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O
ne of the oldest problems to have been
solved using the calculus of variations
was to find the equation for the shape
formed by a hanging chain or flexible
cord. Most often it is said that Galileo

was the first to pose the problem and that he
claimed that the resulting curve was a parabola.
(See, for example, Goldstine [5], p. 32, footnote
42, and Truesdell [18], pp. 43–44.) Both of these
statements are at best half true. Galileo’s exact
words (in a classic English translation of his book
Two New Sciences [4], p. 290) are

…a cord stretched more or
less tightly assumes a curve
which closely approximates the
parabola.…the coincidence is more
exact in proportion as the parabola
is drawn with less curvature or, so
to speak, more stretched; so that
using parabolas described with
elevations less than 45◦ the chain
fits its parabola almost perfectly.…

Nowhere, to my knowledge, does Galileo address
the question of finding the exact shape of the curve
formed by the hanging chain. And he is exactly
right that for a parabola with elevation less than
45◦ the curve formed by the chain is an extremely
close approximation to the parabola. (See Figure 1.)

This passage follows immediately after an
extended discussion during which Galileo presents
one of his most famous discoveries: that the path
of a projectile in a vacuum under the influence
of gravity is a parabola ([4], pp. 244–290). In the
course of the discussion, he points out that for a
fixed initial velocity, the range will be maximized
by an initial elevation of 45◦. Finally he addresses
the question of how to quickly draw a number of
parabolas, leading to the passage cited above.

The reason that one might mistake Galileo’s
intentions and conclusions is that elsewhere in
Two New Sciences ([4], p. 149) Galileo addresses the
same problem and says simply that the “chain will
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assume the form of a parabola.” The reason that
virtually everyone refers to this passage rather than
the one in which Galileo spells out his conclusions
in far greater detail and complete accuracy is not
as clear.

Some of Galileo’s earliest experiments with
hanging chains apparently date from the summer
of 1602, when he was working with Guidobaldo del
Monte. Had he thought to pose and try to answer
the question of the exact equation for the shape of
a hanging chain, he would have encountered two
serious obstacles. First, the essential tool needed—
the calculus—had not yet been invented. Second,
the equation for the curve involves logarithms,
which had also not yet been invented.

After the problem was finally explicitly stated,
it was treated frequently by a number of authors
between 1690 and 1720 and the correct answer
derived, although some of the initial reasoning
used was decidedly suspect. The curve became
known as a catenary. Its equation is y = coshx,
the hyperbolic cosine, up to change of coordinates.

One method used to arrive at this result was the
calculus of variations, finding the shape of a curve
whose center of gravity is the lowest among all
curves having a prescribed length and prescribed
endpoints.

The Gateway Arch
It was Robert Hooke who in 1675 made the
connection between the ideal shape of an arch
and that of a hanging chain in an aphorism that
says, in abbreviated form, “As hangs the chain, so
stands the arch.” In other words, the geometry of a
standing arch should mirror that of a hanging chain.
The horizontal and vertical forces in a hanging
chain must add to a force directed along the chain,
since any component perpendicular to the chain
would cause it to move in that direction to gain
equilibrium. Similarly, one wants the combined
forces at each point of an arch to add up to a vector
tangent to the arch. In both cases, the horizontal
component of the force is constant and simply
transmitted along the arch or chain, while the
vertical forces are mirror images.

220 Notices of the AMS Volume 57, Number 2



Figure 1. Left: 45◦ parabola and catenary; Right: 30◦ parabola and catenary.

At least in part for these reasons, the shape of
the Gateway Arch is often described mistakenly as
a catenary (when not even more mistakenly as a
parabola). In fact, the equation on which the arch
is based is

(1) y = A coshBx+ C,
which is a catenary only ifA = 1/B. For the Gateway
Arch, A,B, and C are numerical constants, with A
approximately equal to .69(1/B). As a result, those
who wish to be more accurate describe the shape
of the Arch as a “modified catenary” or, more often,
a “weighted catenary”. The idea of the weighted
catenary is to use either a chain with literal weights
attached at various points or else a continuous
version, such as a cord of varying density. (Both of
those methods, incidentally, were used by Saarinen
to find a shape for the Gateway Arch that appealed
to him esthetically.)

Some natural questions to ask are:

1. Is there a density function that yields the
curve defined in equation (1) above, and if
so, what is that function?

2. How descriptive is the term “weighted
catenary”? In other words, what are the
curves that fall in this category?

In order to answer these questions, we start
with some precise definitions.

Definitions. (1) • A weighted chain C is a pair
(f (x), ρ(s)) where f (x) is a suitably smooth func-
tion on an interval x1 ≤ x ≤ x2, s is arclength
along the curve y = f (x), and ρ(s) is a positive
continuous function of s.

• The function ρ(s) is called the density function
of C.

• A weighted catenary is a weighted chain C in
which

(i) −∞ < f ′(x1) < 0 < f ′(x2) <∞,
(ii) f ′′(x) is continuous and positive,

(iii) for x1 ≤ X ≤ x2,

(2) f ′(X) = V(X)/H,
with

(3) V(X) =
∫ X
x0

ρ(s(x))
ds
dx
dx

where f ′(x0) = 0, and H is a constant that
depends on both f and ρ:

(4) H = V(x2)/f ′(x2).

There is a certain amount of arbitrariness in
these definitions. The smoothness of the function
f (x) is deliberately left vague, since one might
well want to allow different classes of functions
in different situations. Similarly, one could allow
the density function to have point masses or to be
even more general.

Nonetheless, conditions (i)–(iii) are natural ones
based on the physics underlying the problem. As
noted earlier, for equilibrium we want the sum of
the horizontal and vertical forces acting on the
chain to be a vector tangent to the curve. The
horizontal force is constant and simply transmitted
along the curve, while the vertical force is due to
gravity acting on the part of the chain from the
lowest point to the point that we are considering
on the curve and is equal to the total weight of
that part of the chain.

Note that we do not require that the endpoints
be at the same height—in other words, that
f (x1) = f (x2)—although that will be true in all the
examples of interest to us. In that case, condition
(i) would follow from the physics of the situation.
However, condition (i) does guarantee the existence
of an interior point x0 of the interval where f ′ = 0,
while condition (ii) implies that there is a unique
such point.

Note also that the fact that there is a constant
nonzero horizontal component to the force acting
on the curve implies that the slope cannot be
infinite at the endpoints. For example, a weighted
catenary cannot be in the form of a semicircle.

Note finally that ifρ(s) is multiplied by a positive
constant, then both H and V(x) are multiplied
by the same constant. It follows that if the pair
(f (x), ρ(s)) defines a weighted catenary, then so
does the pair (f (x), cρ(s)) for any positive constant
c.

We are now able to state our first result.

Theorem 1. If f (x) satisfies conditions (i) and (ii)
above, then there is a function ρ(s), unique up
to a multiplicative constant, such that the pair
(f (x), ρ(s)) is a weighted catenary. Namely

(5) ρ(s(x)) = Hf ′′(x)√
1+ f ′(x)2 ,

whereH is an arbitrary positive constant. The value
of H is then given by

(6) H = W
|f ′(x1)| + |f ′(x2)|

,
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with

W =
∫ x2

x1

ρ(s(x))
ds
dx
dx

equal to the total weight of the chain.

Proof. Suppose first that there exists a function
ρ(s) such that the pair (f (x), ρ(s)) is a weighted
catenary. Then by equations (2) and (3), for X ≥ x0,

Hf ′′(X) = V ′(X) = ρ(s(X))(ds/dx)|x=X .
Since ds/dx =

√
(1 + f ′(x)2), it follows that ρ(s)

must have the form given in equation (5). For X <
x0,

V(X) = −
∫ x0

X
ρ(s(x))(ds/dx)dx

and

Hf ′′(X) = V ′(X) = ρ(s(X))(ds/dx)|x=X
as before. Finally, the total weight W is

W =
∫ x2

x1

ρ(s)ds =
∫ x0

x1

+
∫ x2

x0

= V(x2)− V(x1).

But V(x2) = Hf ′(x2) > 0, and V(x1) = Hf ′(x1) < 0,
so that H takes the form indicated.

This proves that the density function ρ is
uniquely determined by the function f (x) up to
the choice of the constant H.

For the existence of a suitable density function
ρ(s), given f (x), define ρ(s) by equation (5). Then

V(X) =
∫ X
x0

ρ(s(x))
ds
dx
dx =

∫ X
x0

Hf ′′(x) dx

= Hf ′(X)−Hf ′(x0) = Hf ′(X),
so that the pair (f (x), ρ(s)) form a weighted cate-
nary, and then the constant H must have the form
indicated in equation (6). �

Example 1 (catenary).

f (x) = 1
B

coshBx+ C.

Then

f ′(x) = sinhBx,
√

1+ f ′(x)2 = coshBx

and f ′′(x) = B coshBx, so

ρ(s(x)) = HB, constant.

Comment: This is a kind of inverse to the origi-
nal catenary problem of asking for the shape taken
by a uniformly weighted hanging chain. It tells us
that only for a uniform chain will the resulting
curve be a catenary.

Example 2 (parabola).

f (x) = ax2 + b, f ′(x) = 2ax, f ′′(x) = 2a.

Then

ρ(s(x)) = 2aH
/
ds
dx

and ∫
ρ(s)ds =

∫
ρ(s(x))

ds
dx
dx = 2aH

∫
dx,

and ∫ s(x2)

s(x1)
ρ(s)ds = 2aH(x2 − x1).

Comment: This is in a sense the answer to
Galileo’s original question of finding a mechanical
method for drawing a parabola. It tells us exactly
how we have to weight a chain so that it will
hang in the form of a parabola. The key is that
the weight distribution has to be uniform in the
horizontal direction. For this reason, it is usually
stated that the cables on a suspension bridge will
hang in the shape of a parabola, since the weight
of the cables themselves, together with that of the
vertical support cables holding up the roadway,
is small compared to the weight of the roadway,
which has (in essence) a uniform horizontal weight
distribution.

A curious by-product of the equation for the
density ρ in the case of a parabola is that, since
ds/dx ≥ 1, with equality only where f ′(x) = 0, it
follows that ρ(s(x)) is maximum at the vertex and
then decreases monotonically as |f ′(x)| increases.
In other words, the chain has to be weighted the
most near the vertex and then decrease as the
steepness of the curve increases. As a result, if
Saarinen had decided that he found a parabolic
arch most pleasing esthetically, he would have been
faced with the paradox that in order to have the line
of thrust be everywhere directed along the arch, the
arch would have to be thickest at the top and taper
down toward the bottom, which would be both
ungainly esthetically and potentially disastrous
structurally.

Example 3 (circular arc).

x = R cosθ, y = R sinθ, π < θ1 ≤ θ ≤ θ2 < 2π.
Then

f ′(x) = dy
dθ

/dx
dθ
= − cotθ, f ′′(x) = − 1

R
csc3 θ,

while
s = Rθ, ds/dx = − cscθ > 0.

So

ρ(s(x)) = H
R

csc2 θ = HR/y2.

Comment: As noted earlier, a full semicircle can-
not be a weighted catenary. We see explicitly that
the density function would tend to infinity. How-
ever, any circular arc that is short of a semicircle
at both ends can be realized (at least in theory) as
a weighted catenary. The weighting is simply

ρ(s)= H
R cos2(s/R)

, πR<s1 ≤ s=Rθ≤s2<2πR.

Although this example may seem a typical “text-
book example”, of no practical interest but merely
a case that can be worked out explicitly, the op-
posite is true. A monumental “Gateway Arch” had
been proposed as an entryway to a planned 1942
International Exposition in Rome, but it was de-
railed by the war. The arch was to be in the form
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of a semicircle, and the question of exactly how
much it should be tapered was potentially critical.
(See [12] for more on this subject.)

Note that this theorem answers the first part
of Question 1 above about the existence of a
density function yielding the particular “weighted
catenary” shape of the Gateway Arch. It also
answers Question 2 concerning the term “weighted
catenary” itself, which turns out to have essentially
no content beyond “convex curve”. Before turning
to the second part of Question 1 regarding the
exact form of the density function that yields the
curve underlying the Gateway Arch, we prove a
strong form of the converse to the theorem.

Converse of Theorem 1. Let C be a curve with end-
points P1 = (x1, y1,0) and P2 = (x2, y2,0), where
x1 < x2. Assume that C is parameterized by arc
length s in the form

X(s)=(x(s), y(s), z(s)), P1=X(s1), P2=X(s2).
Let ρ(s) > 0 be a continuous function along C, taken
as a density function. Assume gravity acts in the
negative y-direction, and the pair (C, ρ(s)) is in
equilibrium. Then:

1. C lies entirely in the x, y-plane.
2. C is in the form of a graph y = f (x), x1 ≤
x ≤ x2.

3. f ′(x) is finite and monotone increasing for
x1 ≤ x ≤ x2.

The idea underlying the proof is that if we know
that C is a graph and (C, ρ(s)) is in equilibrium,
so that equation (2) above holds, where V(X) is
defined by (3), then

−f ′(x1) =
1
H

∫ x0

x1

ρ(s(x))(ds/dx)dx <∞,

f ′(x2) =
1
H

∫ x2

x0

ρ(s(x))(ds/dx)dx <∞,

and for x1 ≤ x3 < x4 ≤ x2,

f ′(x4)− f ′(x3) =
1
H

∫ x4

x3

ρ(s(x))(ds/dx)dx > 0.

Hence condition 3 in the statement of the converse
must hold.

In terms of the representation above for C as
X(s), the unit tangent vector to C will be given
by T = dX/ds. We denote the tension at the point
X(s) by τ, and for the case considered here, the
tension vector will be

(7) τT = (H,V ,W),
where H is constant and W = 0, while V is given
by (3). Then
(8)
d
ds
τT=

(
0,
dV
ds
,0
)
=
(

0,
dV
dx

/ds
dx
,0
)
=(0, ρ(s),0)

by (3), or

(9)
d
ds
(τT) = ρ(s)j,

where j is the unit vector directed along the positive
y-axis.

The proof of the above converse depends on the
fact that equation (9) is the equation of equilibrium
for an arbitrary curve joining the points P1, P2 in
the x, y-plane, with no special assumptions about
its shape. (See [2], Chapter III, sections 1–3, for a
detailed discussion of these questions in maximum
generality. I would like to thank Joe Keller for
providing this reference, as well as further helpful
information. Note that in contrast to [2], we take
the density ρ to mean weight, rather than mass,
per unit length, so that the acceleration of gravity
is absorbed into it.)

Proof of the converse. Let C be defined by

X(s) = (x(s), y(s), z(s)), s1 ≤ s ≤ s2,
where

X(s1) = (x1, y1,0), X(s2) = (x2, y2,0), x1 < x2,

and let ρ(s) > 0 be a continuous density func-
tion along C. Then the pair (C, ρ(s)) will be in
equilibrium if and only if (9) holds; that is,

(10)
d
ds

(
τ(s)

dx
ds

)
= 0,

d
ds

(
τ(s)

dy
ds

)
= ρ(s),

d
ds

(
τ(s)

dz
ds

)
= 0.

Hence

τ(s)
dx
ds
(s) = c,(11)

τ(s)
dy
ds
(s) = τ(s1)

dy
ds
(s1)+

∫ s
s1
ρ(σ)dσ,(12)

τ(s)
dz
ds
(s) = d,(13)

where c and d are constants. We claim first that C
must lie completely in the x, y-plane. If not, there
must be a value s0, s1 < s0 < s2,where |z(s)| attains
its maximum |z(s0)| > 0. Then (dz/ds)(s0) = 0,
and the constant d in (13) must vanish. But if
z(s) 6≡ 0, there must be some value s3 such that
dz/ds is nonzero at s3 and hence in an interval
around s3. But then, since d = 0, it follows from
(13) that τ(s) ≡ 0 on that interval. But that contra-
dicts equation (9), since ρ(s) > 0. Hence we must
have z(s) ≡ 0, and the curve lies entirely in the
x, y-plane.

Exactly analogous reasoning using equation
(11) shows that there cannot be a value s4 where
dx/ds = 0. In fact, since x(s2) = x2 > x1 = x(s1),
there must be a point where dx/ds > 0. It follows
that dx/ds > 0 on the whole interval [s1, s2], and
hence x is a strictly monotone increasing function
of s on that interval. Thus we have a monotone
increasing inverse s(x), and we can set

y(s(x)) = f (x), x1 ≤ x ≤ x2,

February 2010 Notices of the AMS 223



defining C as a graph. It follows from equations
(11) and (12) that
(14)

f ′(x) = dy
ds

/dx
ds
= 1
c
τ(s1)

dy
ds
(s1)+

1
c

∫ s
s1
ρ(σ)dσ.

Hence f ′(x) is a monotone increasing function of
s and therefore of x. This completes the proof of
the converse. �

Note that it follows from the above that

(15) f ′′(x) = d
ds
f ′(x)

/dx
ds
= 1
c
ρ(s(x))

ds
dx
> 0.

Since c is the horizontal component of the tension
vector, it is the quantity we denoted earlier by
H, and equation (15) is the same as equation (5)
above.

We now come to our principal example of the
theorem.

Definition 1. A flattened catenary is a curve of the
form y = f (x) = A coshBx+ C, or

y = Dg(x)+ C, D = AB,
where 0 < D < 1, and

g(x) = 1
B

coshBx

is a catenary.

Example 4 (flattened catenary). We examine this
case in the following theorem.

Theorem 2. Let C be a weighted catenary de-
fined by the pair (f (x), ρ(s)), and let p(x) =
ρ(s(x))(ds/dx). Assume that coordinates are
chosen so that f ′(0) = 0. Then p(x) will be of the
form

p(x) = ay + b = af(x)+ b
for some constants a > 0 and b if and only f (x) is
a flattened catenary:

f (x) = A coshBx+ C,
for constants A,B,C.

Proof. We have for all X in [x1, x2] that f ′(X) =
V(X)/H, where

V(X) =
∫ X
x0

p(x)dx, H =
∫ x2

x1

p(x)
|f ′(x1)| + |f ′(x2)|

dx.

Then
f ′′(X) = V ′(X)/H = p(X)/H.

Suppose first that

(16) y = f (x) = A coshBx+ C.
Then f ′(x) = AB sinhBx and

f ′′(x) = AB2 coshBx = B2(f (x)− C).
Then

(17) p(x) = Hf ′′(x) = af(x)+ b,
where

(18) a = HB2 > 0, b = −HB2C.

Conversely, suppose that p(x) = af(x)+ b. Then
f ′′(x) = (af (x)+ b)/H. Let

g(x) = f (x)+ b/a.
Then g′(0) = f ′(0) = 0, and

g′′(x) = f ′′(x) = ag(x)/H.
It follows that g(x) = A coshBx where B2 = a/H.
Hence

f (x) = g(x)− b/a = A coshBx+ C,
where

(19) A = f (0)+ b/a, B =
√
a/H, C = −b/a.

�

Historical Note

The flattened catenary was studied in the nineteenth
century by a number of authors in France, England,
Ireland, and Scotland. The first may have been
Villarceau [19]; see Heyman [6], p. 48. Others
include W. J. M. Rankine [13] and A. M. Howe [9]. (I
thank William Thayer for these latter references
and for alerting me to the connection between the
equation for the Gateway Arch and the nineteenth-
century application discussed here.) In those works,
the flattened catenary is often referred to as a
“transformed catenary”, and the term “two-nosed
catenary” is used for a highly flattened catenary,
for reasons explained below. The context in which
it arises is in answer to the question: What is the
ideal shape of an arch that supports a horizontal
roadway held up by evenly packed dirt on top of
the arch? The vertical load applied to each point on
the arch is then proportional to the distance from
that point up to the level of the roadway. If we
write the equation of the arch as y = f (x), where y
is the distance from the roadway down to a given
point on the arch, then the total vertical thrust
acting on the part of the arch from the apex to an
arbitrary point of the arch will correspond to the
weight of a hanging chain from the minimum point
to a given point, and it will be of the form

∫
p(x)dx,

where p(x) is a linear function of y . The same
reasoning as in the above theorem then shows
that f (x) should be of the form (16): a flattened
catenary. (See, for example, Heyman [6], pp. 48-49.)

We now come to the Gateway Arch itself. At
first sight it would appear to be a very different
situation from that of an arch supporting a bridge,
since it supports nothing except its own weight.
On closer look, however, the fact that the Arch is
tapered means that the weight supported at each
level is not determined just by the length of the
arch above it but by an integral with respect to
arclength of a function exactly analogous to the
density function for a weighted chain. The physical
Gateway Arch is reasonably well modeled as one
of a class of geometric shapes that are of interest
in their own right.
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Tube-like Domains
Two chance meetings in 1939 led to one of the major
advances in differential geometry, the intrinsic
proof by Chern of an n-dimensional Gauss–Bonnet
theorem. The first occurred when mathematician
Hermann Weyl attended a lecture by statistician
Harold Hotelling in which Hotelling described a
new result of his and posed an open question.
Hotelling had been led by a statistical problem
to pose the question: Given r > 0, what is the
probability that a point chosen at random on the
n-sphere would lie within a distance r of a given
curve C? The answer amounts to computing the
volume of the domain consisting of all points
whose distance to C is less than r and comparing
that to the total volume of the sphere. Hotelling
was able to answer the question in both Euclidean
n-space and the n-sphere for r sufficiently small
[8]. The answer in Euclidean space was that the
volume is equal to the length of C times the volume
of an (n − 1)-ball of radius r , with an analogous
result for the n-sphere. The answer was perhaps
a surprise, since one might think that the volume
of the “tube” around the curve C would depend
somehow on the twists and turns in the curve, and
not simply on its total length.

What Hotelling wanted to know, and was un-
able to derive, was a formula for the case that the
curve C was replaced by a surface of two or more
dimensions. Hermann Weyl [22] provided the an-
swer in spectacular fashion: for a compact smooth
submanifold S of Euclidean space, the volume of
the domain consisting of all points lying within
a fixed distance r of S is given, for r sufficiently
small, by a polynomial in r whose coefficients are
intrinsic quantities associated with S , and do not
depend on the way that S is immersed in space.
Most strikingly, the top coefficient does not even
depend on the geometry of S, but only its topology;
it is just a constant times the Euler characteristic
χ of S.

The other chance meeting in 1939 took place
between André Weil and Lars Ahlfors in Finland.
Weil first learned about the classical Gauss–Bonnet
theorem from Ahlfors, who expressed an interest
in having a generalization to higher dimensions
in order to develop a higher-dimensional Nevan-
linna theory of value distribution ([20], p. 558, [21].
When Weil came to America several years later he
met Carl Allendoerfer and learned that both Allen-
doerfer and Werner Fenchel had independently
proved a Gauss–Bonnet theorem for manifolds
embedded in Euclidean space, using Weyl’s for-
mulas. Remembering Ahlfors’s desire for a general
Gauss–Bonnet theorem, Weil was able, together
with Allendoerfer, to prove the Gauss–Bonnet theo-
rem for all Riemannian manifolds ([1], [20], p. 299).
Their proof went via Weyl’s formulas together with
local embedding theorems. Shortly after, using
the appropriate form of the integrand from these

earlier approaches, Chern was able to provide an in-
trinsic proof of the Gauss–Bonnet theorem without
the detour through embeddings.

Our interest here is in a generalization of
Hotelling’s result in a different direction. We go
back to the case of a curve C in Euclidean space,
but are interested in much more general domains.

Notation 1. A curve C in Rn will be denoted by

X(s) = (x1(s), . . . , xn(s)),0 ≤ s ≤ L,
s = arc length parameter,

e1(s) = dX/ds
the unit tangent vector,

e1(s), e2(s), . . . , en(s)

a positively oriented orthonormal frame field along
C.

Definition 2. A tube-like domain T with centerline
C is the image under a diffeomorphism F of a do-
main D in Rn, with coordinates u1, . . . , un, such
that 0 < u1 < L, and for any t , 0 < t < L, the
intersection Dt of D with the hyperplane u1 = t
contains the point (t,0, . . . ,0). The map F satis-
fies F(u1, u2, . . . , un) = X(u1) + u2e2(u1) + · · · +
unen(u1), with u1 = s = arc length parameter along
C.

For 0 < s < L, let Ts be the intersection of T with
the normal hyperplane to C at the point X(s). Then
F : Ds → Ts is a linear transformation mapping Ds
isometrically to Ts .

Theorem 3. Let T be a tube-like domain in Rn with
centerline C. Then the volume V of T is given by

(20) V =
∫ L

0
V(Ts)ds −

∫ L
0[∫

Ds

~k(s) · (F(s, u2, . . . , un)−X(s))du2 . . . dun

]
ds,

where ~k(s) = d2X/ds2 is the curvature vector, and
for each fixed value of s, the vector

F(s, u2, . . . , un)−X(s) = u2e2(s)+ · · · + unen(s)
traces out the normal section Ts of T as the point
(s, u2, . . . , un) ranges over the parameter domain
Ds .

Proof. Let J = detdF be the Jacobian of the map
F . If Y = (y1, . . . , yn) = F(u1, . . . , un), then

J = ∂(y1, . . . , yn)
∂(u1, . . . , un)

, V(T) =
∫
D
J du1du2 . . . dun

=
∫ L

0

[∫
Ds
J du2 . . . dun

]
ds.

Now write

Y = X(u1)+ u2e2 + · · · + unen,
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with ej = ej(u1), 0 ≤ u1 ≤ L. Then

∂Y
∂u1

= e1 + u2
de2

du1
+ · · · + un

den
du1

and
∂Y
∂ui

= ei ,

i = 2, . . . , n,

and

∂Y
∂u1
∧· · ·∧ ∂Y

∂un
= ∂Y
∂u1
∧e2∧· · ·∧en = Je1∧· · ·∧en.

Write

∂ei
∂u1

=
n∑
j=1

aijej = ai1e1 + · · · ,

where the coefficients are given by

ai1 =
dei
du1

· e1 = −
de1

du1
· ei = −~k · ei ,

since the curvature vector ~k(s) = d
2X
ds2

equals
de1

ds
.

So
n∑
i=2

ai1ui = −~k ·
n∑
i=2

uiei = −~k(u1) · (Y −X),

where aij = aij(u1), X = X(u1), Y = Y(u1, . . . , un).
Finally,

∂Y
∂u1

=
(

1+
n∑
i=2

ai1ui
)
e1 + · · · ,

where the omitted terms involve the vectors
e2, . . . , en, and will vanish after taking the wedge
product with e2 through en. Hence,

J = 1+
n∑
i=2

ai1ui = 1− ~k(u1) · (Y −X(u1)),

as asserted. �

Note. Different versions of this theorem have
been known at least since 1978, when Michael
Raugh [14] studied the case n = 3 in the context
of the growth and structure of tendrils. Another
discussion of the case n = 3 appears in Chapter
3 (Cálculo de várias variáveis) of [3], pp. 202–210.
Both of those discussions assume the existence
of a Frenet frame field for the centerline of the
domain. A recent paper of Raugh [15] also treats
the n-dimensional case.

Note. For the proof to be valid, one needs the
Jacobian to be positive. If it were to change sign,
then there would be cancellations, and the inte-
gral would not represent the actual volume. Since
our definition of a tube-like domain includes the
assumption that the defining map is a diffeomor-
phism, the Jacobian cannot change sign. However,
if one starts with a domain D and tries to repre-
sent it as a tube domain, then one must check the
positivity of the Jacobian. We shall return to this
point later on.

Corollary 1. If the point Xs is the centroid of Ts for
each s ∈ [0, L], then

(21) V(T) =
∫ L

0
V(Ts) ds.

Note that it suffices to consider points where
~k(s) 6= 0.

Proof. For each value of s, the inner integral in the
second term of the formula for V(T) is a sum of
terms consisting of integrals over Ds of terms of
the form cjuj , where cj is a constant. But if X(s) is
the centroid of Ts , then the origin is the centroid
of Ds , and each of those integrals must vanish. �

Definition 3. Under the hypotheses of Corollary 1,
the centerline C is called a centroid curve of T .

A given domain may have more than one cen-
troid curve; for example, a Euclidean ball can be
viewed as a tube-like domain with respect to any
diameter as centerline, and that diameter will be a
centroid curve for the ball.

Corollary 2 (Hotelling’s theorem). If T is a tube
domain in Rn of radius r around a curve C of length
L, then

V(T) =ωn−1rn−1L,
whereωk is the volume of the ball of radius r in Rk.

Proof. In this case D is a cylinder of radius r and
height L. For 0 < s < L, the normal section Ts of T
is an (n− 1)-ball of radius r centered at the point
X(s) of C. �

A number of statisticians returned to questions
related to Hotelling’s theorem after a lapse of many
years. See the paper [11] and further references
given there.

Special Cases

n = 2. Then e2 is uniquely determined by e1 =
dX/ds. The orthogonal section Ts is an interval
Is , and the second term vanishes if X(s) is the
midpoint of Is at all points where the curvature is
nonzero.

Note. For n = 2, ~k(s) = κ(s)e2(s), where the
curvature κ can be positive, negative, or zero.
n = 3. If ~k(s) 6= 0 at a point, then the same holds

in an interval around the point, and we may define
e2 = ~k(s)/κ(s), where κ(s) = |~k(s)| is the curva-
ture. Then e2(s) is a smooth unit vector field on the
interval, and e1, e2, together determine e3. Since
de1/ds = ~k = κe2, we have a21 = −κ, a31 = 0, and
J = 1−κ(s)u2. As already noted, this equation also
holds whenever κ = 0. Therefore, for n = 3,

V(T) =
∫ L

0

[∫
Ts
(1− κ(s)u2) du2 du3

]
ds

=
∫ L

0
V(Ts) ds −

∫ L
0
κ(s)Ms ds,
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where Ms is the moment of Ts about the line
through X(s) in the e3 (binormal) direction. It fol-
lows that for (21) to hold, one does not need X(s)
to be the centroid of the orthogonal section, but
only that the moment of that section be zero with
respect to the line through X(s) in the binormal
direction, at all points where κ 6= 0. (See Raugh
[15].)

An analogous statement holds for arbitrary n.
Another formulation is∫
Ds
J du2 . . . dun =

∫
Ds
(1+

n∑
i=2

ai1ui) du2 . . . dun

= V(Ts)+
n∑
i=2

ai1Mi ,

whereMi is the i-th moment ofDs , and ai1 = ai1(s).

Gateway Arch Specifications
The shape of the Gateway Arch is a polyhedral sur-
face, the piecewise linear approximation by quadri-
laterals to the surface S of the theoretical Gateway
Arch, with two of the sides of each quadrilateral
lying on designated straight-line segments of S.

Note. The surface just described is an abstract
mathematical representation of the surface of the
physical Gateway Arch, that surface consisting of
the exterior of a set of stainless steel plates subject
to a variety of distortions. Among those are the (un-
even) expansion and contraction with changes of
temperature, deflection due to wind forces, and
deformation under the moving weight distribu-
tion of the internal transportation system carrying
passengers to the top.

The theoretical Gateway Arch is a tube-like do-
main T whose centerline C is the reflection in a
horizontal plane of a flattened catenary. The curve
C is given by the equation

(22) y = 693.8597−A coshBx,

where A and B are the numerical constants

(23) A = 68.7672, B = .0100333,

(24) − 299.2239 ≤ x ≤ 299.2239,

and x, y represent distances measured in feet. We
may also write the equation of C as

(25) y = 625.0925− Y
where

(26) Y = A coshBx+ C = A(coshBx− 1)

represents the vertical distance down from the
vertex of C.

The orthogonal section T(x, y) at the point
(x, y) of C is in the form of an equilateral triangle
of area Q(x, y), where the sides of T(x, y) when
x = 0 (at the vertex of C) have length 17 feet and
when y = 0 (at the base of the arch) have length 54
feet. The area Q(x, y) is defined by interpolating

linearly in Y between the corresponding areas so
defined:

Q(x, y) = Qv + (Qb −Qv)Y/Yb,
where Qv is the cross-sectional area at the vertex,
andQb is the corresponding area at the base. Since
the area Q of an equilateral triangle is equal to

Q =
√

3
4
d2,

where d is the length of a side, and since d = 17 at
the vertex v and d = 54 at the base, we find

Qv = 125.1406, Qb = 1262.6651,

while Yb = Y |y=0 = 625.0925. It follows that

Q(x, y) = 125.1406+ 1.81977Y
= 1262.6651− 1.81977y.

Using the relation above between the area Q and
the side d of an equilateral triangle, we obtain
the exact dimensions of the cross-sections at each
height y . It remains to specify that the positions of
the triangles in the planes orthogonal to the curve
C are symmetric with respect to the x, y-plane, with
one vertex lying in that plane and interior to the
curve C, and that the centroid of each of those
triangles lies on C, so that C is a centroid curve of
the Arch.

It follows from these specifications that the sur-
face of the theoretical Gateway Arch is the union
of three surfaces: a pair of ruled surfaces that are
symmetric images with respect to the x, y-plane
and meet in a curve lying in the x, y-plane, called
the intrados of the Arch, together with a cylindri-
cal surface orthogonal to that plane: the extrados.
The maximum height of the extrados occurs at the
point directly above the vertex of C where x = 0
and y = yv = 625.0925. At this point the orthog-
onal plane is vertical, and the distance from the
vertex of C to the base of the triangle is one third
of the length of the median, or 17

√
3/6 = 4.90748.

Adding this to yv gives for the maximum height of
the Arch h = 629.99998.

The width of the Arch is a bit more subtle. We
take the points where y = 0 on the centroid curve
C to represent ground level. At those points, x =
299.2239 and −299.2239 so that the width of the
curve at ground level is 598.4478. The equilateral
triangle representing the cross-section at those
points has side 54, and hence the distance to the
outer curve of the Arch is

54
√

3/6 = 9
√

3 = 15.58846.

Adding this on each side to the width of C at ground
level gives a total width for the Arch of 629.6247.
However, since the curve C, although steep, is not
vertical at ground level, the cross-section of the
Arch is not horizontal, and the actual outer width
is slightly larger. However, one sees that the dimen-
sions of the centroid curve together with the size
and shape of the cross-sections produce an arch
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that for all practical purposes has exactly the same
total height as width. It may be worth noting, how-
ever, since it is sometimes a source of confusion,
that the centroid curve is distinctly taller than wide,
and the same is even more true of the inner curve
of the Arch, whose height is 615.3 feet, and width
is 536.1. For more on this and related matters, see
[12].

Curvature Computations
Let y = f (x) = A coshBx = D( 1

B coshBx) define
a flattened catenary, where A,B are positive con-
stants, and D = AB. Then f ′′(x) = B2y > 0 so that
f is convex and the curvature κ > 0. Specifically,

κ = B2y
(B2y2 + 1−D2)3/2

.

For a catenary, D = 1 and κ = 1/By2, with a
maximum of B at the vertex (0,1/B) and decreasing
monotonically to zero as y →∞.

In general, let g(y) = (B2/κ)2 = B4R2, R = 1/κ.
Then dR/dy ≥ 0 a g′(y) ≥ 0. But one finds

g′(y) = 2
y3
(B2y2 + 1−D2)2(2B2y2 − 1+D2)

and since y ≥ A, B2y2 + 1−D2 ≥ 1, and

g′(y) > 0 a 2B2y2 > 1−D2.

Case 1: D > 1. An “elongated” catenary, obtained
by stretching a catenary uniformly in the verti-
cal direction. Then the right-hand side is negative,
g′(y) > 0 along the whole curve, so that R has a
minimum and κ a maximum at the vertex, where
x = 0, y = D/B, and κ = BD.

Case 2: D = 1. A catenary, for which, as we have
seen, R has a minimum value of 1/B at the vertex
and R →∞ as y →∞.

Case 3: 0 < D < 1. Then there are two possibilities.

Case 3a: D2 ≥ 1/3. Since y takes its minimum
value A at the vertex, we have

2B2y2 +D2 ≥ 2B2A2 +D2 = 3D2 ≥ 1

so that g′(y) ≥ 0 along the whole curve, and as
in cases 1 and 2, the curvature has its maximum
value of BD at the vertex.

Case 3b: D2 < 1/3. Then 1 − D2 > 2D2 = 2B2A2,
and we have g′(y) < 0 in the interval

y|x=0 = A ≤ y <
(1−D2

2B2

)1/2
.

In this case, the vertex of the curve will be a lo-
cal minimum of the curvature, which will increase
monotonically until y reaches the value indicated
on the right, where the curvature will reach its max-
imum. The curve is in this case sometimes referred
to as a two-nosed catenary.

Figure 2 shows a two-nosed catenary for which
D = 1/3, obtained by stretching a catenary uni-
formly in the horizontal direction by a factor of

3, which is equivalent, up to a similarity, to com-
pressing it vertically by a factor of 3.

It may be worth observing that when illustrating
geometric graphs, one often sees different scales
used on the two axes. For a parabola, the resulting
curve will still be a parabola, but for a catenary, the
result will be a flattened or elongated catenary. As
the figure, as well as the above calculation, makes
clear, the shape may be very different geometrically
from a true catenary. Such differences are obvious
when different scales in the horizontal and vertical
directions turn a circle into an ellipse, but they are
often overlooked for noncompact curves such as
the catenary.

Finally, we note that for the centroid curve of
the Gateway Arch, we have D = AB = .69, well
above the critical value D =

√
3/3 = .577 . . . , so

that the curvature will take its maximum value at
the vertex, where it is equal to DB = .0069 so that
the radius of curvature at that point is R = 145 feet,
and it grows monotonically from there. Since all
points of the cross-sectional equilateral triangles
that define the Gateway Arch are less than 54 feet
(and in fact, < 54

√
3/3 < 32 feet) from the centroid

curve, it follows that the Jacobians entering into
the computations leading up to equation (21) are
all positive, where the Gateway Arch is considered
as a tube-like domain.

Note. This paper is an expanded version of the
Roever Lecture given by the author at Washington
University in St. Louis on March 24, 2009. William H.
Roever was born in St. Louis, and after receiving
his Ph.D. at Harvard University and teaching at MIT,
he returned to Washington University, where he
served as chairman of the mathematics department.
He wrote two papers on the curves of light formed
by reflection under particular circumstances [16],
[17]. He would undoubtedly have been fascinated
by the light curve that forms on the Gateway Arch
when the sun is at a certain angle.

Final Note
Although the essence of Hooke’s dictum relating
the standing arch to the hanging chain seems clear,
there are subtle issues that arise, some involving
the fact that a standing arch is a three-dimensional
body, whereas the hanging chain is modeled just
as a curve. In fact, a careful analysis of the stability
of an arch and its relation to the geometry of the
arch is a subject about which whole books could
be (and have been) written. (See, for example, [6].)

Here is an example of a seemingly paradoxical
fact that does not seem to have been mentioned
anywhere. As we noted at the outset, the fact that
the shape of a hanging chain is a catenary is often
derived by using the calculus of variations, finding
the curve of given length that has the lowest center
of gravity. It follows then, according to Hooke, that
the ideal shape of an arch would be an upside-down
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Figure 2. Left: catenary; right: 2-nosed catenary.

catenary, which would have the highest center of
gravity among all arches of the same length. But
that would appear to make it maximally unstable.

Some of these and related issues are discussed
in the paper [12]. We hope to return to the subject
for a fuller discussion at a later date.
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