
Can’t Decide? Undecide!
Chaim Goodman-Strauss

I
n my mathematical youth, when I first learned
of Gödel’s Theorem and computational un-
decidability, I was at once fascinated and
strangely reassured of our limited place
in the grand universe: incredibly, mathe-

matics itself establishes limits on mathematical
knowledge. At the same time, as one digs into
the formalisms, this area can seem remote from
most areas of mathematics and irrelevant to the
efforts of most workaday mathematicians. But
that’s just not so! Undecidable problems surround
us, everywhere, even in recreational mathematics!

Three Mysterious Examples
Somehow these simple questions seem difficult to
resolve:

Mysterious Example #1

Tilings are a rich source of combinatorial puzzles.
We can ask, for a given tile, whether or not it
admits a tiling: that is, does there exist a tiling of
the plane by copies of this tile?

For many examples, this is utterly trivial:
clearly the tile at left in Figure 1 above does
admit a tiling, and the tile at middle left does
not. One might discover a simple proof that
the tile at middle right does not admit a tiling

either,1 though it is more difficult to work out
just how large a region you can cover before
getting stuck. But it’s a reasonable bet that you

Chaim Goodman-Strauss is professor of mathematics at

the University of Arkansas. His email address is strauss@

uark.edu.
1Hint: the tile, discovered by C. Mann, can be viewed

as a cluster of hexagons, with some edges bulging in-

wards and some bulging out—but there are more bulging

inwards than outwards. Etc.…

Figure 1

will not be able to discover whether or not the tile

at right, discovered by J. Myers in 2003, admits

a tiling, at least not without resorting to some
sort of brute-force calculation on a computer!

Try this for yourself! A downloadable file with
tiles to cut out and play with has been placed

at http://http://mathfactor.uark.edu/

downloads/myers_tile.pdf.
In general, then, we have

Input: A tile.

and a
Decision Problem: Does the
given tile admit a tiling of the plane?

With enough brute-force effort, in some circum-

stances, we can answer this problem:
We might simply enumerate all possible con-

figurations admitted by the tile, covering larger
and larger disks. If the tile does not admit a tiling,

eventually there will be some sized disk we can

no longer cover, we run out of configurations to
enumerate, and we then know the answer to our

problem: No, the tile fails to admit a tiling. If a
tile does not admit a tiling, the “Heesch number”

is a measure of the complexity of such a tile,

as the largest possible combinatorial radius of
disks it can cover (in other words, the maximum

number of concentric rings that copies of the tile

March 2010 Notices of the AMS 343

http://mathfactor.uark.edu/downloads/myers_tile.pdf
http://mathfactor.uark.edu/downloads/myers_tile.pdf

can form); C. Mann discovered the current world

record examples, with Heesch number 5 [22, 23].

But how can we determine whether an arbitrary

given tile does admit a tiling?

We can modify our procedure just a bit to

discover if a tile admits a periodic tiling:2 As we

enumerate larger and larger configurations, we

check to see if we have yet come across one that

can serve as a fundamental domain in a periodic

tiling. If we find such a configuration we have the

answer: Yes, the tile admits a tiling. The “isohedral

number” is a measure of the complexity of this,

as the minimum number of tiles required to form

a fundamental domain (that is, the minimum

number of orbits in a tiling by such a tile). J. Myers
has found many bizarre examples, including the

world record example, with isohedral number 10,

shown in Figure 1 at right [30].

If it were true that every tile either admits a

periodic tiling or does not admit a tiling at all, then

we would have a procedure to settle our decision

problem for any given tile—enumerate larger and

larger configurations until we run out or find a

fundamental domain. But could there exist an

“aperiodic” tile, one admitting only nonperiodic

tilings?

Almost unimaginably, could it be that there

is no possible systematic method to answer our

decision problem? Honestly—how hard do you

suspect this could be?

If that problem were in fact undecidable, then we

would have immediate, difficult-to-believe corol-

laries: There must exist an aperiodic tile—a tile

which somehow wrecks translational symmetry at

all scales. There cannot be a bound on Heesch

number—for any N there must be a tile that can

form at leastN concentric rings but then somehow

get stuck and never be continued to form a tiling.

Experimenting with some of the stranger ex-

amples discovered by Mann and Myers might give

one pause—it seems utterly baffling to discern

how and why these examples behave as they do,

and others don’t.

Mysterious Example #2

A large literature on the Collatz function (cf.

[20, 21, 25]) has not settled this seemingly simple

problem:

Input: A counting number n.

Repeatedly we apply the following function to our

current n, obtaining a new number n at each step:

if n is odd, take 3n + 1; if our n is even, take n/2;

we halt if we ever obtain n = 1.

2That is, a tiling invariant under some translation. In the

Euclidean plane—though not in higher dimensions nor

in the hyperbolic plane—if a tile admits such a tiling, it

must in fact admit a tiling with a compact fundamental

domain [16].

For example, if we begin with, say, n = 7, we

obtain 22, then 11, 34, 17, 52, 26, 13, 40, 20, 10,
5, 16, 8, 4, 2 and finally 1.3

Decision Problem: On a given in-
put, do we obtain 1 and halt, or do
we enter into a loop, or do we run
forever, obtaining larger and larger
numbers in the long run?

For a taste of how vexing the behavior of this

process can be, work out by hand what occurs

beginning with n = 27. Again we see our num-

bers grow and shrink, seemingly without rhyme

or reason, until, finally, thankfully!, the process

terminates after 111 steps, at one point reaching

n = 9232.

As in the previous example, we can eventually

determine, with enough patience, whether the

process halts or loops on a particular given input.

As of this writing, this process is known to halt on

every input less than 5 · 260 [32]! Yet there is no

obvious means to determine whether the process

runs forever.

If we could prove, once and for all, that this

process always halts, the decision problem is

instantly solved for all input. But could it be

that there is no theorem possible that declares,

definitively, that this process always halts? Paul

Erdős is said to have remarked “Mathematics is

not yet ready for such confusing, troubling, and

hard problems.”

Mysterious Example #3

The logician Emil Post explored this system as a

student in the early 1920s [33]:

Input: A string of 0’s and 1’s.

We will repeatedly cross off three digits from the

front of our string and tack on digits at the end

by the following rule: If the first crossed-off digit

is 0, we tack on 00; if the first crossed-off digit is

1, we tack on 1101.

There are three possibilities: either our string

at some point will have too few letters to cross

off, and we halt; or we might enter into a loop,

in which the same strings recur again and again

ad infinitum; or we might run forever, without

looping, the strings eventually growing without

bound.

For example, if we begin with the string 10101,

we cross off 101 from the left and tack on 1101

on the right, obtaining 10101 1101 = 011101.

Repeating this process we obtain 011101 00 =

10100, then 001101, and then once again 10100.

So on our third string we enter into a loop of

length 2.

3Of course if we allowed the process to run forever we

would then have 4, 2, and again 1, ad infinitum.

344 Notices of the AMS Volume 57, Number 3

Decision Problem: For a given
input, does this process loop, halt, or
run forever?

Running through a few examples, we quickly see
how vexing this question is! As a nice exercise,
consider 1··1· (where each · can be either 0 or
1—since those will be crossed off without rising
to the front of the string, it cannot matter either
way).

Rummaging through other small examples by
hand, one is hard-pressed to find a pattern, and
soon one reaches the limits of one’s patience:

On input 1··1··1··0··, we run for a whopping
419 steps, before finally reaching 00 and halting.

On input 1··1··1··0··1··0··, we run for 2137
steps before entering into a loop of length 28.
Along the way, the strings grow and shrink in a
most confounding manner.

Worse yet, seemingly similar inputs, such as
1··1··0··1··0··1·· (which halts after just 32 steps)
give rise to much simpler behavior. Can you explain

why?4

Certainly, with enough patience, we can deter-
mine whether the process will halt or loop on a
given input string—simply run the process until
one of these two events occurs. But there is no
obvious way to determine if we do not halt or loop!
Is there a procedure that can settle this question
for any given input, in a finite number of steps?
Post dryly remarks that the problem has “proven
intractable” [33].

Undecidability
No one knows how to answer the decision prob-
lems above. In each case, we can answer the
problem for some inputs and seem to be stuck on
others. In each case, the behavior of the problem
on each given input can be rather unexpected, and
small changes to the input can cause our process
to play out in radically different ways.

In each case, we might throw up our hands and
ask whether a general technique for answering the
decision problem is even possible, whether one
might find a theorem that could classify, in some
effective manner, for which inputs the problem
is answered one way, and for which, another. No
one even knows, though, whether the mysterious
examples above are in fact undecidable.

Quite remarkably, as many readers will of
course know, there are in fact decision prob-
lems for which one can prove that no mechanical
process—or procedure or algorithm—can provide
an answer on any given input; problems one can

prove are undecidable.5

4For that matter, why is this system so inscrutable but not

other similar-looking systems?
5This should not be confused with the use of the word

“undecidable” to mean that a given statement is inde-

pendent of a specific formal deductive system, as for

I’ll go out on a limb and state my belief that one

of our mysterious examples is almost certainly

undecidable, one seems not likely to be, and for

one I have no idea. But of course it would be rash

to say which is which.

Our main point here—which seems to be

less widely appreciated—is that undecidable prob-

lems are in a sense ubiquitous, arising even in

elementary, recreational settings.

There are hundreds of interesting and useful

treatments of this subject: an excellent beginning

is Sipser’s Introduction to the Theory of Computa-

tion [39]. Minsky’s classic Computation: Finite and

Infinite Machines [29] provides valuable context

and constructions. Together with its encyclopedic

endnotes, Wolfram’s A New Kind of Science [45]

is a definitive sourcebook of specific, simple ex-

amples. The Wikipedia entries in this area are

comprehensive and generally well written and ac-

curate. Margenstern’s helpful survey reviews the

recent state of the art of our knowledge of the fron-

tier between decidability and undecidability [24].

Smullyan’s many puzzle books, particularly The

Lady or the Tiger? [40], pose these issues in fun

ways that can excite very young mathematicians.

Finally,Hofstader’sPulitzerPrize-winning,delight-

ful Gödel, Escher, Bach [18] continues to earn a

wider audience for this subject.

The three mysterious examples each generalize

to problems known to be undecidable:

Undecidable Tiling Problems

Undecidability has a long pedigree in recreational

mathematics. In 1961, as an aside within his

work on one of the then remaining open cases of

Hilbert’s Entscheidungsproblem (“Is a given first

order logical formula satisfiable?”) [4, 44], Hao

Wang noted the undecidability of a particular

elementary tiling problem. This began a course of

development that led straight to the discovery of

various “aperiodic” sets of tiles, most famously

Penrose’s, popularized by Martin Gardner [14].

Input: A finite collection of tiles,
and a particular “seed” configura-
tion.

Decision Problem: Do the given
tiles admit a tiling of the plane which
contains the given configuration?

That is, can we “complete” the seed configuration

to form a tiling of the entire plane,6 using copies

of some or all of the given tiles?

example the Continuum Hypothesis is independent of

Zermelo-Fraenkel set theory.
6It’s easy enough to decide whether we can complete

a tiling of a specific-sized finite region—there are only

finitely many possibilities to check.

March 2010 Notices of the AMS 345

00 0 0 0 0

A

00 0 0 0 0

B

00 1 0 0 0

A

00 1 0 0 0

B

00 0 0 0 0

C

000 1 0 0

B

t=0

t=1

t=2

t=3

t=4

t=5

0 0 0 0

1 0 0 0

0 0 0 0

00 0 0

00 1 0

0 0 0 0

0

0

0

0

0

0

A0

A0

B0

B0

B1

C0

φ(A0)

φ(A0)

φ(C0)

φ(B0)

φ(B1)

Figures 2a (left) and 2b (right)

Wang accomplished this by reducing the “Halt-
ing Problem” for Turing machines to his Comple-
tion Problem: For any given Turing machine, he
produced a set of tiles and seed configuration, in
such a way that the seed configuration could be
extended to a tiling by copies of the tiles if and
only if the machine never halts.

Of course the Halting Problem is a touchstone
of undecidability: in 1935, through a simple and
elegant construction, Turing proved there can be
no procedure to decide whether a given Tur-
ing machine will halt or not [43]; consequently,
there can be no procedure to tell whether one of
Wang’s corresponding sets of tiles, with its seed
configuration, can complete a tiling of the plane.

Wang’s construction is easy enough to illustrate
by an example: Consider the Turing machine
specified by

φ A B C

0 0RB 1LA 1RB
1 1RB 0RC 0LH

This machine will work on an infinite tape;
at each step, each cell is marked 0 or 1, and
the machine will be in a particular state A, B,
or C, reading one particular cell. The transition
function φ determines the action of the machine,
depending on its state and the marking it is
reading; for example, if the machine is in state A
reading 0, as in the upper left of the table, the
machine will leave a 0 in that spot on the tape,
move right one cell, and go into state B. If it is in
state B reading a 0, it leaves 1 on the tape, moves
one cell to the left, and goes into state A. There is
one special “halt” state H—if the machine enters
this state, it can do no more, and the process halts.

Beginning in state A, on a tape marked with
all 0’s, we can illustrate the first few steps of the
run of the machine, Figure 2a. The essential point
is that this illustration itself satisfies completely

local rules: it is composed of pieces that must fit
together in a certain manner. We can encode this
as a tiling, shown in Figure 2b.

With only a little care, we then have a set of tiles,
shown in Figure 3, that can emulate the machine. It
is possible to cover the plane with copies of these

tiles, so that labels on adjacent edges match,7 as
shown above.

Must they emulate this machine? In any tiling
containing the initial “seed tile”, at upper left
in Figure 3, there must be, inductively row by
row, a faithful representation of the run of the
machine; this can be completed into a tiling of
the entire plane if and only if the machine never
halts—note that the tile at bottom right in Figure
3 corresponds to the machine entering the halt
state, and no tile can fit beneath it. As the Halting
Problem is undecidable, so too is the Completion
Problem.

(On the other hand, note that it’s easy enough
to tile in other ways, if we don’t place the seed tile.
For example, we could just cover the plane with
copies of the filler tile at upper right in Figure 3.)

This example highlights the deep connection
between undecidability and computational univer-
sality: The celebrated Church-Turing thesis in
effect asserts that anything we might mean by
computation can be realized by a Turing machine
and thus by anything that can emulate a Turing ma-
chine. Wang’s Completion Problem is undecidable
precisely because it has this property, precisely
because completing a tiling from a seed tile is
“computationally universal” and can emulate any
computation (albeit wildly inefficiently!).

As an aside, Wang posed the “Domino Problem”
(or “Tiling Problem”): Does a given set of tiles admit

7It is easy enough, if one prefers, to use unmarked tiles

that simply are required to fit together: we may convert

the labels into geometric jigsaw-like bumps and notches:

346 Notices of the AMS Volume 57, Number 3

B0 B1

A0

A1

A1

B0

A0

C0

B1

B0

C0

A1

B1

C1

A0

C1

A0 1

1

1

1

1

1

1

1

1

0 0

0

0

0

0

0

0

0

0

0

H

φ(A0) φ(A0)φ(A0)

φ(B0) φ(B0)φ(B0)

φ(C0)φ(C0) φ(C0)

φ(A1) φ(A1)φ(A1)

φ(B1)φ(B1) φ(B1)

Figure 3

a tiling of the plane? This is trivial for the sets
constructed above since we may cover the plane
with just copies of the blank filler tile. He noted that
if the Domino Problem were in fact undecidable,
there must exist sets of tiles that do admit tilings,
but none of which are periodic—because just as we

discussed in the section Mysterious Example #1,
if every set of tiles either does not admit a tiling
or admits a tiling with a compact fundamental
domain, then we have an algorithm for answering
the Domino Problem: enumerate configurations,
covering larger and larger disks, until we run out
of possibilities (No, the tiles do not admit a tiling),

or until we discover a fundamental domain (Yes,
the tiles admit a tiling).

Wang reasonably conjectured that no such
aperiodic set of tiles could exist—after all, some-
how, just by local rules, symmetry would have to
be broken at all scales—but within a few years
R. Berger and then R. Robinson gave subtle proofs

that the Domino Problem is undecidable, along
the way producing aperiodic sets of tiles [2, 36].
Today, the Penrose tiles remain the most famous
aperiodic set, but still, remarkably little is known
about this phenomenon.

Fractran

John H. Conway’s Fractran [7] is an amusing
generalization of the Collatz function described
above. A Fractran program consists of a list of
fractions, say these, discovered by D. Kilminster:

3

11

847

45

143

6

7

3

10

91

3

7

36

325

1

2

36

5

At each step, we will have some integer n; we
then multiply by the first fraction p/q in our list

so that np/q is an integer, which we take as our
integer at the next step. If no such fraction can be
found, then the program halts, with output n.

So, for example, beginning with 10, we would

first multiply by 1/2, obtaining 5; we then multiply

by 36/5, obtaining 36; in this manner, we see 858,
then 234; then 5577; 1521; 3549; 8281; 910 and

then 100; after another 36 steps, we have 1000;

some 150 steps later, 105, and 304 steps after
that, 107. In fact, this procedure generates the

primes—every power of ten that appears is a

prime power, and every prime power appears, in
order! Astonishing!

Most generally, a Collatz-like function is of the
form

f (n) =



















a0n+ b0 for n ≡ 0 mod N
a1n+ b1 for n ≡ 1 mod N
. . .
a(N−1)n+ b(N−1) for n ≡ N − 1 mod N,

where N is some fixed counting number and all

the a’s and b’s are rational, chosen in such a way
that for integers n, f (n) is an integer as well. The

function f is completely specified by the list of

values N,a0, b0, . . . a(N−1), b(N−1), and our input is
thus

Input: f and some integer n0.

Iterating f , obtaining,n0, f (n0), f (f (n0)), . . .we ask

Decision Problem: Does iterat-
ing f on n0 ever lead to a repeating
loop of values?

A Fractran program can be described as a Collatz-

like function with all bi = 0 (taking N to be the

least common multiple of all the denominators
in the program). Though the Fractran program

above seems to work by magic, it is easy, just as
with Wang’s Completion Problem, to see that this

decision problem is undecidable, and that in fact,

any computation can be encoded in Fractran!
Conway pulled off this trick by encoding Minsky

register machines, which themselves are compu-

tationally universal [28, 29]. A Minsky register
machine can be thought of as having “registers”

a1, a2, . . . ak, each of which can take on a value in

0,1,2, . . ., and a list of instructions of the form:

Instruction In: Increment an
and go on to instruction In1

or

Instruction In: If register

an > 0, decrement an and
go to instruction In1; otherwise

go to instruction In2.

It is not hard to see how we can build these up

into subroutines, and we do not gain any power
by allowing more complex instructions such as

Instruction I: If a > k, decre-

ment a by j, increment b by

2, and go to instruction A,
otherwise increment a and go

to instruction B.

March 2010 Notices of the AMS 347

Nor is it difficult to believe that anything we might

be able to calculate using, say, assembly language

could be calculated by a Minsky register machine.

(It is substantially more remarkable, as Minsky

showed [28], that already just two registers are

sufficient to carry this out!)

Given such a list of instructions, it’s not hard at

all to construct a Fractran program that faithfully

emulates the machine:

To each register an and each instruction In, we

associate a unique prime number. For example, if

our machine has three registers a,b, c and three

instructions A,B,C, we associate these with 2,3,5

and 7,11,13, respectively. Then at each step of

the run, our integer will be of the form 2a3b5cI,

where I is one of 7,11,13, depending on which

instruction we are to read next.

An instruction of the form “Instruction A:

Increment a and go to instruction B” is

encoded quite simply as the fraction 22/7: All

of the other fractions in the program will have

a factor of 11 or 13 in the denominator, but

not 7, and so if at a given time our integer is

2a3b5c7, we must faithfully execute instruction

A, obtaining 2a+13b5c11. Similarly, an instruction

of the form “Instruction A: If register

a > 0, decrement a and go to instruction

B; otherwise go to instruction C” is en-

coded simply as the pair of fractions 11/14 and

13/7, in that order.

There is only one small caveat: in a Fractran

program, no instruction can jump to itself; for

example, within an instruction A, we cannot go

directly to A—the corresponding primes would

cancel in the fraction encoding this instruction!

But this is easy to work around, by introducing

intermediate dummy instructions—we go to some

instruction A′ and then on to A. On the other

hand, Fractran allows many shortcuts! It is quite

pleasurable to work out just how Kilminster’s

program carries out its task; Conway has given

other elegant examples in [7].

Precisely because arbitrary computations can

be encoded as Fractran programs, problems such

as these must be undecidable:

Input: A finite sequence of
rational numbers and a starting
integer.

We iteratively multiply by the first rational number

in the sequence for which the result is an integer;

unless no such rational is available and we halt

and ask:

Decision Problem: Will we ever
halt?

Both this and the problem earlier in this section

are just disguised forms of the Halting Problem.

Post Tag Productions

The example in section Mysterious Example #3

generalizes readily: specify an arbitrary alphabet
A; for each letter a ∈ A a word σa which it
produces; a starting word ω0; and some fixed
constant k.

At each step, we have a word ωn; if the length
of this word is less than k, then we halt; otherwise,
we produce ωn+1 by striking off the first k letters
of ωn and appending σa where a is the first letter
of ωn. We can indicate this production rule by

writing abω → ωσa, where the variable b stands
for any word of length k− 1, and ω for any word
at all.

For example, we might take k = 2, and A =

{a,b, c}, and specify σa = cb, σb = aaa, and
σc = a. Taking ω0 = aaa, we produce in turn
aaa→ aaa cb = acb → acb cb → baaa → aaaaa,
which we abbreviate as a5. Focusing on just the

words of the form an, we soon produce a8, a4, a2,
and finally a1 = a, at which point we have too few
letters to cross out, we cannot apply our rules,
and the process halts.

In fact, this system precisely encodes the Collatz
function [10]! Beginning with an, with n even, it is
not difficult to see that after n iterations, we obtain
an/2. If n > 1 is odd, then n+ 1 iterations produce
a(3n+1)/2. Our process eventually halts if and only if

iterating the Collatz function eventually reaches 1.

Input: A set of “tag” productions
and a start word.

Decision Problem: Does the pro-
cess eventually stop, beginning with
the given start word?

Tag production systems are a simple and useful
undecidable system, with a beautiful mathemat-
ical history, initiated by Post while a student in
the early 1920s, reaching fruition with his lovely
Normal Form Theorem in 1943 [33] and then
the constructions of universal tag systems in the
1960s [6, 28]. Yu. Rogozhin [37] and others have
used tag production systems to construct re-
markably small “universal Turing machines”, and

M. Cook’s proof of the computational universality
of Wolfram’s cellular automaton “Rule 110” relies
on the device of “cyclic tag systems” [8].

Most generally, we may consider production
systems of the following “canonical” form: Be-
ginning with a finite list of words (“axioms”), we
repeatedly produce new words (“assertions”) on
the basis of old ones, by production rules of the
form

g11ω11g12ω12 . . .ω1n1g1(n1+1),
g12ω12g22ω22 . . .ω2n2g2(n2+1),

...
gm1ωm1gm2ωm2 . . .ωmnmgm(nm+1)

-→

g1ω
′
1g2ω

′
2 . . .ω

′
ngn+1

348 Notices of the AMS Volume 57, Number 3

where all the g’s are specified, fixed, possibly
empty words, and the ω’s are variables, each
ω′
i being some one of the ωjk’s. That is, each

production is a rule for generating a new assertion
on the basis of one or more earlier assertions.

As a specific example, on the alphabet 1,+,=,
take as a single axiom 1+ 1 = 11 and production
rules ω1 + ω2 = ω3 → 1ω1 + ω2 = 1ω3 and
ω1 + ω2 = ω3 → ω1 + 1ω2 = 1ω3, producing
such arresting assertions as 1111 + 11 = 111111
and 1+ 11111 = 1111111.

As a more interesting example, take alphabet
1, A, B, C,D, axioms A111, 11 and productions

Aω → Aω1
Aω1 → BωCDω1

ω11Cω21 → 1ω1C1ω2

ω1BCω21 → Bω1Cω21
ω1Bω21Cω3D → Bω1ω2CDω3

11BCωD1 → ω1

which generate the prime numbers! (That is, the
assertions of the form 1 . . .1 are precisely the
prime numbers in unary form [29].) The active
reader should be able to work out the mechanism
behind this by tracing out what is produced
beginning from each A1 . . .1, with either a prime
or composite string of 1’s.

Post makes the point that essentially any formal,
mechanizable system can be described as the
applications of such rules: the local application
of mechanical rules on strings of symbols. It is
in fact not too difficult to design rules that can,
say, emulate a Turing machine or produce all the
theorems under some first-order formal system.
But how simple can our systems be and still be
powerful?

A production is in “normal form” if all of its
production rules are of the very simple form
gω →ωg′, with one variable and two fixed words;
given the apparent simplicity of such systems, it
is remarkable that:

Normal Form Theorem (Post, [33]). Given any
system in canonical form, on alphabet A there ex-
ists a system in normal form on alphabet A′ ⊃ A

so that the words produced by the first system are
exactly those produced by the second, that contain
only letters in A.

In other words, in effect, every formal system
can be captured by some system in normal form!

But we can go further: Post’s “tag”8 productions
are a special kind of system in normal form: in a
tag system we require that for any pair of rules
g1ω → ωg′1, g2ω → ωg′2 where both g1 and g2

begin with the same letter, then g′1 = g′2, and
that all of the fixed words g on the left of the

8So called because Post envisioned a finite-state machine

reading one portion of a tape and writing on another; as

the length of the tape between them grows and shrinks,

the read and write heads appear to be playing a game of

tag.

production rules have the same length. Such a

system then can be thought of as in our initial

example: at each step, cross off some k letters,

tacking on a string on the end as determined by

the first letter crossed out.

So in our initial example, as a normal form

system, we have nine rules:

axω→ωcb bxω →ωaaa cxω→ωa

where x is each of a,b, c.

These systems are truly restricted and seem

so simple! It seems incredible that they could

have much power, yet by 1961, Minsky showed

tag systems to be computationally universal [28],

as Post suspected: given any Turing machine,

there exists a tag system that completely encodes

the machine’s behavior. In particular, then, it is

undecidable whether a given word is an assertion

by a particular tag system, and it is undecidable

whether a given tag system halts; Cocke and

Minsky soon showed that k = 2 would suffice [6].

A Few More Examples

Fun, simple examples abound! Here are several

more:

The Post Correspondence Problem

Can you solve the following puzzle? Pairs A,B,C

of puzzle pieces are shown; select some sequence

of pairs of pieces, forming a top row and a bottom

row of pieces that must fit together.

A B C ACCAA

It’s not hard to see that any such sequence must

begin with pair A and continue CCAA It may

be surprising that the shortest possible sequence

requires 75 pairs:

. . .

. . .

. . .

. . .

. . .

. . .

There is actually a second solution of 75 pairs;

can you find it?

More generally, an instance of the Post Corre-

spondence Problem has

Input: A finite collection of or-
dered pairs of words (Ai , Bi) in some
fixed alphabet,

and we ask:

March 2010 Notices of the AMS 349

size width record instance known # min sols sol length author

3 3 ((0,1),(1,011),(011,0)) 2 75 Lorentz & Waldmann

3 4 ((001,0),(1,1001),(0,01)) 1 452 (?) (> 340) Rahn & Stamer

3 5 ((0,001),(00100,0),(10,0100)) 1 288 Rahn

4 3 ((0,011),(001,1),(1,00),(11,110)) ? 595 Rahn

4 4 ((0,00),(0000,0101),(0001,10),(101,1)) 1 781 Rahn

Decision Problem: Does the in-
stance have a solution? That is, is
there some nonempty sequence of in-
dices i1, i2, . . . in with Ai1Ai2 . . . Ain =
Bi1Bi2 . . . Bin?

Post’s original point was that it is quite easy to

encode a given set of productions in normal form

as an instance of the Correspondence Problem—

certainly easy enough for the active reader to
rediscover how!

In the example above, discovered by R. J. Lorentz

andJ.Waldmann [41],we couldregardouralphabet

as {0,1} (drawn as zags slanting up to the right

and down to the right respectively), with pairs

(011,0), (1,011), (0,1). This example is known to
be the longest possible minimal solution known

among instances with alphabets of two letters, in

three pairs of words, each of length at most three.

Heiko Stamer’s website PCP@HOME [41] features an

evolving list of other record examples, all on an

alphabet of two letters (see chart above).

M. Rahn [34] has identified many exotic in-
stances, some of which may themselves beat these

known records by substantial margins: Consider

((0,01),(1,10)), which has no finite solution but

does admit the Thue-Morse sequence as an infi-

nite solution. But adding one more pair of words

gives an instance that has so far resisted analysis:
((0,01),(1,10),(0010,0)).

It is impossible to explain any of these in any

satisfying manner: why are they as they are—and

why are others not? Apart from the Lorentz and

Waldmann example, which is known to be a true

record, it is highly likely that the actual records are

far worse—and perhaps will never be known. In
particular, as we soon shall see in the section How

Bad Can These Examples Be?, as the size and width

increase, the largest possible minimum solution

length must grow faster than any function that can

be explicitly described!

This chart illustrates several hallmarks of un-
decidability: The interesting instances seem to

have an arbitrary, ad hoc feel. The known record

examples may or may not have much structure,

though such structure may be needed in order to

prove that the example actually has a solution.

There are examples that seem beyond analysis,
that will beat known records, if they do have a

solution. The size of the true record solutions will

grow rapidly with the size of the instances. Each

of these phenomena is explainable by studying

the “proof-complexity” of an undecidable decision

problem, as we will discuss soon in the section

How Hard Are These Examples to Understand?.

On the other hand, it is not hard to prove that the

Post Correspondence Problem is undecidable: The

essential idea is that any given Turing machine can

be encoded as a collection of pairs of finite words

so that any finite run of the machine corresponds

to a finite sequence of pairs. The key is that the top

row runs just one step ahead in time of the bottom

row; the bottom row can “catch up” and there is

a solution if and only if the machine eventually

halts. Nicely written accounts of this proof appear
in [29, 39]. More subtle constructions allow the

encoding of an arbitrary Turing machine with as

few as seven rules [31] or with only very short

rules of width two [17]. It is not known whether

instances with fewer than seven rules already have

this power, but already the Collatz function can be

encoded with just five—suggesting that this case

is at a minimum very difficult to understand [34].

Up-to-date summaries can be found in [34, 41] and

in the bibliographic references found therein.

NP-Hard Problems

Thousands upon thousands of problems are now

known to be NP-hard, and the threshold for this

distinction does not seem particularly high: In

essence, a problem is NP-hard if it is as difficult

as any NP problem, that is, a problem with a solu-

tion that can be checked in a reasonably effective

manner—below we touch cursorily on the elegant

formalisms that make this rigorous, but among

hundreds of excellent references, Garey and John-

son’s classic Computers and Intractability [15] and

Sipser’s more recent textbook [39] will serve most

beginning needs.

Yet undecidability lurks within every setting

complicated enough to have NP-hard problems!
Admittedly, the construction here will be some-

what artificial—to my knowledge, the following

idea has not been exploited to produce simple,

reasonable undecidable problems from NP-hard

ones—but it is amusing to know that undecidabil-

ity lurks in the Traveling Salesman Problem, the

computer game Minesweeper, Sudoku puzzles, or

any of the myriad NP-hard settings. And again, our

main point is that undecidability resides in every

combinatorially interesting corner: here we give

a large and robust collection of (OK, seemingly

contrived) examples.

We begin with S. Cook’s original NP-hard

problem, SAT, the satisfiability problem [9]:

350 Notices of the AMS Volume 57, Number 3

Input: A collection of boolean vari-
ables {q1, . . . qk}, and a collection of
clauses, each of the form p1∨ . . .∨pl
with each pi ∈ {q1, . . . qk, q1, . . . qk}.

Decision Problem: Is there an as-
signment of values to the variables so
that all of the clauses are true—that
is, is the instance satisfiable?

Cook’s insight was that one can show a problem
is NP-hard by showing it can encode finite runs of

nondeterministic9 Turing machines. In particular,
he showed SAT is NP-hard by giving a simple
procedure for encoding each assertion that a
given machine M can halt, accepting its input
word ω, in less than n steps. The construction is
strikingly elementary, with some similarity to the
tiling example in the section Undecidable Tiling
Problems:

The variables encode such individual assertions
as “the kth cell contains letter a at time t”, or “the
machine is reading the kth cell, in state s, at time
t”. The clauses build these up, averring “the ma-
chine is in exactly one state at time t”, “the kth cell
contains exactly one letter at time t”, as well as
statements that depend on the machine itself: “if
at time t , the machine is in state s reading a in cell
k, then at time t + 1 the machine is in state s′, one
cell to the left (say) and cell k now contains letter
b, or (as these encode nondeterministic machines)
the machine is in state s etc.” Finally all the clauses
assemble into one grand assertion: “The machine
can halt and rest in the accept state by the end of
the run, at time n.” This instance of SAT perfectly
encodes the run of the machine—it is satisfiable if
and only if the machine can indeed halt by time n.

It’s not too difficult to work out a process to
carry out this encoding, and there will be a certain
boring uniformity to all of the instances of SAT
that arise from whatever encoding process we
choose. Having a specific method in mind, then,
consider the individual instances SAT(M ,n) of SAT
encoding runs, of length n, of each (deterministic)
Turing machine M , on empty input, the instance
being satisfiable if and only if the machine halts
by time n. Fixing M , the instances SAT(M ,n) all
appear roughly the same, the same building blocks
repeated in a regular way, each instance in a sense
contained within the next as n increases.

But then we have the following:

Input: A machine M .

9That is, a broader class of machines for which there

might be more than one valid transition from a given

state, reading a given symbol. Cook does not construct

clauses asserting that the machine does halt in the ac-

cept state by time n, but that it can, that there is some

sequence of valid transitions that leads to halting. For our

discussion of decidability, we need only use deterministic

machines, but the construction is indifferent and works

either way.

Decision Problem: Is there an N
such that for all n ≥ N, the instances
SAT(M ,n) are all satisfiable?

This is, of course, merely a disguised form of the

Halting Problem and so is undecidable.

Now we leverage this out into the wider class

of NP-hard problems. SAT itself is transparently
in NP: any purported solution of an instance can

be rapidly checked. Consequently, any NP-hard

problem itself encodes SAT, and in turn encodes

finite runs of arbitrary Turing machines. In par-

ticular, any such encoding must be comparatively

simple and tractable (through the formalism of
polynomial time reducibility), and just as with

SAT(M ,n), the instances that arise will have a cer-

tain rather tedious regularity and can be quite

explicitly described.

So, for example, HAM asks whether a given

graph contains a Hamiltonian cycle; as HAM is

NP-hard, we thus obtain an explicit means for
constructing graphs HAM(M,n) for each given

machine M and counting number n, so that

HAM(M,n) contains a Hamiltonian circuit if and

only if M halts by time n. Consequently it is

undecidable, for a given M , whether infinitely

many of the graphs HAM(M,n) do in fact have a
Hamiltonian circuit.

Or . . . the list goes on: any of the thousands

of problems known to be NP-hard may be con-

verted into such an undecidable problem. Given

an NP-hard decision problem P , we can construct

for each given machine M and counting number
n an instance P(M,n) so that P(M,n) is decided

Yes if and only if the machine M halts by time n;

it is thus undecidable for each given M whether

infinitely many of the P(M,n) are decided Yes.

And, again, as contrived as this construction ap-

pears, typically the specific instances of P(M,n)
will have a somewhat regular feel, having been

built out of basic building blocks in a mechanical

way—the collection is not entirely artificial.10

Some Very Simple Universal Systems

We close this section with some very simple, abso-
lutely remarkable universal systems. Each of these

is a single instance—a single Turing machine, for

example—that by itself can emulate any computa-

tion by reading and executing a program as input.

Of course, the computer I am typing on now is

exactly such a system (ignoring the limitations of
time and memory!), but these are vastly simpler,

though vastly less efficient!

10And what of the converse? Does every undecidable

problem give rise to an NP-hard one? We prove a problem

is undecidable by showing it can encode unending runs

of deterministic Turing machines; to obtain an NP-hard

problem, we need only modify our problem to encode

finite runs of nondeterministic machines.

March 2010 Notices of the AMS 351

Such very simple universal systems can be
very useful in proofs that other problems are
undecidable: one need only show that such a
system can be encoded in the problem we are
trying to analyze.

Word ladders were invented by Lewis Carroll:
Can you, for example, convert the word sleep into
the word dream, at each step changing one letter,
always maintaining a legitimate English word?

Word ladders are themselves decidable, simply
because there are only finitely many legitimate
words to comb through. But the formal produc-
tions discussed in the section Post TagProductions
are a kind of generalization, and there are many
specific undecidable examples. G. S. Tseitin and
Dana Scott found simple universal, undecidable
examples in 1956 [38, 42]:

Input: Two words α andωwritten
in the letters a, b, c, d, e

We are allowed to make the following seven
substitutions:
ac↔ ca ad ↔ da bc↔ cb bd ↔ db
ce↔ eca de ↔ edb cdca ↔ cdcae

Decision Problem: Is there a se-
quence of substitutions taking α to
ω?

In 1966 Y. Matiyasevich [26] found a means
of encoding any such system into one with just
two letters and three substitutions! One of the
substitutions, however, uses quite long words; en-
coding the example above requires a substitution
between one word of length 304 and another of
length 621.

Conway’s Game of Life is well known to al-
most every first-semester programming student
as a fun and diverting homework assignment. It is
less widely remembered that Conway specifically
sought this as a simple, universal model of com-
putation; one can “program” by specially setting
the start state, and then recording how the playing
field evolves through time [13].

Wolfram’s Rule 110 was conjectured to be uni-
versal, and though litigation delayed publication
for many years, M. Cook finally produced a proof [8]
by showing that this 1-dimensional cellular au-
tomaton can emulate “cyclic” tag systems and that
these themselves are computationally universal.
This automaton has, at every time, an infinite row
of cells each colored white or black. At the next
step the color of each cell is determined by its
current color and those of its neighbors, by the

simple rule shown in the top two rows of the figure

at left.

A short run of the machine can appear as in the
bottom part of the figure at left.

However, in order to emulate a given Turing

machine, the automaton must begin on a specially
prepared infinite but repeating pattern.

The (2,3) universal Turing machine was conjec-

tured universal by S. Wolfram, who in 2007 offered
a US$25,000 prize for a proof, awarded to A. Smith

within just a few months:

φ A B

0 1RB 2LA
1 2LA 2RB
2 1LA 0RA

A vigorous discussion followed, as Smith’s
proof requires encoding the emulated machine

as a particular infinite pattern on the tape. These
patterns are not periodic, as with Rule 110, but

they are highly ordered—that is, they are gener-

ated by simple machines that are not themselves
computationally universal. As even a casual reader

can guess, this result can be interpreted in a variety
of ways: there is a widespread sense that, though

elegant and interesting, Smith’s proof enlarges the

notion of “universal Turing machine”. The inter-
ested reader can ask for no better starting point

than the talk page of the relevant Wikipedia arti-

cle [46], following the many outward links from
there.

Many small universal machines working off of
a finite input have been found by several authors,

notably Yu. V. Rogozhin [37], C. Baiocchi [3], and

D. Woods and T. Neary [47].

What Does This Mean to the Workaday
Mathematician?
By this time, this article has made its case as

best it will: undecidable, computationally universal

problems are ubiquitous, occurring everywhere in
mathematics, even in the simplest settings. Why,

indeed, even elementary arithmetic already has

enough power to fully encode arbitrary compu-
tation, as Gödel, Turing, and Kleene each point

out [5, 19].
In essence all that is required is some sort

of collection of simple elements interacting in a

relatively constrained manner; whether symbols
on a page, mathematical objects in some structure,

or a soup of chemicals, one expects the full

power of computational universality to kick in
readily. Computational universality can be found

in devices made of Tinkertoys or stone-age ropes
and pulleys [11] or powered by billiard balls [12].

Of course there are many famous, natural ex-

amples in more classical mathematical realms. It is
undecidable whether a diophantine equation has

a solution; whether a given presentation describes

352 Notices of the AMS Volume 57, Number 3

the trivial group; whether two 4-manifolds are
homeomorphic. Even in elementary analysis we
have such trouble as [35]:

Let E be a set of expressions representing real,
single-valued, partially defined functions of one
real variable, containing rational-valued constant
functions, the identity function x, the functions
sinx, ln x, |x| and ex, and closed under at least
+,−,× and composition (of course we restrict
ourselves to just such a set in our algebra and
calculus courses). Presume too that there is at least
one expression in E that has no antiderivative in E

(for example, e−x
2
).

Input: An expression A in E

Each of the following is undecidable!

Decision Problem: (a) Is A(x) =
0 for all x?
(b) Is A(x) ≥ 0 for all x?
(c) Does A have an antiderivative in
E, a B in E with B′(x) = A(x)?

Would it relieve or upset our calculus students if
they knew there were no way to decide whether
a given elementary function has an elementary
antiderivative?! In considering how much trouble
a given setting might provide, we rely on

Conway’s Presumption: If a lot is going on,

everything can.11

Meaning that if a system has enough complex-
ity, the betting man should assume there are
enough building blocks to encode arbitrary com-
putation. At the very least, the betting man is not
likely to be contradicted! Examples abound, and it
does not take much to lift off into computational
universality—in some sense we might argue that
this is the generic condition!

How Bad Can These Examples Be?

Over and over again, we see very specific hallmarks
of undecidability in the above examples: Suppose
we have a collection of input instances I0, I1, . . .
and a decision problem P . We ask: is there a
mechanical procedure to decide P on input In?

Let us suppose further that—just as with every
example in this article—our problem is semi-
decidable; that is, there’s a procedure that can
decide in finite time at least if the answer is Yes,
but no procedure can answer in every instance
that the answer is No (or, depending on which way
round our problem is phrased, vice versa).

But even if we can decide in some instances,
how long does this take? Fix some model of
computation—Turing machines, Minsky register
machines, a Java or Fractran program, or any of
the universal examples in this article—and some
method of counting how many steps a given

11Many people presume the same; Wolfram, for example,

states something similar as his Principle of Computa-

tional Equivalence.

calculation takes. Then for any procedure for

deciding P when we can, let us define f (n) to be

the minimum possible time it takes to find an

answer, if we can find an answer, and set f (n) = 0

if we cannot.

It doesn’t matter, really, how you do this. We

have the remarkable:

Lemma: The function f cannot be bounded by

any computable function!

Computable functions are simply those with

some explicit description of how to calculate their

values on the counting numbers: n, 2n, nn are all

computable, and it is amusing to invent outrageous

computable functions that defy imagination.12 Yet

f beats all!

It’s not hard to see how. Suppose f were

bounded by some function g whose values we

could compute. Then given n, compute g(n), and

then try to decide our problem P on input In; if we

try for g(n) steps and have not yet succeeded, we

know we never will, and the answer must be No.

But we know there can be no procedure that can

always decide P and so no g can exist!

We snuck in an important point: this holds for

any model of computation, and this article gives

several. We can reinterpret this lemma in many,

somewhat startling ways, such as:

• Let H(n) be the maximum Heesch number

attained by any set of n tiles; then H(n)

cannot be bounded by any computable

function.

• Among Fractran programs with n fractions

that eventually halt, let F(n) be the max-

imum number of steps required to do so;

then F(n) cannot be bounded by any com-

putable function.

• Let P(n,m) be the maximum length min-

imal solution of an instance of the Post

Correspondence Problem of width m and

n rules; then P(n,m) cannot be bounded

by any computable function.

For Turing machines, let S(m,n) be the max-

imum number of steps an m-state machine on

an alphabet of n letters can run, starting on a

blank tape, before halting; this, too, of course,

cannot be bounded by any computable function,

12For example, on the natural numbers, define

u(a, b, n) = a, for b = 1; u(a,b, n) = ab for n = 1;

and u(a, b, n) = u(a,u(a, b − 1, n), n − 1) otherwise

(thus u(a, b, n) = a ↑ . . . ↑ b with n ↑’s in the Knuth

arrow notation). Then set v(1) = u(3,3,4) and take

v(n) = u(3,3, v(n − 1)) for n > 1. The value v(64)

is the famous Graham’s Number! But we can consider

such marvels as V(n) equal to v composed with itself

V(n − 1) times and other gems, playing this game all

day, producing utterly incomprehensible but computable

functions.

March 2010 Notices of the AMS 353

and staggering lower bounds on S are actively be-
ing discovered: A few notable examples are shown
in the next table [27].

In a span of just a few months in the
winter of 2007–2008, T. and S. Ligocki pro-
duced a flurry of examples bounding S(3,3) ≥
119,112,334, 170,342,540; S(2,5) > 1.9× 10704;
S(2,6) > 2.4× 109866; and S(3,4) > 5.2× 1013036 .
There is no reason to believe that the true values
of S are not much, much higher.

φ A B C D E

0 1RB 1RC 1RD 1LA 1RH
1 1LC 1RB 0LE 1LD 0LA

Halts in 47,176,870 steps!
(Marxen, Buntrock, 1990)

φ A B C D E F

0 1RB 1LC 1LD 1LE 1LA 1LE
1 0LE 0RA 0RC 0LF 1LC 1RH

Halts after more than 2.584× 102869 steps!!
(T. and S. Ligocki, 2007)

How Hard Are These Examples to Understand?

Examining specific instances of a specific undecid-
able problem, we see more and more outrageous
behavior, leaping upward with no computable
bound. But that is hardly the worst of it. How
difficult will it be to prove that these instances are
as bad as we claim they are?

Again, fix some model of computation; we’ve
seen plenty in this article and any model will do, but
for the sake of familiarity, imagine programming
in some structured computer language such as C
or Java.

Fix any consistent “reasonable” formal system,
one that has a “reasonable” language and a “rea-
sonable” concept of theorem and is “reasonably”
powerful. An elementary, very broad discussion
of these terms can be found in a lovely paper by
A. Charlesworth [5], but in essence all we mean
is that we can mechanically check that a given
string of symbols is a statement in the system,
that any statement or its negation (but not both)
is to be true, that we can mechanically enumerate
all possible proofs and check the soundness of
any proof in the system, and that the system
is powerful enough to prove such statements as
Program P halts after 100 steps and Program P
halts eventually. (Such statements are really just
statements about basic arithmetic: for example, at
each step of the run of a program on an electronic
computer, we are just manipulating a gigantic
binary number by simple rules of arithmetic, and
we’re only asking for a demonstration that we
can make such a manipulation a finite number of
times and then reach some desired result.)

But we can ask: What is the shortest possible
proof of such an assertion, that is, what is the
proof complexity π(T) of each given theorem T

in our system? Defining π(n) to be the maximum
proof complexity among all theorems of length n,
we have the disturbing:

Lemma: The function π cannot be bounded by
any computable function!

That is, in any reasonable formal system, we
expect short theorems with incredibly long proofs!
This is really just a restatement of the lemma in
the previous section, which in turn is a disguised
form of the Halting Problem:

For any given specific program P , one of the two
statements Program P eventually halts or Program
P does not ever halt must be true. Let n be the
length in our formal system of the first statement,
and supposeπ(n) is bounded by some computable
function g(n). Then we can decide which of the
two statements is true: Calculate g(n) and then
enumerate all proofs up to this length, checking
to see if we’ve ever managed to prove the first
statement. If at some point we have, we know the
first statement is true. If we haven’t, we never will,
and so the second statement is true. In either case
we will have decided which statement holds, but
then as the Halting Problem is undecidable, there

can be no such g.13

But as before, this can be reinterpreted within
any of the various models of computation we’ve
discussed in this article. For example:

• Mechanically enumerate all sets of tiles; let
Hn be the nth set that does not admit a
tiling; there is a proof that it doesn’t, as dis-
cussed at the end of the section Undecidable
Tiling Problems. Let h(n) be the length of
the shortest proof of this in our formal sys-
tem. Then h(n) cannot be bounded by any
computable function!

• Mechanically enumerate Fractran pro-
grams; let Fn be the nth set that eventually
halts. We can prove this by simply running
the program; let f (n) be the length of
the shortest proof of this in our formal
system. Then f (n) cannot be bounded by
any computable function!

• Mechanically enumerate instances of the
Post Correspondence Problem; let Pn be the
nth set that has a solution and let p(n)
be the length of the shortest proof that it
does. Then p(n) cannot be bounded by any
computable function!

That’s just fun and games, but remember: these
examplesare stand-ins fora huge range ofsimilarly
computationally universal problems—this sort of

13Kleene [5, 19] uses this approach to prove Gödel’s The-

orem: If, in our consistent, reasonable formal system,

every true statement had a proof, then we can decide

the Halting Problem: given a procedure P , just start enu-

merating proofs until we reach a proof of one of our two

statements!

354 Notices of the AMS Volume 57, Number 3

trouble is everywhere. This raises an essential

issue:

To What Extent Are the Ideas in This Essay
Mathematical?

Don’t misunderstand me—beyond a doubt, it is

all mathematics: Everything here can be proven

to the usual acceptable standards. The theory

of computation, with its foundational ties to the

underpinnings of logic itself, is as mathematical a

subject as can be, with an abundance of beautiful

and elegant proofs and constructions. And it’s

lovely that such simple ideas are sufficient to pin

down some of the metamathematics, such as the

asymptotic complexity of proofs. In this essay,

we’ve only scratched the surface of this deep and

beautiful topic, and we hope we have encouraged

some readers to learn much more.

What of proofs that specific settings are compu-

tationally universal, or that specific problems are

undecidable? Often these can be quite clever and

appealing. It is certainly useful to know that cer-

tain problems—at least the especially important

or natural ones—will forever be beyond full math-

ematical analysis (the word problem for groups

comes to mind).

But what of studying individual instances within

a universal setting, looking at the specific growth

of the functions discussed a moment ago, finding

more and more outrageous examples of Busy

Beaver Turing machine candidates or high Heesch

number sets of tiles? To what extent are these

examples mathematical?

I confess delight in each of these examples—it’s

absolutely mesmerizing to see them in action. But

not only do they leave one unsatisfied, with little

means of penetrating just why these particular

examples—but not others!—behave as they do,

but also we can prove that we can never expect

to understand why these, particularly, are just

so.14 That is, though there is some “reason” they

are as they are, in the form of an astoundingly

14Theology has not had a respectable place in the mathe-

matics literature for many centuries; however, we cannot

resist pointing out a fundamental blasphemy inherent

in the doctrine of “Intelligent Design” so fashionable

in certain quarters: The word “design”, in a common

sense, implies having some guiding principles, a simpli-

fied means of understanding the implications of choosing

one set of conditions versus another. Within these com-

putationally universal systems, by the arguments in this

section, no general design principles can exist. That is,

there is no simpler way to understand these implications

than, well, just following them out. Now of course it would

be foolish to presume just how an omnipotent deity would

go about setting up a universe, life, etc. But to insist, as

proponents of Intelligent Design do, that a deity must go

about things in the most difficult, least powerful manner

seems like a very limiting theology, to say the least.

long proof, there cannot be any “good reason” or

understandable short proof.

In a human sense, mathematics—just as is

science—is fundamentally reductionist. Good

mathematics synthesizes the disparate behavior

seen in a wide range of examples into sweeping

understanding. Mathematics, even difficult, highly

technical mathematics, simplifies and unifies:

It is no accident that we speak of “elegance”

or of “proofs in The Book”. Studying individual

instances within undecidable problems, at least

asymptotically, cannot be mathematical in this

sense: no unified understanding will be available,

whatever “proofs” there are giving no insight.
And yet we are surrounded! Such problems

arise everywhere there is suitable combinatorial

structure—and the bar is really quite low. These

issues are likely to be increasingly hard to avoid as

complexity and algorithms become more common

tools within certain mathematical disciplines. And

as many mathematicians begin to use computa-

tional experiments in their work, it is a natural

temptation to explore increasingly intractable

cases. In the sciences, too, “emergent” phenomena

are increasingly studied, phenomena of precisely

this sort in which small agents interact by com-

binatorial rules producing complex, large-scale

structure. Mathematical or not, these systems are
relevant, abundant, and worth studying: It cer-

tainly seems wise to have some sense of where

lies the edge of the abyss!

References
[1] S. I. Adian and V. G. Durnev, Decision problems

for groups and semigroups, Russian Math. Surveys

55 (2000), 207–296.

[2] R. Berger, The undecidability of the Domino

Problem, Memoirs Amer. Math. Soc. 66 (1966).

[3] C. Baiocchi, Three small universal Turing ma-

chines, Machines, Computations, and Universality,

(M. Margenstern and Yu. Rogozhin, eds.), Springer-

Verlag, 2001, pp. 1–10.

[4] E. Börger, E. Grädel, and Yu. Gurevich, The

Classical Decision Problem, Springer, 2001.

[5] A. Charlesworth, A proof of Gödel’s Theorem in

terms of computer programs, Math. Mag. 54 (1981),

109–121.

[6] J. Cocke and M. L. Minsky, Universality of tag sys-

tems with P = 2, J. Assoc. Comput. Mach. 11 (1964),

15–20.

[7] J. H. Conway, Fractran: A Simple Universal Pro-

gramming Language for Arithmetic, Ch. 2 in Open

Problems in Communication and Computation (T. M.

Cover and B. Gopinath, eds.), Springer-Verlag, 1987,

pp. 4–26.

[8] M. Cook, Universality in elementary cellular

automata, Complex Systems 15 (2004), 1–40.

[9] S. Cook, The complexity of theorem proving proce-

dures, Proc. of the Third Annual ACM Symp. on Thy.

of Computing, 1971, 151–158.

[10] L. De Mol, Tag systems and Collatz-like functions,

Theor. Comp. Sci. 390 (2008), 92–101.

March 2010 Notices of the AMS 355

[11] A. K. Dewdney, The Tinkertoy Computer and

Other Machinations: Computer Recreations from the

Pages of Scientific American and Algorithm, W. H.

Freeman & Company, New York, 1993.

[12] E. Fredkin and T. Toffoli, Conservative Logic, Int.

J. Theor. Phys. 21 (1982), 219–253.

[13] M. Gardner, The fantastic combinations of John

Conway’s new solitaire game “Life”, Scientific

American 223 (1971), 120–123.

[14] , Extraordinary nonperiodic tiling that en-

riches the theory of tilings, Scientific American 236

(1977), 110–121.

[15] M. R. Garey and D. S. Johnson, Computers

and Intractability: A Guide to the Theory of NP-

completeness, W. H. Freeman and Co., New York,

1979.

[16] B. Grünbaum and G. C. Shepherd, Tilings and

Patterns, W. H. Freeman and Co., 1987.

[17] V. Halava, T. Harjua, M. Hirvensaloa, and

J. Karhumäki, Post Correspondence Problem for

short words, Info. Proc. Let. 108, 115–118.

[18] D. Hofstader, Gödel, Escher, Bach: An Eternal

Golden Braid, Vintage, 1980.

[19] S. C. Kleene, Recursive predicates and quantifiers,

Trans. Amer. Math. Soc. 53 (1943), 41–73.

[20] J. Lagarius, The 3x + 1 Problem: An Annotated

Bibliography (1963–1999), arXiv:math 0309224v11.

[21] , The 3x + 1 Problem: An Annotated

Bibliography, II (2000–), arXiv:math/0608208v4.

[22] C. Mann, Heesch’s tiling problem, Amer. Math.

Monthly 111 (2004), 509–517.

[23] , The Edge-Marked Polyform Database.

http://www.math.uttyler.edu/polyformDB/

[24] M. Margenstern, Frontier between decidability

and undecidability: A survey, Theor. Comp. Sci. 231

(2000), 217–251.

[25] P. Michel and M. Margenstern, Generalized 3x+1

functions and the theory of computation, preprint.

[26] Yu. V. Matiyasevich, Simple examples of unde-

cidable associative calculi, Dokl. Akad. Nauk SSSR

173 (1967), 1264–1266; English transl., Soviet Math.

Dokl. 8 (1967), 555–557.

[27] P. Michel, Historical Survey of Busy Beavers,

http://www.logique.jussieu.fr/~michel/

ha.html

[28] M. L. Minsky, Recursive unsolvability of Post’s Prob-

lem of ‘tag’ and other topics in the theory of Turing

machines, Ann. of Math. 74 (1961), 437–455.

[29] , Computation: Finite and Infinite Machines,

Prentice Hall, Englewood Cliffs, 1967.

[30] J. Myers, Polyomino, polyhex and polyiamond tiling,

http://www.srcf.ucam.org/~jsm28/tiling/

[31] F. Nicolas, Post Correspondence Problem and semi-

Thue systems, lecture notes, arXiv:0802.0726v5.

[32] T. Oliveira e Silva, Computational verification

of the 3x + 1 conjecture, http://www.ieeta.pt/

~tos/3x+1.html

[33] E. Post, Formal reductions of the combinato-

rial decision problem, Amer. J. Math. 65 (1943),

197–215.

[34] M. Rahn, Entsheidbare Fälle des Postschen Kor-

renspondenzproblems, doctoral thesis, Universität

Fridericiana zu Karlsruhe (2008).

[35] D. Richardson, Some undecidable problems in-

volving elementary functions of a real variable, J.

of Symb. Logic 33 (1968), 514–520.

[36] R. M. Robinson, Undecidability and nonperiodicity

of tilings in the plane, Inv. Math. 12 (1971), 177–209.

[37] Yu. V. Rogozhin, Small universal Turing machines,

Theor. Comp. Sci. 168 (1996), 215–240.

[38] D. Scott, A short recursively unsolvable problem

(abstract), J. Symbolic Logic 21 (1956), 111–112.

[39] M. Sipser, Introduction to the Theory of Computa-

tion, 2nd ed., Course Technology, 2005.

[40] R. Smullyan, The Lady or the Tiger?: And Other

Logic Puzzles Including a Mathematical Novel that

Features Gödel’s Great Discovery, Random House,

1992.

[41] H. Stamer, PCP@HOME, http://www.theory.

informatik.uni-kassel.de/~stamer/pcp/

pcpcontest_en.html

[42] G. S. Tseitin, Associative calculus with insoluble

equivalence problem, Dokl. Akad. Nauk SSSR 107

(1956), 370–371. (Russian)

[43] A. Turing, On computable numbers, with an appli-

cation to the Entscheidungsproblem, Proc. London

Math. Soc. Ser. 2 42 (1936), 230–265.

[44] H. Wang, Proving theorems by pattern recognition.

II, Bell System Technical Journal 40 (1961), 1–42.

[45] S. Wolfram, New Kind of Science, Wolfram Media,

2002.

[46] Wolfram’s 2-state 3-symbol Turing machine, talk

page, Wikipedia.

[47] D. Woods and T. Neary, On the time complexity of

2-tag systems and small universal Turing machines,

Proc. of the 46th Symp. on Found. Comp. Sci., 2006,

439–446.

356 Notices of the AMS Volume 57, Number 3

http://www.math.uttyler.edu/polyformDB/
http://www.logique.jussieu.fr/~michel/ha.html
http://www.logique.jussieu.fr/~michel/ha.html
http://www.srcf.ucam.org/~jsm28/tiling/
http://www.ieeta.pt/~tos/3x+1.html
http://www.ieeta.pt/~tos/3x+1.html
http://www.theory.informatik.uni-kassel.de/~stamer/pcp/pcpcontest_en.html
http://www.theory.informatik.uni-kassel.de/~stamer/pcp/pcpcontest_en.html
http://www.ams.org/bookstore/newpubcatalogs

