ings of the 1986 Princeton conference [3] contain,
among many others, a paper by Witten that pro-
vides the physics interpretation of elliptic genera.
The proof of the rigidity theorem is given in [4].
Finally, [2] is an elegant detailed introduction to
the subject.
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