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the Complex Dual to
the Real Sphere?

Simon Gindikin

The observation of this note is connected with
some modern considerations in integral geome-
try. At the same time it returns us back to the era of
great projective geometry of Poncelet-Plücker and
to the understanding that some phenomena of real

geometry need a language of complex geometry.
This era started with Poncelet’s discovery that cir-
cles can be defined as ellipses passing through two
universal imaginary points at infinity—the cyclic
points. We consider here a canonical object dual
to the real sphere S = Sn that was not considered

earlier, probably because it is complex.
Spherical and hyperbolic geometry are real

forms of the same complex geometry, but in many
respects hyperbolic geometry is richer than spheri-
cal geometry. In hyperbolic geometry, horospheres
(“spheres of infinite radius”) play an important

role, but they have no analogues in spherical ge-
ometry. Our initial point is that it makes perfect
sense to consider complex horospheres on the real
sphere.

Let us start from the hyperbolic picture. We
realize hyperbolic space as the hyperboloid H =

Hn ⊂ Rn+1,
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2
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relative to the action of the pseudoorthogonal

group O(1;n). The dual object is the cone Ĥ,
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1 − ξ

2
2 − · · · − ξ

2
n+1 = 0, ξ 6= 0,

without the vertex, where the group O(1;n) al-

so acts transitively. Points ξ ∈ Ĥ parameterize
the horospheres, which are intersections of H by
the (isotropic) hyperplanes ξ · x = 1. Here the
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dot-product corresponds to the same quadratic

form.

For the real sphere S = Sn
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we consider its complexification CS,

z2
1 + z

2
2 + · · · + z

2
n+1 = 1, z = x+ iy ∈ Cn+1

and complex horospheres E(ζ)—intersections of

CS by the hyperplanes

ζ · z = ζ1z1 + · · · + ζn+1zn+1 = 1, ζ · ζ = 0, ζ 6= 0.

So complex horospheres are parameterized by

points of the complex cone C ⊂ Cn+1 without the

vertex. The crucial moment in such constructions

comes when one selects from all horospheres some

that have a special relation with the real sphere.

We suggest considering horospheres E(ζ) that do

not intersect the real sphere S and interpreting

the manifold Ŝ ⊂ C of their parameters ζ as the

dual object for the sphere S. Direct computation

shows that the domain Ŝ on the cone C is defined

by the condition

ξ2
1 + · · · + ξ

2
n+1 < 1, ξ = ℜζ.

This domain is invariant relative to the orthogonal

groupO(n+1) (but, of course, is inhomogeneous).

To support this interpretation we will state one

analytic fact. Analytic dualities as consequences of

geometric dualities are important components of

such considerations (the Radon transform and pro-

jective duality is the classic example). Let Hyp(S)
be the space of hyperfunctions on S ⊂ CS—

functionals on the space O(S) of holomorphic

functions on CS in some neighborhoods of S—

and letO(Ŝ)be the space of holomorphic functions

in Ŝ.
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Theorem 1. There is an O(n)-isomorphism be-

tween Hyp(S) and O(Ŝ).

The operators,whichestablish the isomorphism
in both directions, are explicit. If f ∈ Hyp(S) and

ζ ∈ Ŝ, then the evaluation of this functional on the
functionϕζ = 1/(1−ζ ·z), which is holomorphic

in a neighborhood of S, gives f̂ (ζ) ∈ O(Ŝ). To
construct the inverse operator we need an ana-
logue of the Cauchy-Fantappie integral formula
on CS, which makes it possible to extend func-
tionals from the functions of the form ϕζ to all
holomorphic functions in neighborhoods of S.

All regular functions and distributions are
contained in Hyp(S). Let µ be the invariant
form of maximal degree on S: µ ∧ d(z · z) = dz.
Then for any function ψ(z), z ∈ S, we con-
sider the hyperfunction-functional (f [ψ],φ) =∫
S ψ(z)φ(z)µ,φ ∈ O(S). We identify f̂ [ψ](ζ) =

ψ̂(ζ). If ψ is holomorphic in some neighborhood
of S, then in the integral defining ψ̂(ζ) we can
by deforming S extend ψ̂(ζ) holomorphically

outside of the domain Ŝ. If ψ is holomorphic on
CS then ψ̂ holomorphically extends to the whole
of C.

Theorem 2. There is an O(n,C)-isomorphism be-
tweenO(CS) and O(C) that identifies the spaces of
polynomials on these manifolds.

This isomorphism is surprising since complex
homogeneous manifolds CS and C are not iso-
morphic as homogeneous manifolds, nor are they
isomorphic as complex ones. There are some
intermediate isomorphisms for spaces of holomor-
phic functions on horospherically convex domains
D ⊂ CS (their complements are unions of horo-
spheres). This situation is similar to the complex
linear convexity of Martineau. It is essential that
the sphere S is horospherically convex compact. It
would be interesting to investigate horospherical-
ly convex compacts inside S as an example of the
influence of complex geometry on real geometry.

In the isomorphism of Theorem 2, homoge-
neous polynomials on C correspond to spherical
polynomials on S. Spherical polynomials are eigen-
functions of the Laplace-Beltrami operator on the
sphere. Similarly, we can consider spherical func-
tions on the hyperbolic space H. In the latter case
there is the Poisson integral reconstructing spher-
ical functions through their boundary values (we
transfer to the bounded model in the intersection
of H by the hyperplane x1 = 1).

Is there an analogue of the Poisson integral
for spherical polynomials? Of course, S has no
real boundary, but we can consider the complex
boundary of CS, which we will identify with the
projectivization B of the cone C. We extend spher-
ical polynomials f (x) onCn+1 and take restrictions

f̂ to the cone C. They are homogeneous polyno-
mials on C—sections of line bundles on B. We

interpret f̂ as boundary values of f . The operator

f → f̂ is compatible with the isomorphism in The-
orem 2 above. Let Cz be the intersection of C by
the hyperplane ζ · z = 1 andω be a holomorphic
(n−1)-form such that d(ζ ·z)∧ω = µ. Let γ ⊂ Cz
be any cycle homological to the sphere Sn−1.

Theorem 3. We have∫
γ
f̂ω = c(m,n)f (z),m = deg f̂ .

In this formula we reconstruct the extensions
of spherical polynomials on the whole space. We
do not give the explicit value of the constant
c. To make this formula similar to the Poisson
formula on H we need to use the homogeneity

of f̂ to replace the integration in Cz by the inte-
gration in a fixed section of C. Doing so will add
to the integrand a factor—a Poisson kernel. The
new essential moment comes when we integrate
not on the whole complex boundary but on any
cycle there. Let us mention that the connections
between spherical polynomials on S and homoge-
neous polynomials on the complex cone C were
discovered by Maxwell although he considered a
different isomorphism.

There are interesting complex constructions
connecting with the hyperbolic geometry as well.
Here is one example. LetH+ be one sheet of the hy-
perboloid H (x1 > 0). Let us consider its complex
neighborhood Crown(H) = {z = x + iy ∈ Cn+1,
z · z = 1, x2

1 − x
2
2 − · · · − x

2
n+1, x1 > 0}, which we

will call the complex crown of H. It is biholomor-
phically equivalent to the future tube.

Theorem 4. All spherical functions on H+ admit
holomorphic extensions on Crown(H), and it is the
maximal joint holomorphy domain for these func-
tions.

All these constructions can be generalized to
arbitrary compact symmetric spaces.
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