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the Parity Phenomenon?
John Friedlander and Henryk Iwaniec

Sometimes it almost seems as though there is a
ghost in the House of Prime Numbers.

When you enter the front door of the house you
come first to the Elementary Room. This is the
oldest part of a structure which has been assem-
bled piecemeal over a period of many centuries.
In the Elementary Room lots of people just sit
around counting prime numbers, and one of their
favourite ways to do so is with sieve methods. This
circle of ideas dates from the inclusion-exclusion
principle of Eratosthenes. Perhaps it is revered
simply because it is about as old as the house
itself but, whatever the reason, people have been
ignoring their failure to make things work as
hoped and continue to push forward their efforts.
Only with Brun, a little less than one hundred
years ago, did one begin to have some movement
toward success.

Recall that the sieve of Eratosthenes is ap-
plied by starting with your favourite sequence
of integers, then casting out the multiples of
each small prime, noting that some integers have
been cast out more than once and then using
inclusion-exclusion to rectify the count so that
each unwanted number is cast out exactly once.
One can describe the result of this both precisely
and rather succinctly by using the Möbius func-
tion. However, the result is worthless for purposes
of estimation because it expresses the number of
primes in the sequence as a sum having a huge
number of terms not so easy to add, and such
that even an excellent approximation to the size
of each individual term is not enough to give a
useful approximation to the sum.
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Brun got the idea of replacing the Möbius func-

tion by another arithmetic function (the sieve

weights) having somewhat similar properties but

supported only on a finite set of integers so that

he could truncate the sum at will and get a man-

ageable error. It was too much to hope (indeed not
possible) to do this in such a way that one could get

an identity for the number of primes, as one did

with the Möbius function, but it turned out that

there were lots of ways to choose the sequence

of sieve weights so that one got an upper bound

(or, choosing differently, a lower bound) for the

number of survivors of the sifting process.

During the next few decades the main empha-

sis in sieve theory was on the search for optimal

weights, those that would make the upper bound

as small as possible and others that would make

the lower bound as large as possible. Because

these weights are somewhat complicated, it is not

easy to see at once whether or not a specific lower

bound might turn out to be negative, in which case

the bound is even worse than trivial. The upper

bound weights do much better, at least in some

sense. In practice, even an upper bound very far

from the truth will at least give a result of the right

order of magnitude. After the introduction of the
Selberg sieve one could begin in some important

problems to approach the optimal sieve weights.

There is a second aspect to the sieve problem.

Just as in the original inclusion-exclusion proce-

dure, the new sieve weights reduce the problem

of counting primes to the problem of counting

multiples of various integers d, those composed

of the small primes. As one might expect, the

larger you can take d, say all d < D, and still get

useful estimates for the number of its multiples,

the more successful will be the sieving procedure.

The best one can do in this regard depends on

the sequence of integers with which you began,

and this largest value of D is called the level of
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distribution of the sequence. There is a natural
limitation to how large the level can be. To take a
simple example, suppose you consider a segment
of 409 consecutive integers and ask how many
multiples of 666 it contains. The answer is either
zero or one and depends on which segment of
integers you started with. But the sieve wants to
assume that the number of multiples is 409/666.

Once one is armed with optimal sieve weights
and given a sequence with optimal level of distri-
bution, one naturally asks:

1) How large is the upper bound one obtains
for the number of primes?

2) Do we get a positive lower bound for the
number of primes?
The answers are:

1) Just twice what one expects (from heuristic
arguments based on randomness assumptions).

2) No, but we miss by the narrowest of margins.
To see that these two answers cannot be im-

proved one may consider the counterexamples
provided, in the first case, by the sequence of
positive integers having an odd number of prime
factors and, in the second case, by those with an
even number of prime factors.

These observations are due to Selberg (around
1949), who named the phenomenon the “principle
of parity” (the name came quite a bit later; see Vol.
II, page 204 of his Collected Papers). It has also
become known under the names “parity phenome-
non” and “parity problem”. Some twenty-five years
afterward Bombieri [1] went much further along
these lines. He showed that, given a “linear” sieve
problem with optimal level of distribution, one
could say that the contribution to the sequence,
in a certain normalized sense, coming from the
integers with r prime factors was the same for
each odd r and was the same for each even r , and
of course, though these two non-negative num-
bers could be quite different, they total twice the
amount that was the expectation for each.

So, in retrospect, one sees now the upper bound
and the lower bound are equally unsuccessful. The
fact that the lower bound just misses barely crush-
es the hope of getting prime numbers directly from
the sieve. But the fact that we only just miss im-
proving the factor two in the upper bound is
equally tantalizing and is related to a much larger
story.

There is only time to touch the beginnings of
that story, and for this we need to move next
into the Analytic Room. The people who live in
the Analytic Room also like to count prime num-
bers but they try to do this using properties of
generating functions defined by Euler products
and called L-functions. Since Euler is only three
hundred years old some of the analytic people
like to make fun of the old-fashioned methods
used by the elementary people. It turns out that
there are crucial facts about counting primes that

are hidden in the location of the zeros of these
functions. One tries to find regions of the complex
plane where there are no such zeros, and an al-
most universal principle that guides the argument
is that these guys are anti-social: the possible
existence of two of them in close proximity is
not so hard to disprove. The difficult case, which
happens for real zeros of real character Dirichlet
L-functions, occurs when a badly placed zero has
no obvious companion nearby to help rule out
its existence. It can be shown without too much
effort that a slight improvement of the constant
two in the sieve upper bound would disprove the
possible existence of any such “exceptional” zeros.
We know by the above counterexamples that this
is too much to hope for. But what about other
arguments? The Riemann Hypothesis would more
than suffice. How about something we can actually
prove?

There are many ways to try to attack this prob-
lem and all of them seem doomed to fail, an
amazing number of them by the most narrow of
margins. Spilling into the Algebraic Room, we look
at the “exceptional” characters whose L-functions
could conceivably possess such a bad zero. We
nearly find “Selberg counterexamples” in this set-
ting as well. Why does the ring of algebraic integers
in the field Q(

√
−163) have unique factorization?

Why does the corresponding character (Legendre
symbol) look so darn much like the Möbius func-
tion? Why does the polynomial x2 − x + 41 take
prime values for 0 ≤ x ≤ 40? Do these things ever
happen again? No? Well, do they almost happen?
Why can one just exactly prove, for a family of
seemingly irrelevant L-functions, that at least 50
percent of their central values are positive, when
almost all might be expected to, and when proving
it for 51 percent would suffice to banish the bad
guys? Could there be such zeros, such characters?

Sometimes it almost seems as though there is a
ghost in the House of Prime Numbers. Perhaps that
will be ruled out some day. There are suggestions
of a youngster who might do this, one who will
come from the Automorphic Room of the house.
In the meanwhile, happy-go-lucky prime counters
remain temporarily free, see [2], to base some fan-
tastic theorems on either of the two assumptions
(that exceptional characters exist or don’t exist),
whichever one their superstitions dictate.
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