
The Giant Component:
The Golden Anniversary
Joel Spencer

Paul Erdős and Alfréd Rényi
Oftentimes the beginnings of a mathematical area
are obscure or disputed. The subject of random
graphs had, however, a clear beginning, and it
occurred fifty years ago. Alfréd Rényi (1921–1970)
was head of the Hungarian Mathematical Institute
which today bears his name. Rényi had a great love
of literature and philosophy, a true Renaissance
man. His life, in the words of Paul Turán, was
one of intense and creative involvement in the
exchange of ideas and in public affairs. His mathe-
matics centered on probability theory. Paul Erdős
(1913–1996) was a central figure in twentieth-
century mathematics. This author recalls well the
memorial conference organized by his long-time
friend and collaborator Vera Sós in 1999, at which
fifteen plenary lecturers discussed his contribu-
tions. What was so surprising to us all was the
sheer breadth of his work, which spanned so many
vital areas of mathematics. To this very prejudiced
author, it is his work in discrete mathematics that
is having the greatest lasting impact. In this area,
Erdős tended toward asymptotic questions, a style
very much relevant to today’s world of o,O,Θ, and
Ω. For both Erdős and Rényi, mathematics was a
collaborative enterprise. They both had numerous
coauthors, and they wrote thirty-two joint papers.

In 1960 they produced their masterwork, On
the Evolution of Random Graphs [7]. Begin with n
vertices and no edges and add edges randomly
(that is, uniformly from among the potential edges)
one by one. LetG[n, e] be the state when there are e
edges. Of course,G[n, e] could be any graph with n
vertices and e edges and technically is the uniform
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probability distribution over all such graphs. Erdős

and Rényi studied the typical behavior of G[n, e]

as e “evolved” from 0 to
(
n

2

)
. When e approaches

and passes
n

2
the random graph undergoes a phase

transition. In a typical computer run on a million

vertices, the size of the largest component is only

168 at e = 400000 edges. By e = 600000 it has

exploded to size 309433.

In modern language we let G(n, p) be the

probability space over graphs on n vertices where

each pair is adjacent with independent probability

p. Such graphs have very close to a proportion p

of the edges. The behaviors of G[n, e] and G(n, p)

where e = p
(
n

2

)
are asymptotically the same for all

the topics we discuss here, and we shall use the

modern language.

We shall parameterize p =
c

n
. The graph with

n

2
edges then corresponds to c = 1. In this range

the graph will split into components. We let C1, C2

denote the largest and second largest components

in the graph, with |Ci| denoting their number of

vertices. We define the complexity of a component

with V vertices and E edges as E − V + 1. Trees

and unicyclic graphs have complexity 0 and 1,

respectively, and are called simple.

Theorem 1 (Erdős-Rényi). The behavior of G(n, p)

with p = c

n
can be broken into three parts.

Subcritical c < 1: All components are simple

and very small, |C1| = O(lnn).

Critical c = 1: |C1| = Θ(n2/3) A delicate situa-

tion!

Supercritical c > 1: |C1| ∼ yn where y = y(c)

is the positive solution to the equation

(1) e−cy = 1− y
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C1 has high complexity. All other components are
simple and very small, |C2| = O(lnn).

Remark. The full statements here and below are
rather unwieldy. Thus |C1| ∼ yn really means that
for all c > 1 and all ǫ > 0 the limit as n →∞ of the
probability that (y−ǫ)n < |C1| < (y+ǫ)n is 1. We
allow ourselves the more informal description.

Remark. The average degree of a vertex is
p(n − 1) ∼ c . The critical behavior takes place
when the average degree reaches 1.

When c > 1, Erdős and Rényi called C1 the
giant component. There are two salient features
of the giant component: its existence and its
uniqueness. Their system does not have a Jupiter
and an also huge Saturn; it is more like Jupiter
and Ceres. Several books ([3], [4], [13]) give very
full discussions.

Francis Galton and Henry Watson
Let’s switch gears. A Galton-Watson process begins

with a single node “Eve”.1 Eve hasZ children, where
Z has a Poisson distribution with mean c. (That is,
Eve has k children with probability e−cck/k!. The
full study of Galton-Watson processes considers
other distributions as well.) These children then
have children independently with the same dis-
tribution, and the process continues through the
generations. Let T = Tc be the total population
generated. There is a precise formula

(2) Pr[Tc = k] =
e−ck(ck)k−1

k!
.

However, it is also possible the T is infinite.

Theorem 2. The Galton-Watson process has three
regions.
Subcritical c < 1: T is finite with probability 1,

and E[T] =
∑∞

k=0 c
k =

1

1−c
.

Critical c = 1: T is finite with probability 1 but

has infinite expectation.2

Supercritical c > 1. T is infinite with probability
y = y(c) given by (1).

With c > 1 let z = 1− y be the probability Eve
generates a finite tree. If Eve has k children the full
tree will be finite if and only if all of the children
generate finite trees, which has probability zk.
Thus

(3) z =

∞∑

k=0

e−c
ck

k!
zk,

and some manipulation gives that y = 1 − z
satisfies (1). One needs further argument to show
that z = 1, y = 0 is a spurious solution.

1In the original work the nodes were all male!
2This author recalls in undergraduate days first seeing

a finite random variable with infinite expectation and

thinking it was a very funny and totally anomalous cre-

ation. Wrong! Such variables occur frequently at critical

points in percolation processes.

Erdős Meets Galton

Fix a vertex v in G(n, p) with p =
c

n
and perform

a breadth first search (BFS) to find its compo-
nents. It has binomial distribution B[n − 1, p]
neighbors, asymptotically Poisson with mean c.
Its neighbors then have Poisson c new neighbors,
and so on. The component of v is approximated
by the Galton-Watson process. For c < 1 this
approximation works well. But for c > 1 the
Galton-Watson process may go on forever while
the component of v can have at mostn vertices. An
ecological limitation causes the processes to con-
verge. BFS requires new vertices. After δn vertices
have been found, the new distribution is binomial
B[n(1−δ), p], which is Poisson with mean c(1−δ).
The success of BFS causes δ to rise, which makes
it harder to find new vertices, leading the process
to eventually die. The effect of the ecological lim-
itation is only felt after a positive proportion δn
of vertices have been found. Consider BFS from
each vertex v . With probability 1− y the process
will die early, giving a small component. But for
∼ yn the process will not die early. All of these
vertices have their components merge into the
giant component.

Jupiter Without Saturn

Why can we not have Jupiter and Saturn, two
components both of size bigger than δn? This
would be highly unstable. Each additional edge

would have probability at least (δn)2/
(
n

2

)
∼ 2δ2 of

merging them. High instability and nonexistence
are not the same. Indeed, while there are many
proofs of the uniqueness of the giant component,
we do not know one that is both simple and
rigorous.

The Critical Window
Erdős and Rényi normally repressed their enthu-
siasm in their formal writings. But not now!

This double “jump” in the size
of the largest component when
e

n
passes the value

1

2
is one of

the most striking facts concerning
random graphs. [7]

In the 1980s, spearheaded by the work of Béla
Bollobás and Tomasz Łuczak, the value c = 1 was
stretched out, and a critical window was found.
The stretching was done by adding a second-order
term. The correct parameterization is

(4) p =
1

n
+

λ

n4/3
.

Now there are three regions:
Barely Subcritical pn ∼ 1 and λ → −∞: All
components are simple. |C1| ∼ |C2|, their sizes
increasing with λ.
The Critical Window pn ∼ 1 and λ a constant:
Here (and only here!) we have chaotic behavior,
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distributions instead of almost sure behavior. Pa-
rameterizing |Ci| = Xin

2/3, the Xi (i = 1,2 and
beyond) have a nontrivial distribution and a non-
trivial joint distribution. The complexity Yi of Ci
also has a nontrivial distribution.
Barely Supercritical pn ∼ 1 and λ → +∞:
|C1| ≫ n2/3 ≫ |C2|. C1 is the dominant compo-
nent, much bigger than C2 but still small. C1 has
high complexity, but all other components are
simple.

Stirling’s formula applied to (2) with c = 1
gives Pr[T1 = k] ∼ (2π)

−1/2k−3/2 and Pr[T1 ≥ k] ∼
2(2π)−1/2k−1/2. Now consider G(n, p) with pn = 1
and let C(v) be the component containing v . Call
C(v) large if its size is at least Kn2/3 and let Z
be the number of v with C(v) large. Estimating
|C(v)| by T1 would give that C(v) is large with
probability 2(2π)−1/2K−1/2n−1/3, and so Z would
have expectation 2(2π)−1/2K−1/2n2/3. The actual
value of E[Z] is somewhat smaller due to the
ecological limitation, but let us assume it as a
heuristic. If any large component exists, every
vertex of it would be in a large component, so
that Z would be at least Kn2/3. When K is large,
E[Z] is much lower than Kn2/3, so that with high
probability there would be no large component.
Conversely, when ǫ is a small positive constant,
we expect many components of size bigger than
ǫn2/3.

A Strange Physics

Let cin
2/3 be the size of the ith largest component

at p = n−1 + λn−4/3. Let ∆λ be an “infinitesimal”
and increase λ by ∆λ. There are (cin

2/3)(cjn
2/3)

potential edges that would merge Ci , Cj , and each

is added with probability (∆λ)n−4/3. The n factors
cancel: Ci , Cj merge to form a component of size

(ci + cj)n
2/3 with probability cicj(∆λ). This grav-

itational attraction merges the large components
and forms the dominant component. We can in-
clude the complexity in this model. When Ci , Cj
with complexities ri, rj merge, the new compo-
nent has complexity ri + rj . Further, each Ci has

∼
1

2
c2
i n

4/3 potential internal edges. In the infini-

tesimal time ∆λ with probability c2
i (∆λ)/2, such

an edge is added, and the complexity of Ci is
incremented by 1. Over time, the complexities get
larger and larger. The limiting process, called the
multiplicative coalescent process, has interesting
connections to Brownian motion [2].

A Computer Exercise

Computer experimentationvividly shows the rapid

development in the critical window. In the run3 on
the following page, we begin with n = 105 vertices
and no edges. At each step a random edge is
added, and a Union-Find algorithm is used to keep

3Thanks to Juliana Freire.

track of component sizes. We parameterize the

number of edges as e =
(
n

2

)
(n−1+λn−4/3) and take

“snapshots” at λ = −4,−3, . . . ,+4. The ten largest
component sizes (listed 0, . . . ,9 here, and divided
by n2/3) are given for each λ. At λ = +2 there is a
1.16 Jupiter and 0.86 Saturn. The next digit, under
N, gives the new ranking (− if not in the top ten)
for that component for the next λ. Components
0,1,2,3,4 have N = 0, meaning they have all
merged by λ = +3. At λ = 3 Jupiter has blown
up to 4.21. (Smaller components have also joined
Jupiter, explaining the discrepancy in the sum.)
The size of the second largest component has
decreased (it is the component formerly ranked 5)
to a 0.22 Ceres.

Inside the Critical Window

At λ = −4 there is a “jostling for position” among
the top components, while by λ = +4 a dominant
component has emerged. The last time the largest
component loses that distinction occurs during the
critical window [8]. At λ = −4 all components are
simple, while by λ = +4 the dominant component
has high complexity. Complexity at least 4 is
necessary for nonplanarity. Planarity is lost in the
critical window [16]. In a masterful work [12], the
development of complex components is studied.
One exceptionally striking result: the probability
that the evolution ever simultaneously has two

complex components is, asymptotically,
5

18
π .

Classical Bond Percolation

Mathematical physicists examine Zd as a lattice;
the pairs ~v, ~w that are one apart are called bonds.
They imagine that each bond is occupied with
independent probability p. (For graph theorists,
the occupied bonds form a random subgraph of
Zd .) The occupied components then form clusters,
or components. There is a critical probability,
denoted pc (dependent on d), so that:
Subcritical p < pc : All components are finite.
Critical p = pc : A delicate situation!
Supercritical p > pc : There is precisely one
infinite component.

There are natural analogies between this infinite
model and the asymptotic Erdős-Rényi model.
Infinite size corresponds to Ω(n), while finite
size corresponds to O(lnn). There is particular
interest in p being very close to pc . Let f (p)

be the probability that ~0 (or, by symmetry, any
particular ~v) lies in an infinite component. The

critical exponent β is that4 real number such that
f (pc+x) ∼ x

β+o(1) as x→ 0+. The probability pc+x
corresponds to pn = 1+x and f to the probability
that a given vertex v lies in the giant component or,
equivalently, the proportion y(1+x) of vertices in

4β might not exist, but all mathematical physicists as-

sume it does.
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· -4 N -3 N -2 N -1 N 0 N +1 N +2 N +3 N +4

0 0.14 1 0.18 0 0.24 1 0.28 0 0.37 0 0.82 0 1.16 0 4.21 0 5.88
1 0.10 2 0.16 1 0.19 2 0.26 1 0.36 1 0.39 1 0.86 0 0.22 0 0.24
2 0.10 3 0.13 3 0.13 4 0.19 3 0.26 0 0.28 3 0.49 0 0.13 0 0.12
3 0.09 4 0.12 4 0.13 0 0.16 2 0.21 2 0.23 4 0.46 0 0.12 0 0.10
4 0.07 0 0.09 5 0.13 3 0.14 5 0.16 0 0.20 2 0.32 0 0.11 2 0.10
5 0.07 0 0.08 7 0.09 5 0.12 4 0.15 4 0.14 5 0.16 1 0.10 1 0.10
6 0.07 5 0.06 6 0.09 7 0.10 8 0.12 5 0.12 2 0.12 3 0.09 1 0.10
7 0.06 8 0.06 2 0.08 6 0.09 - 0.12 3 0.10 1 0.11 4 0.09 4 0.10
8 0.05 - 0.06 8 0.06 9 0.09 - 0.10 3 0.10 7 0.09 2 0.09 0 0.08
9 0.05 9 0.05 - 0.06 0 0.07 - 0.10 9 0.10 0 0.08 5 0.08 6 0.07

the giant component. As y(1+x) ∼ 2x = x1+o(1) the

β value for the Erdős-Rényi model is considered 1.

This is known to be the β value in Zd for all

sufficiently high dimensionsd. Grimmett [10] gives

many other critical exponents, and in all cases

the analogous value for the Erdős-Rényi model

matches the known value in high-dimensional

space. Mathematical physicists loosely use the

term mean field behavior to describe percolation

phenomena in high dimensions, and the Erdős-

Rényi model has this mean field behavior.

Recent Results

Today it is recognized that percolation and the

critical window appear in many guises. Here is a

highly subjective description of recent work. We

generally give simplified versions.

Random 2-SAT

We generate m random clauses C1, . . . , Cm on

Boolean variables x1, . . . , xn. That is, each clause

C = y ∨ z with y, z drawn randomly from

{x1, x1, . . . , xn, xn}. We ask if all Ci can be simulta-

neously satisfied. The answer changes from yes

to no in the critical window m = n+ λn2/3 [5].

d-regular Graph

LetGn be a sequence of transitived-regular graphs.

Under reasonable conditions pc =
1

d−1
acts as the

critical probability for a random subgraph of Gn.

For p < pc the components are small, while for

p > pc there is a giant component. More delicately,

at p = pc the largest component has size Θ(n2/3).

The scaling pd = 1 + λn−1/3 acts as the critical

window [18].

An Improving Walk

Consider an infinite walk starting at W0 = 1 with

Wt = Wt−1 +Xt − 1 where Xt is Poisson with mean
t

n
. WhenWt = 0 (crashes) it is reset toWt = 1. When

t =
1−ǫ

n
the walk has negative drift and crashes

repeatedly. When t = 1+ǫ

n
the walk has positive

drift and goes to infinity. The walk will crash for

the last time in the critical window t = n+λn2/3 [9].

A First-Order Phase Transition

Modify the Erdős-Rényi evolution as follows. In

each round an edge is added to G, initially empty.

Two random pairs {u, v}, {w,x} are given. Add

that pair for which the product of the component

sizes of the two vertices is smaller. This provides a

powerful antigravity that deters large components

from joining. Parameterizing e = t
n

2
edges chosen

(so that t = 1 is the critical value in the Erdős-

Rényi evolution) the giant component occurs at

t ∼ 1.77. More interesting, extensive computer

simulation (but no mathematical proof!) indicates

strongly that when the critical value is reached,

there is a first-order phase transition. That is, let

t = tc be the critical probability and let f (t) be the

proportion of vertices in the largest component

at “time” t . Then the limit of f (t) as t approaches

tc from above appears not to be zero but rather

something like 0.6 [1].

General Critical Points

Let G be a graph on n vertices. Set d∗ =

(
∑
v d

2
v)(
∑
v dv), noting d∗v denotes the average

degree of a vertex if you first select an edge uni-

formly and then one of its vertices uniformly. Let

Gp denote the random subgraph of G, accepting

each edge with independent probability p. Then,

under certain mild conditions on G, p =
1

d∗
is

the critical point in the evolution of Gp. When

p = 1−ǫ

d∗
, Gp contains no giant component, while

when p =
1+ǫ

d∗
, Gp does contain a unique giant

component [6].

Degree Sequence

For given d1, . . . , dn we consider the graph on n
vertices chosen uniformly among all with that

degree sequence, that is, v having precisely dv
neighbors. Suppose for each n we have a degree

sequence, λi(n) ∼ λin vertices having degree i.

Then (with d∗ from above), d∗ ∼ [
∑
i2λi]/[

∑
iλi].

Set Q :=
∑
i i(i − 2)λi so that Q > 0 if and only

if d∗ > 2. In analyzing BFS one thinks of an edge

going to a vertex with the above distribution,

which then is on an expected number d∗ − 1 of

new edges. With d∗ < 2 the process will die, while
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for d∗ > 2 it might continue. When Q < 0 the
random graph with this degree sequence has no
giant component, while when Q > 0 it does [17].

Set Qn :=
∑
i i(i − 2)λi(n) and assume Qn →

0. Under moderate assumptions, Qn = λn−1/3

provides a critical window. Forλ→ −∞ the random
graph is subcritical, and all components have
size o(n2/3). When λ → +∞ the random graph
is supercritical, there is a dominant component
of size ≫ n2/3 and all other components have
size o(n2/3). In the power law random graphs,
thought by many to model the Web graph and
other phenomena, it is assumed that λi ∼ i

−γ for a
constant γ. For certain γ the above critical window
does not work, and work in progress indicates that
there is a critical window whose exponent depends
on γ [14] [11].

A Potts Model

In the Potts model, the distribution of graphs is
biased toward having more components. There
are three parameters, p ∈ [0,1], q ≥ 1, and the
number of vertices n. A graph G with e edges,

s :=
(
n

2

)
− e nonedges, and c components has

probability pe(1 − p)sqc/Z , where Z is a normal-
izing constant chosen so that the sum of the
probabilities is 1. For q = 2 this is called the
Ising model, for q ≥ 3 and integral, this is the
Potts model. For 2 < q < 3 the critical value is

pn = cq := 2
q−1

q−2
ln(q−1). At pn = cq + ǫ there is a

giant component, while at pn = cq − ǫ the largest
component has logarithmic size. The critical win-

dow has parameterization pn = cq +
λ

n
. There the

graph has two different personalities. Either it has
a giant component or the largest component has
logarithmic size. Both occur with positive limiting
probability, and these limiting probabilities sum
to 1. At no p is there a middle ground with the
size of the largest component being bigger than
logarithmic but sublinear [15].

In Conclusion
The mathematical landscape at the time of Paul
Erdős’s birth, nearly one hundred years ago, was
very different from what it is today. Discrete
mathematics was disparaged as “the slums of
topology”. Probability was useful for gambling,
but not proper work for a serious mathematician.
Today both areas are thriving. It is the fecund
intersection of discrete mathematics and proba-
bility that has seen the most spectacular growth.
A wide variety of random processes on large dis-
crete structures are studied. These processes, to
use Erdős and Rényi’s well-chosen word, undergo
an evolution. At a critical moment they undergo a
phase transition, from water to ice, from satisfi-
able to not satisfiable, from freeflow to gridlock,
from small components to a giant component.
To understand a process we need to understand

these critical moments. The Erdős-Rényi process
provides a bedrock to which all other processes
may be compared.
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