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When you admit to a stranger on an airplane
that you are a professional mathematician, what
happens next? “I never liked mathematics.” “I’m
no good with numbers.” “I used to be good at
math until I got to calculus.” “Isn’t math boring?”
“What do you guys actually do all day?” Why not
take such a response as an invitation to pull out
a scratchpad and do a little teaching? One of my
favorite topics is Euler’s polyhedral formula: it is
simple and elegant, it is not just about arithmetic
or calculus, and it requires hardly any technical
background to understand. Even strangers on
airplanes are capable of looking at five or six
examples, conjecturing that V − E + F = 2 for all
polyhedra, and asking good questions: “But how
can you prove that it’s always true?” “Does it work
if the polyhedron has a hole in it?” Admittedly,
the scene doesn’t always end this happily, but we
mathematicians need to be able to communicate
our discipline to strangers on airplanes, not to
mention prospective students, deans, members of
Congress, and small children.

David Richeson’s Euler’s Gem does an out-
standing job of explaining serious mathematics to
a general audience, and I plan to recommend it to
the next stranger I meet on an airplane. The book
is structured as a “tour guide” to the history of
geometry and topology, revolving around Euler’s
formula and organized roughly chronologically:
from the study of polyhedra in ancient Greek
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geometry to the discovery, proofs, and general-

izations of Euler’s formula in the seventeenth,

eighteenth, and nineteenth centuries, to such di-
verse modern topics as knot theory, fixed-point

theorems, curvature, the classification of surfaces,
homology theory, and the Poincaré conjecture. The

book is primarily intended for a lay audience, but

there is also much of interest to professional
mathematics students, teachers, and researchers.

While a few of the book’s generalizations about
mathematical history and aesthetics are a bit sim-

plistic or even one-sided, the wealth of clear and

engaging exposition outweighs these occasional
flaws.

The historical development of geometry, from
its Greek roots to its modern form, is a re-

curring theme. An example is the discussion

of the attempts of Lhuilier and others, in the
early nineteenth century, to generalize Euler’s for-

mula to nonconvex polyhedra. Lhuilier’s approach,
incorporating contributions for the number of

“tunnels”, “cavities”, and “inner polygons” (Riche-

son’s terms), as well as vertices, edges, and faces,
might seem a little misguided with the benefit of

hindsight; wouldn’t it be easier to phrase every-
thing in terms of cell complexes and homology?

Yes, it would, but in 1810 no one knew what a

cell complex (or for that matter a manifold) was.
The reader can see the origins of these modern

ideas by comparing Lhuilier’s work with that of
Listing (whose “spatial complexes” Richeson de-

scribes briefly on pp. 249–250) and finally modern

topology as developed by Poincaré. Even an expert
should be able to benefit from seeing the evolu-

tion of “standard” mathematical definitions from
simple and intuitive to complex and precise; this

evolution is something not found in most graduate

courses or textbooks.
Some of the generalizations about mathematics

history may be oversimplifications: for instance,
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“Euler’s predecessors were so focused on metric
properties that they missed this fundamental in-
terdependence. Not only did it not occur to them
that they should count the features on a poly-
hedron, they did not even know which features
to count” (p. 85). Kepler and Descartes did in
fact count pieces of polyhedra, and their work
is described elsewhere in the book. Kepler had
observed the phenomenon of polar duality for
regular solids and the fact that dualizing reverses
the ordered triple (V, E, F), what a modern com-
binatorialist would call the f -vector. Meanwhile, a

century before Euler, Descartes had observed1 a
formula closely related to Euler’s: P = 2F+2V −4,
where P is the number of plane angles. Each angle
contains two edges, and each edge belongs to four
angles (two on each end), so P = 2E, implying
Euler’s formula. Whether or not you think that
Descartes deserves equal naming rights with Euler
(a topic that has been debated), it seems clear that
Kepler and Descartes were at least counting some-
thing. No doubt Euler’s work was a major turning
point and had far more direct impact than that of
Descartes, but it is an overstatement to claim that
Euler was the first to realize the applicability of
counting in geometry. (On the other hand, Euler’s
original proof was indeed, as Richeson says, “a pre-
cursor to modern combinatorial proofs” (p. 67):
calculate V − E + F for a given polyhedron by
slicing off a tetrahedron at a time and total the
contributions from the individual tetrahedra. For
those, like me, who think of Euler’s formula as
completely combinatorial, it is interesting to learn
that the first rigorous proof, due to Legendre, is
fundamentally geometric: project the polyhedron
onto a sphere and then apply the Harriot-Girard
theorem, which says that the area of a geodesic
triangle on the unit sphere equals its angle sum
minus π .)

The big historical picture may be slightly fuzzy,
but the exposition of substantial mathematics is
uniformly clear and concrete, with lots of pictures
and examples, and sensibly organized. Several
of the chapters stand on their own and would
work well as self-contained reading assignments
in a geometry course for mathematics majors or
future secondary-school teachers. For example,
the description of the classification of surfaces
by their Euler characteristics and orientability
(Chapters 16–17) is an absorbing, self-contained
mathematical story, told at an appropriate level of
technicality, in which terms such as “isomorphism
invariant” and “orientable” receive clear, simple
definitions that avoid unnecessary technicalities,
without sacrificing accuracy. The theme of intrinsic
versus extrinsic geometry (what properties of a

1In a set of papers lost in a shipwreck after

Descartes’ death and not brought to public light until

1860—Richeson provides the juicy details in Chapter 9.

curve or surface depend on how it is embedded in

space?) is given the attention it deserves, leading

into a chapter on the lovely subject of knot theory,

with lots of pictures and explanations that make

substantial mathematics (like the Seifert surface,

an orientable surface in R3 having a given knot

as boundary) appealing and fun. If your seatmate

complains that geometry is boring, here is an

antidote.

Further geometry topics that receive excellent

treatment include Descartes’ theorem on solid

angles of polyhedra and its continuous analogue,

the Gauss-Bonnet theorem, which measures the

total curvature of a surface in terms of its Euler

characteristic. The presentation is clear and self-

contained, requiring little more background than

the fact that the sum of angles in an n-sided

polygon is (n − 2)π—hardly too much to ask.

The explanation of curvature is concrete; wisely,

the calculus details are banished to footnotes.

(My one small complaint: the biographical sketch

of Gauss somewhat breaks up the flow of the

mathematical story.) Richeson’s explanation of

homology (Chapter 23) was one of my favorite

parts of the book, and I wish I had read it before

taking algebraic topology as a graduate student—

all those long exact sequences would have made

a lot more sense if I had known what they were

trying to measure.

Unfortunately, this outstanding section is fol-

lowed by a mistaken explanation: “Kepler’s ob-

servation [polar duality] is Poincaré duality in

disguise. We are free to exchange the roles of

i-dimensional and (n− i)-dimensional simplices.”

The intent is good, but the details are inaccu-

rate: the f -vectors of two polar dual polytopes

are the reverses of each other, whereas Poincaré

duality says (among other things) that the Betti

numbers of a single manifold form a palindrome.

Although both statements are superficially con-

cerned with symmetry, they are hardly the same

thing in disguise. I cannot resist inserting a plug

for combinatorics here: I would have liked to

see a section about another relevant (and quite

beautiful) duality for polytopes, namely the Dehn-

Sommerville equations. Briefly, the f -vector of a

simplicial polytope can be transformed into an-

other invariant called the h-vector (for example,

an octahedron has f -vector (6,12,8) and h-vector

(1,3,3,1)), which carries the same information;

the Dehn-Sommerville equations say that the

h-vector is a palindrome. After describing ho-

mology and Poincaré duality, it would have been

a natural next step to define the h-vector, to state

the Dehn-Sommerville equations with an example

or two, and perhaps to sketch the beautiful geo-

metric proof by Bruggesser and Mani [1]. Perhaps

this is something to look forward to in the second

edition.
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I was disappointed by the book’s discussion of
the use of computers in mathematics, particularly
Appel and Haken’s 1976 proof of the four-color
theorem (the first solution of a major open problem
that relied on a computer to check a large finite
number of cases):

Although most people came to
believe that [Appel and Haken’s]
proof was correct, most pure math-
ematicians found the proof inele-
gant, unsatisfying, and unsporting.
It was as if Evel Knievel boasted
that he could cross the Grand
Canyon on his motorcycle, only
to build a bridge and use it to
make the crossing. Perhaps it is
how mountain climbing purists
feelabout the use ofbottledoxygen
in high-altitude climbing. (p. 143)

This is unnecessarily dismissive and it neglects to
present the other point of view: that Appel and
Haken’s work did us all a big favor by introducing
a powerful new tool in doing mathematics and that
whether it is “sporting” is a moot point, because
mathematics is the richer for having any proof
at all of the four-color theorem. The passage also
pays scant attention to the fact that computer-
aided proofs are much more widely accepted in the
mathematical community today than they were in
1976. Later on the same page, we read,

Perhaps some day someone will
create a black box that proves the-
orems…. Some would say that this
would take the fun out of mathe-
matics and make it less beautiful.

Yet some would say the reverse: computers can
help us discover and create beauty. Consider
the development of automated summation tech-
niques; they may take some of the fun out of
proving hypergeometric identities, but being able
to delegate such tasks to a computer frees up
lots of mathematician-hours to do other things
that a machine can’t do. In addition, the mathe-
matics underlying hypergeometric summation is
itself quite beautiful, and it’s hard to imagine any
hypothetical black box being built without much
more complex and beautiful mathematics (as a
starting point, see the articles on formal proof in
the October 2008 issue of the Notices). Describing
the artistic and aesthetic sides of mathematics is
a noble goal, but I am concerned that the quoted
passages are counterproductive. We should por-
tray ourselves not as purists who disdain the use
of nontraditional tools but as scientists who are
willing to be open to new methods.

It is easier to criticize a problematic sentence
than to praise an entire well-written chapter. Over-
all, I found much more to like than to criticize
in Euler’s Gem. At its best, the book succeeds at

showing the reader a lot of attractive mathematics
with a well-chosen level of technical detail. I rec-
ommend it both to professional mathematicians
and to their seatmates.

References

[1] H. Bruggesser and P. Mani, Shellable decomposi-

tions of cells and spheres, Math. Scand. 29 (1971),

197–205.

 
Research topic:            A three-week summer program for  
Moduli Spaces of        graduate students 
Riemann Surfaces        undergraduate students 
         mathematics researchers 
Education Theme:              undergraduate faculty 
Making Mathematical           secondary school teachers 
Connections        math education researchers 

 
IAS/Park City Mathematics Institute (PCMI)  

July 3 – July 23, 2011 
Park City, Utah 

 
Organizers: Benson Farb, University of Chicago; Richard Hain, 
Duke University; and Eduard Looijenga, Universiteit Utrecht. 
Graduate Summer School Lecturers: Carel Faber, KTH Royal 
Institute of Technology; S�ren Galatius, Stanford University; 

Ursula Hamenst�dt, Universit�t Bonn; Makoto Matsumoto, Tokyo 
University; Yair Minsky, Yale University; Martin Möller, Goethe 
Universit�t; Andrew Putman, Rice University; Nathalie Wahl, 
University of Copenhagen; and Scott Wolpert, University of 
Maryland. 
Clay Senior Scholars in Residence: Joseph Harris, Harvard 
University, and Dennis P. Sullivan, CUNY & SUNY Stony Brook.  
Other Organizers: Undergraduate Summer School and 
Undergraduate Faculty Program: Aaron Bertram, University of 
Utah; and Andrew Bernoff, Harvey Mudd College. Secondary 
School Teachers Program: Gail Burrill, Michigan State University; 
Carol Hattan, Vancouver, WA; and James King, University of 
Washington. 

 
Applications: pcmi.ias.edu 
Deadline:  January 31, 2011 

IAS/Park City Mathematics Institute 
Institute for Advanced Study, Princeton, NJ  08540 

Financial Support Available 

1450 Notices of the AMS Volume 57, Number 11


