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Chains: Power Hitting
and Power Series
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A
s children, my friends and I often
played a game called All-Star Baseball.
Each of us would manage a team of
major league players. The players were
circular cards. Each card was divided

into labeled sectors of various sizes, correspond-
ing to possible outcomes such as strikeout, walk,
single, home run, and so on. The sizes varied
considerably from player to player. To have a
player bat, we placed the card on a spinner, fil-
liped the spinner, and read the result. We all had a
clear intuitive understanding of how the situation
reflected baseball and how it didn’t.

We kept intricate stats. We experimented with
ways to make pitching matter. We introduced
random fielding errors using a buzzer. Later I
invented a version using dice instead of a spinner.
Throwing four dice at a time was required to
accurately model the statistical profiles of actual
players. I created new players. One (call him
Kingman) had only two possible outcomes, a
strikeout and a home run. Another (call him Bowa)
had only two outcomes, a single and a strikeout.
I made the single on Bowa four times as likely as
the home run on Kingman. I would play full games
in which one team had nine players like Bowa and
the other had nine players like Kingman.

Years later I realized that we had been regarding
the game of baseball as a Markov chain. Before
discussing Markov chains and how to use them
to model baseball, I pose three exercises for the
reader. I put the first two of them in the book [DW]
(page 335), and I have assigned them on several
occasions, in order to give an amusing application
of summing power series. The following simple
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lemma on power series, and its generalization to
more variables, can be used to evaluate explicitly
many of the expected value formulas arising in

a more involved treatment of these ideas. The
reader who wishes to focus on baseball may skip

the lemma, but she should at least attempt to
estimate the answer to part 3 of Exercise 1.2. The
answer appears in the conclusions.

Lemma 1.1. Let f be a polynomial of degree d in

one variable, and consider the power series

(1) s(x) =

∞
∑

k=0

f (k)xk.

The series in (1) converges for |x| < 1, and there is
a polynomial b(x) of degree at most d such that

(2) s(x) =
b(x)

(1− x)d+1
.

In particular, s is a rational function.

Lemma 1.1 can be proved by differentiating the

geometric series d times or by using the method
of generating functions. We include it because
it provides an elegant method for solving the

key parts of Exercise 1.2, namely the formulas for
K(q) and B(p). The calculation ofK(q) amounts to

finding the expectation of a random variable with
the negative binomial distribution. See page 95 of
[HPS] for a derivation using probability generating

functions.

Exercise 1.1. Prove Lemma 1.1. Find s(x) explic-

itly when f (k) = k
(

k+2

2

)

and when f (k) = k3.

Exercise 1.2. Consider a player (B) who hits a sin-
gle with probability p and otherwise strikes out.
Make the assumption that three singles score a

run. Assume that all at-bats are independent. Let
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B(p) denote the expected number of runs scored

per half inning (until three outs occur), assuming

only (B) bats. Consider a second player (K) who
hits a home run with probability q and otherwise

strikes out. Let K(q) be the expected number of
runs scored per half inning.

• Prove that K(q) =
3q

1−q
and that B(p) =

p3(3p2−10p+10)

1−p
.

• Sketch their graphs for 0 ≤ p ≤ 1.
• Set q =

p

4
. For what values of p is B(p) ≥

K(
p

4
)?

• Set q =
2

5
p. For what values of p is B(p) =

K(
2p

5
)?

• How does B(p) change if four singles are

required to score a run?

Exercise 1.3. Consider a player who hits a sin-
gle with probability p, a home run with probabil-

ity q, and otherwise strikes out. Assume at-bats
are independent and three singles score a run. For

each nonnegative integer k, find the probability
that this batter scores exactly k runs in a half in-

ning. (Be careful of runners left on base.)

This article is a short introduction to the ideas

connecting baseball and Markov chains. Many
baseball fans have invented fantasy baseball games

based on the Markov idea, and what I discuss in
this article is by now a well-established notion. I

do not intend to discuss the vast literature, but I
do mention a few entries to it.

Lindsey [L] viewed baseball in this fashion

as early as the 1950s. Cover and Keilers [CK]
provided a Markov version for evaluating batters.

Pankin ([P] and also http://www.pankin.com/

markov/theory.htm) has written several precise

articles about baseball and Markov chains. See also

[N] and its references for serious discussion about
the evaluation of baseball players using these

methods. Katz [K] applies Markov chain analysis
to the pitch count.

One of my favorite references on the subject
of mathematical baseball is [TP], to which I refer

for references published up to the early 1980s.

Thorn and Palmer also edited Total Baseball [TB],
more than two thousand pages of discussion and

statistics. I am truly thankful for my research in
several complex variables; without it I would have

spent thousands rather than merely hundreds

of hours with this volume. The many books by
Bill James (item [J] in our reference list gives

two early versions) helped introduce a generation
of baseball fans to related ideas, especially the

notion of runs created. Many additional aspects

of baseball appeal to mathematicians. See, for
example, the recent book [R].

The main idea in this article is the notion
of Markov runs. We imagine, as described more

precisely below, that a player is the only batter

on his team. He bats randomly based on his

statistics. How many runs will his team score?

We also imagine a pitcher who pitches randomly

based on his statistics. How many runs will his

team allow? Jeff Sagarin, once upon a time a

math major at MIT, publishes Markov-runs-per-

game baseball statistics (and much more) online

and updates them daily during the season. See

http://www.usatoday.com/sports/sagarin/

nlb09.htm.

Mostmathematically inclinedbaseball fanshave

played with their own formulations of these ideas,

and some baseball managers and executives have

embraced them. On the other hand, many people

in the baseball world sneer at “computer baseball”,

perhaps because they tremble with trepidation at

anything scientific. I will never forget my disgust

when a former Cubs manager, who was broadcast-

ing a game on the radio, dismissed a physicist’s

study of how a baseball travels in varying weather

conditions with “He don’t know baseball.”

This article is intended to be a short intro-

duction whose primary purpose is to illustrate

some of the connections between mathematics

and baseball. Let us pause and briefly mention

some interesting topics I omit.

One of the most interesting such topics con-

cerns the notion of a clutch hitter. Such a player

allegedly hits better when the situation matters

more, but numerical studies seem to indicate that

the concept is an illusion. On the other hand, the

discussion in this article presumes that each plate
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appearance is an independent event. This assump-

tion cannot be completely true. How accurate is

it? A related question is whether players get hot.

See, for example, [A].
What about fielding? Errors are rather unusual

occurrences in professional baseball, and fielding

percentages convey little important information.

More important is how many plays a defensive
player (fielder) makes. Would player (A) have

made the same play as player (B) did? Except

for completely routine plays, there is no way to

know. Recent studies of fielding have attempted
to measure how much ground a fielder covers.

Many subtleties arise, and I do not know of any

literature providing a good Markov chain model.

Hence this article will ignore fielding.
Another omission from our discussion concerns

the impact of pitching. In principle one can account

for pitching via the Markov chain model, but,

typically, a player will have faced a specific pitcher
too few times for the statistical profile to be

meaningful. Instead one could use a weighted

average of the statistics of the pitcher (versus

all batters) and the batter (versus all pitchers).
Careful studies would then answer empirically the

eternal conundrum: pitching is what percentage

of baseball? When asked this question, the catcher

Yogi Berra answered by saying “Ninety percent of
this game is half mental.”

I acknowledge the following people (all with

Ph.D.s) for their insightful observations about

baseball statistics over the years: Phil Baldwin
(physics), John Marden (statistics), Bob Northing-

ton (statistics), Bruce Reznick (mathematics), and

Kirk Sanders (classics). I also acknowledge NSF
Grant DMS 07-53978 for research support. Finally

I wish to thank several referees for useful com-

ments on the exposition and for asking me to

expand the reference list.

Markov Chains

Let us now recall the concept of a Markov chain.

Let X1, X2, . . . , be a sequence of random variables

taking values in a finite set. We think of this
situation as a random system that can be in a

finite number of possible states, labeled e1, . . . , en.

The sequence of random variables is called a

Markov chain if the following holds:
For each pair of indices i, j there is a fixed

probability Mij such that each time the system is

in state ei it will be in state ej the next time with

probability Mij .
In other words, the conditional probability that

Xk+1 = ej given Xk = ei is, for each k, independent

of the values of Xm for m < k.

We will regard the states ei as basis vectors
for n-dimensional real Euclidean space. Consider

a convex combination a(λ) =
∑n
j=1 λjej of these

states. (The coefficients λk are nonnegative, and

they sum to 1.) The n-tuple a(λ) is called a

probability vector. The coefficient λk represents

the probability that the system is in state ek at

some fixed unit of time.
The system evolves in discrete intervals, often

but not necessarily regarded as units of time. In

baseball the unit will be a plate appearance. A plate

appearance is similar to an at-bat, but includes
certain situations (walks, hit batters, sacrifices)

that baseball does not regard as an official at-bat.

The Markov matrix M , whose entries are Mij ,

governs the evolution of the system. If x denotes
the state at one moment (the value of the ran-

dom variable Xk), then Mx denotes the state one

moment later (the value of the random variable

Xk+1). The matrix is time independent; in other
words, the chance of going from state x to state

Mx does not depend on any of the previous states.

The numberMij is called the transition probability

from state ei to state ej . Each Mij is nonnegative
and, because the state must go somewhere, we

have
∑n
j=1Mij = 1.

The reader should consult a book such as

[KSK] for a more precise treatment of Markov
chains and references to their many applications.

Many elementary linear algebra books also discuss

Markov chains and their applications.

Baseball

How do we regard baseball as a Markov chain?

The number of outs and the location of the base-

runners will determine twenty-five states. We will
keep track of runs scored, but runs will not be

part of the setup. What are the states?

We regard all situations with three outs as

the same, and this situation is one of the states.
Once we reach this state, we cannot leave it. For

clarity we mention that in the simplified model we

discuss, it makes no difference how many men are

on base or where they are located after the third
out is made. Runs scored will be the only thing

that matters.

Otherwise the number of outs can be 0, 1, or 2,

and there are eight possibilities for the runners.
The bases can be empty; there can be one runner

on first, second, or third base; there can be two

runners on (in three different ways); or the bases

can be loaded. These twenty-four situations define
the other states.

Player H comes to the plate. Ignoring such

situations as stolen bases or pick-offs that could

occur during the plate appearance, we ask what
happens after it. We imagine that the player

bats randomly, according to his statistical profile.

His plate appearances are independent. In other

words, his chance of getting a specific kind of hit
or making a specific kind of out is independent

of how many runners are on and of how many

outs there are. Based on this profile, we compute
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the transition probabilities for each pair of states,
obtaining a Markov chain.

We could use stats from the previous year,
the current year, or the career. But we must
use the same profile each time. For convenience
here, we will write the player’s profile as follows,
deviating slightly from the standard listing. Here
AB denotes at-bats, S denotes singles, D denotes
doubles, T denotes triples,HR denotes home runs,
BB denotes walks plus hit batters, AVE denotes
batting average, SA denotes slugging average, OB
denotes on-base average, and OPS = OB+SA. We
will discuss this rather new statistic later. We note
for us that the number of plate appearances is
AB + BB.

In the simplified scenario suggested above, we
regard all outs as equivalent. Sluggers who often
strike out are fond of reminding their managers
that there is no practical difference between a
strikeout and a pop-out. We will ignore double
plays, sacrifice bunts, and sacrifice flies, also for
simplicity. As a result our values of OB and OPS
differ slightly from those in the official records.

Here is the profile; note that the last four
elements can be computed from the first six, and
hence they are not truly needed.

AB S D T HR BB AVE SA OB OPS

For example, we give a fictional line for a star
player X. We also include actual profiles for Albert
Pujols and Chase Utley in 2009.

(X) 500 100 25 5 30 100 .320 .570 .433 1.003
(AP) 568 93 45 1 47 124 .327 .658 .443 1.101
(CU) 571 98 28 4 31 112 .282 .508 .398 .905

PlayerX has 500 at-bats but 600 plate appearances.

In a given plate appearance playerX has a
1

6
chance

to hit a single, a
1

6
chance to reach first base by

either a walk or hit batter, a
1

120
chance to hit a

triple, and so on.
We mention a small point here. In certain

situations different actions by the batter produce
the same effect. For example, if no one is on base,
then a single and a walk have the same effect. On
the other hand, assuming that a single advances a
runner two bases, a single with a runner on second
is far better than is a walk.

The sequence of random variables will be the
list of situations arising in a half inning. It is
easier to understand the baseball situation by
focusing on the transition matrix. Given the batter
H, we determine from his statistical profile a
(twenty-five by twenty-five) matrix MH . Under the
assumptions discussed below, we claim that MH

defines a Markov chain.
We know the complete statistical profile of H.

In other words, we know the probabilities that H
makes each kind of hit or out, draws a walk, gets
hit by a pitch, and so on. We assume a fixed result
given each type of hit; for example, a single always

advances runners two bases. We could, but we do

not do so here, refine the model by allowing several
different kinds of singles! Assuming that each plate
appearance is independent (and in particular that
what the batter does does not depend on the

pitcher), we can assign probabilities that we pass
from each state x to the state MH(x).

In this manner we encode the statistical profile
of the player as a Markov matrix. For the player
Kingman who either hits a home run with prob-

ability q or strikes out, we can easily determine
the matrix MK . We will not write out this 25 by
25 matrix. We simply note that, with probability
1−q, the number of outs increases by one and the

base runners remain the same. With probability
q, the number of outs remains the same, and the
bases are cleared. Of course, the batter and the
base runners all score a run in this case.

Now that we are regarding baseball as a Markov
chain, there is little point in keeping the usual
statistics. We know, for example, that a player
who hits a home run every ten at-bats will on

average hit one every ten at-bats in the Markov
model. The key new statistic is how many runs will
a team score if it uses this player for every plate
appearance. We naturally call this statistic Markov
runs. As we mentioned earlier, Sagarin publishes

this stat, normalized using nine innings, for all
players each day of the season.

It is possible, but inappropriate for this short
article, to combine probability theory and linear al-

gebra to compute the expected number of Markov
runs by using the Markov matrix. Such results
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generalize the idealized situations discussed in

Exercise 1.2. Rather than heading in this direc-
tion, we imagine finding expected Markov runs
via computer simulation. We will then consider
the relationship between Markov runs and other
baseball statistics.

Given the statistical profile, the player bats
randomly, using a computer simulation, according

to the Markov chain model, until he makes three
outs. The test is run thousands of times, and from
it we determine the average number of runs scored
per each nine innings. Below we will see that a
team consisting of (nine clones of) Albert Pujols
would score 9.38 runs per game; no other National
League player would come within one run of him
in 2009.

Some nice simplifications and approximations
to these computations are known. Bill James [J]
has found many formulas for runs created. In 1978
Pete Palmer [TP] ran a computer simulation of all
games played since 1901. From this mammoth
amount of data, he assigned linear weights to each
batting event. Palmerperformedthese calculations

separately for the years 1901–1920, 1921–1940,
1941–1960, and 1961–1978. The positive values
of hits and the negative values of outs are not
identical over the four periods, but they are all
close to the following values:

A home run is worth 1.40 runs, a triple is worth
1.02, a double is worth .80, a single is worth .46
runs, and a walk is worth .33 runs. An out is

worth −.25 runs. Given a profile, one can estimate
Markov runs using these weights.

A second simplification now appears in official
baseball statistics. One simply adds the player’s
slugging average to his on-base average, obtaining
what is called OPS. It was discovered empirically
that this number correlates fairly well with the

expected number of runs scored using the Markov
chain model. The list below of the top ten NL
batters in 2009, ordered by Markov runs, suggests
a correlation. It is likely that the correlation be-
tween Markov runs andOPS has been investigated
carefully, but I do not know any references other
than [J] and [TP], which are intended for baseball
fans rather than for statisticians.

We make an important remark. For the actual
values arising in baseball, OPS and Markov runs
provide similar information. On the other hand,
two players can have identical OPS but very
different Markov runs. We give an example.

Example 3.1. We consider player one to have the
profile of our contrived Bowa. His slugging average
and his on-base average both equal p, and hence
hisOPS is 2p. Now consider a player with the pro-
file of Kingman, who hits a home run with prob-

ability q and otherwise strikes out. His slugging
average is 4q, and his on-base average is q. Hence

his OPS is 5q. Hence, if q =
2

5
p, then the two

players have the same OPS. By Exercise 1.2, one

sees that the Markov runs are not the same in

general even when this equality holds. One can

derive this conclusion more easily by noting what

happens when p approaches 1. (Can analysis be

worthwhile?) Obviously the Markov runs for Bowa

approach infinity, whereas the Markov runs for

Kingman are finite when q =
2

5
.

From a mathematician’s perspective OPS is a

bit strange. Let TB denote total bases, that is,

(TB) TB = S + 2D + 3T + 4HR.

Roughly speaking, because we are ignoring sac-
rifices, as noted before, we compute OPS as
follows:

OPS =
TB

AB
+
S +D + T +HR + BB

AB + BB

=
S + 2D + 3T + 4HR

AB
+
S +D + T +HR + BB

AB + BB
.

(OPS)

Formula (OPS) shows that we are adding two

quantities with different denominators, at-bats

and plate appearances. Perhaps a better number

would be something such as

(3)
BB + 2S + 3D + 4T + 5HR

AB + BB
.

Notice that (3) is essentially a linear weights

formula.

Next we list, based on the Sagarin ratings for

2009, the top ten players in the National League,

based on expected number of runs scored per

nine innings computed via Markov chains. In this

list, the first number after the player’s name and

team is this expected number of runs. The other
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number is the player’s OPS, the sum of on-base

average and slugging average.

1. Pujols, Albert St. Louis 9.38 1.101

2. Votto, Joey Cincinnati 8.26 .981

3. Fielder, Prince Milwaukee 8.24 1.014

4. Lee, Derrek Chicago 7.96 .972

5. Ramirez, Hanley Florida 7.81 .954

6. Gonzalez, Adrian San Diego 7.68 .958

7. Helton, Todd Colorado 7.61 .904

8. Utley, Chase Philadelphia 7.58 .905

9. Braun, Ryan Milwaukee 7.53 .937

10. Dunn, Adam Washington 7.24 .928

The method of linear weights warrants an entire
fascinating chapter in [TP]. This method is essen-

tially equivalent to the Markov chain method. In
the Markov method, the batter himself bats ev-

ery time. In the linear weights method, the value
of each sort of hit is determined by empirical

data involving all players. Both methods are based
upon the assumptions of independence we have
discussed.

Conclusions

One way to evaluate a batter is to determine his

Markov runs. This very natural idea has been
known intuitively for decades, and it lies at the

basis of various strategy games. For the situations
actually arising in baseball, the simpler statistic of
OPS provides similar information. On the other

hand, the formula for OPS is rather dissatisfying
for a mathematician. Mathematicians who desire

a simple statistic can use linear weights.
It is possible to include pitching in this dis-

cussion, where the key stat becomes Markov runs
allowed. Space considerations prevent us from

doing so here. Fielding is more difficult.
Readers who solved Exercise 1.2 can conclude

that a player who bats .070 but hits only home

runs is essentially equivalent (via Markov runs) to
a player who bats .280 but hits only singles. Fix

the ratio at
1

4
. For averages (for the singles hitter)

lower than .27945 the home run hitter generates

more runs, and for higher averages the singles
hitter does so. I wonder how accurately baseball

managers could guess this cut-off value.
Here is a novel idea for the true fan. Look

up the Sagarin ratings. For each pitcher, find the
Markov runs allowed, and then find a batter whose
Markov runs equal this number. In this way you

can determine tidbits such as whether there is any
pitcher for whom the generic hitter he faces has

the stats of Albert Pujols.
The world of baseball provides a striking ap-

plication of Markov chains. Conversely, the use of
Markov chains introduces fascinating new base-

ball statistics, such as Markov runs for batters and
Markov runs allowed for pitchers. These statistics
and simplified versions of them have evolved into

standard methods for the evaluation of baseball

players. As ever, mathematics provides artistic
and insightful perspectives on another topic.
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