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Fields Medals Awarded

On August 19, 2010, four Fields Medals were 
awarded at the opening ceremonies of the In-
ternational Congress of Mathematicians (ICM) in 
Hyderabad, India. The medalists are Elon Linden-
strauss, Ngô Bao Châu, Stanislav Smirnov, and 
Cédric Villani.

The Fields Medals are given every four years by 
the International Mathematical Union (IMU). Al-
though there is no formal age limit for recipients, 
the medals have traditionally been presented to 
mathematicians under forty years of age as an 
encouragement to future achievement. The medal 
is named after the Canadian mathematician John 
Charles Fields (1863–1932), who organized the 
1924 ICM in Toronto. At a 1931 meeting of the 
Committee of the International Congress, chaired 
by Fields, it was decided that funds left over from 
the Toronto ICM “should be set apart for two med-
als to be awarded in connection with successive 
International Mathematical Congresses.” In outlin-
ing the rules for awarding the medals, Fields speci-
fied that the medals “should be of a character as 
purely international and impersonal as possible.” 
During the 1960s, in light of the great expansion 
of mathematics research, the possible number of 
medals to be awarded was increased from two to 
four. Today the Fields Medal is recognized as the 
world’s highest honor in mathematics.

Previous recipients of the Fields Medal are: 
Lars V. Ahlfors and Jesse Douglas (1936); Laurent 
Schwartz and Atle Selberg (1950); Kunihiko Kod-
aira and Jean-Pierre Serre (1954); Klaus Roth and 
René Thom (1958); Lars Hörmander and John W. 
Milnor (1962); Michael F. Atiyah, Paul J. Cohen, Al-
exander Grothendieck, and Stephen Smale (1966); 
Alan Baker, Heisuke Hironaka, Sergei Novikov, and 
John G. Thompson (1970); Enrico Bombieri and 
David Mumford (1974); Pierre R. Deligne, Charles 
Fefferman, Grigorii A. Margulis, and Daniel G. 
Quillen (1978); Alain Connes, William P. Thur-
ston, and Shing-Tung Yau (1982); Simon K. Don-
aldson, Gerd Faltings, and Michael H. Freedman 
(1986); Vladimir Drinfel’d, Vaughan F. R. Jones, 
Shigefumi Mori, and Edward Witten (1990); Jean

Bourgain, Pierre-Louis Lions, Jean-Christophe Yoc-
coz, and Efim Zelmanov (1994); Richard Borcherds,
William Timothy Gowers, Maxim Kontsevich, and 
Curtis T. McMullen (1998); Laurent Lafforgue and 
Vladimir Voevodsky (2002); and Andrei Okounkov, 
Grigori Perelman, (medal declined), Terence Tao, 
and Wendelin Werner (2006). 

Elon Lindenstrauss
Citation: “For his results on measure rigidity in ergo-
dic theory and their applications to number theory.”

Elon Lindenstrauss 
has developed extraor-
dinarily powerful theo-
retical tools in ergodic 
theory, a field of mathe-
matics initially developed 
to understand celestial 
mechanics. He then used 
them, together with his 
deep understanding of 
ergodic theory, to solve 
a series of striking prob-
lems in areas of mathe-
matics that are seemingly 
far afield. His methods 
are expected to continue 

to yield rich insights throughout mathematics for 
decades to come.

Ergodic theory studies dynamical systems, 
which are simply mathematical rules that describe 
how a system changes over time. So, for example, 
a dynamical system might describe a billiard ball 
ricocheting around a frictionless, pocketless bil-
liard table. The ball will travel in a straight line until 
it hits the side of the table, which it will bounce off 
of as if from a mirror. If the table is rectangular, 
this dynamical system is pretty simple and predict-
able, because a ball sent in any direction will end 
up bouncing off each of the four walls at a consis-
tent angle. But suppose, on the other hand, that the 
billiard table has rounded ends like a stadium. In 
that case, a ball from almost any starting position 
headed in almost any direction will shoot all over 
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the entire stadium at endlessly varying angles. 
Systems with this kind of complicated behavior 
are called “ergodic”.

The way that mathematicians pin down this 
notion that the trajectories spread out all over the 
space is through the notion of “measure invari-
ance”. A measure can be thought of as a more flex-
ible way to compute area, and having an invariant 
measure essentially ensures that if two regions of 
the space in some sense have equal areas, points 
will travel into them the same percentage of the 
time. By contrast, in the rectangular table (which 
of course is not ergodic), the center will get very 
little traffic in most directions.

In many dynamical systems, there is more than 
one invariant measure, that is, more than one 
way of computing area for which almost all the 
trajectories will go into equal areas equally often. 
In fact, there are often infinitely many invariant 
measures. What Lindenstrauss showed, however, 
is that in certain circumstances, there can be only 
a very few invariant measures. This turns out to 
be an extremely powerful tool, a kind of hammer 
that can break hard problems open.

Lindenstrauss then adroitly wielded his ham-
mer to crack some hard problems indeed. One 
example of this is in an area called “Diophantine 
approximations”, which is about finding rational 
numbers that are usefully close to irrational ones. 
Pi, for example, can be approximated pretty well as 
22/7. The rational number 179/57 is a bit closer, 
but because its denominator is so much larger, it’s 
not as convenient an approximation. In the early 
nineteenth century, the German mathematician 
Johann Dirichlet proposed one possible standard 
for judging the quality of an approximation: The 
imprecision of a rational approximation p/q should 
be less than 1/(q2). He then went on to show, in 
a not very difficult proof, that there are infinitely 
many approximations to any irrational number 
that meet this standard. (To put this in formula 
form, he showed that for any real number α, there 
are infinitely many integers p and q such that 
|α−p/q| < 1/q2.)

Eighty years ago the British mathematician 
John Edensor Littlewood proposed an analogue to 
Dirichlet’s statement to approximate two irrational 
numbers at once: It should be possible, he figured, 
to find approximations p/q to α and r/q to β so 
that the product of the imprecision of the two 
approximations would be as small as you please. 
(In formula form, the claim is that for any real 
numbers α and β and any tiny positive quantity 
ε you like, there will be approximations p/q to α 
and r/q to β so that |α−p/q|×|β−r/q|<ε/q3.) He gave 
the problem to his graduate students, thinking it 
should not be that much harder than Dirichlet’s 
proof. But the Littlewood conjecture turned out to 
be extraordinarily difficult, and until recently, no 
substantial progress had been made on it.

Then Lindenstrauss brought his ergodic theory 
tools to the problem, in joint work with Manfred 
Einsiedler and Anatole Katok. Ergodic theory might 
seem an odd choice for a problem that does not in-
volve dynamical systems or time, but such unlikely 
pairings are sometimes the most powerful. Here’s 
one way of reformulating Littlewood’s problem to 
see a connection: First imagine a unit square, and 
glue the top edge to the bottom edge to make a 
cylinder. Now glue the right edge to the left edge 
and you’ll get a shape called a torus that looks like 
a donut. You can roll up the entire coordinate plane 
to this same shape by gluing any point (x, y) to the 
point whose x-coordinate is the fractional part of 
x and whose y-coordinate is the fractional part of 
y. This torus is the space of our dynamical system. 
We can then define a transformation by taking any 
point (x, y) to another point (x+α, y+β). If α and 
β are irrational (or more precisely, not rationally 
related), this dynamical system will be ergodic. The 
Littlewood conjecture then becomes the claim that 
you can make these trajectories suitably close to 
the origin by applying the transformation enough 
times. The number of times you apply the transfor-
mation becomes the denominator of the fractions 
approximating α and β.

Using a reformulation of the Littlewood con-
jecture in terms of a more complex dynamical 
system, the team made a huge step of progress 
on the conjecture: They showed that if there are 
any pairs of numbers for which the conjecture is 
false, there are only a very few of them, a negligible 
portion of them all.

Another example of the power of Linden-
strauss’s work is his proof of the first nontrivial 
case of the arithmetic quantum unique ergodicity 
conjecture. Ergodic systems come up frequently 
in physics, because as soon as you have three 
bodies interacting, for example, the system starts 
to behave in a somewhat ergodic fashion. But if 
those interactions happen at the quantum scale, 
you cannot describe them with the ordinary 
tools of ergodic theory, because quantum theory 
does not allow for well-defined paths of points 
at well-defined positions; instead, you can only 
consider the probability that a point will exist in a 
particular position at a particular time. Analyzing 
such systems mathematically has proven extraor-
dinarily difficult, and physicists have had to rely 
on numerical simulations alone, without a firm 
mathematical underpinning.

The quantum unique ergodicity conjecture says, 
roughly, that if you calculate area using the mea-
sure that is natural in classical dynamics, then as 
the energy of the system goes up, this probability 
distribution becomes more evenly distributed over 
the space. Furthermore, this measure is the only 
one for which that is true. Lindenstrauss was able 
to prove this in an arithmetic context for particular 
kinds of dynamical systems, creating one of the 
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first major, rigorous advances in the theory of 
quantum chaos.

Elon Lindenstrauss was born in 1970 in Jeru-
salem. He received his Ph.D. in mathematics from 
the Hebrew University of Jerusalem in 1999. He 
is professor of mathematics at Hebrew University 
and at Princeton University. He has been a member 
of the Institute for Advanced Study, Princeton; a 
Clay Mathematics Institute Long-Term Prize Fel-
low; a visiting member of the Courant Institute 
of Mathematical Sciences at New York University; 
and an assistant professor at Stanford University. 
His distinctions include the Leonard M. and Elea-
nor B. Blumenthal Award for the Advancement of 
Research in Pure Mathematics (2001), the 2003 
Salem Prize, the European Mathematical Society 
Prize (2004), and the Anna and Lajos Erdős Prize 
in Mathematics (2009). 

Ngô Bao Châu
Citation: “For his proof of the fundamental lem-
ma in the theory of automorphic forms through 
the introduction of new algebro-geometric
methods.”

Ngô Bao Châu re-
moved one of the great 
impediments to a grand, 
decades-long program to 
uncover hidden connec-
tions between seemingly 
disparate areas of math-
ematics. In doing so, he 
provided a solid foun-
dation for a large body 
of theory and developed 
techniques that are likely 
to unleash a flood of new 
results.

The path to Ngô’s 
achievement began in 1967, when the mathemati-
cian Robert Langlands had a mind-boggling bold 
vision of a sort of mathematical wormhole con-
necting fields that seemed to be light years apart. 
His proposal was so ambitious and unlikely that 
when he first wrote of it to the great number 
theorist André Weil, he began with this sheepish 
note: “If you are willing to read [my letter] as pure 
speculation I would appreciate that; if not—I am 
sure you have a wastebasket handy.” Langlands 
then laid out a series of dazzling conjectures that 
have proven to be a road map for a large area of 
research ever since.

The great majority of those conjectures remain 
unproven and are expected to occupy mathemati-
cians for generations to come. Even so, the prog-
ress on the program so far has been a powerful 
engine for new mathematical results, including An-
drew Wiles’s proof of Fermat’s Last Theorem and 
Richard Taylor’s proof of the Sato-Tate conjecture. 

The full realization of Langlands’s program would 
unify many of the fields of modern mathematics, 
including number theory, group theory, represen-
tation theory, and algebraic geometry.

Langlands’s vision was of a bridge across a 
division in mathematics dating all the way back 
to Euclid’s time, that between magnitude and 
multitude. Magnitudes are the mathematical form 
of butter, a continuous smear of stuff that can be 
divided up into pieces as small as you please. Lines 
and curves, planes, the space we live in, and even 
higher-dimensional spaces are all magnitudes, 
and they are commonly studied with the tools of 
geometry and analysis. Multitudes, on the other 
hand, are like beans, discrete objects that can be 
put in piles but cannot be split without losing their 
essence. The whole numbers are the canonical 
example of multitudes, and they are studied with 
the tools of number theory. Langlands predicted 
that certain numbers that arise in analysis—spe-
cifically, the eigenvalues of certain operators on 
differential forms on particular Riemannian mani-
folds, called automorphic forms—were actually a 
code that, if unraveled, would classify fundamental 
objects in the arithmetic world.

One of the tools developed from the Langlands 
program is the “Arthur-Selberg trace formula”, an 
equation that shows precisely how geometric infor-
mation can calculate arithmetic information. That 
is valuable in itself and, furthermore, is a building 
block in proving Langlands’s principle of functo-
riality, one of the great pillars of his program. But 
Langlands ran across an annoying stumbling block 
in trying to use the trace formula. He kept encoun-
tering complicated finite sums that clearly seemed 
to be equal, but he couldn’t quite figure out how to 
show it. It seemed like a straightforward problem, 
one that could be solved with a bit of combinato-
rial fiddling, so he called it a “lemma”—the term 
for a minor but useful result—and assigned it to 
a graduate student.

When the graduate student could not prove it, 
he tried another. Then he worked on it himself. 
Then he consulted with other mathematicians. 
At the same time as everyone continued to fail to 
prove it, the critical need for the result became 
increasingly clear. So the problem came to have a 
slightly grander title: the “fundamental lemma”.

After three decades of work, only a few special cases 
had yielded to proof. The lack of a proof was such 
a roadblock to progress that many mathematicians 
had begun simply assuming it was true and de-
veloping results that depended upon it, creating 
a huge body of theory that would come crashing 
down if it turned out to be false.

Ngô Bao Châu was the one to finally break the 
problem open. The complicated identities in the 
fundamental lemma, he realized, could be seen as 
arising naturally out of sophisticated mathematical 
objects known as Hitchen fibrations. His approach 
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was entirely novel and unexpected: Hitchen fibra-
tions are purely geometric objects that are close to 
mathematical physics, nearly the last thing anyone 
expected to be relevant to this problem in the pur-
est of pure math.

But it was instantly clear that he had made a 
profound connection. His approach turned the 
annoying, fiddly complexity of the fundamental 
lemma into a simple, natural statement about 
Hitchen fibrations. Even before he had managed 
to complete the proof, he had achieved something 
even more impressive: he had created genuine 
understanding.

Furthermore, by putting the problem in this 
much bigger framework, Ngô gave himself power-
ful new tools to assault it with. In 2004 he proved 
some important and difficult special cases working 
with his former thesis advisor, Gérard Laumon, 
and, in 2008, using his new methods, he cracked 
the problem in its full generality.

Ngô’s methods are so novel that mathemati-
cians expect them to break open a number of other 
problems as well. A prime target is another piece 
of Langlands’s program, his “theory of endoscopy”.

His techniques might even point the way toward 
a proof of the full principle of functoriality, which 
would be close to a full realization of Langlands’s 
original vision. Langlands himself, who is now 
more than seventy years old and still hard at work, 
has developed a highly speculative but enticing ap-
proach to the problem. It is still far from clear that 
these ideas will lead to a proof, but if they do, they 
will have to rely on the kinds of geometric ideas 
that Ngô has introduced.

Ngô Bao Chôu was born on June 28, 1972, in 
Hanoi, Vietnam. After secondary school in Viet-
nam, he moved to France and studied at the Uni-
versité Paris 6, École Normale Supérieure de Paris. 
He completed his Ph.D. degree in Orsay under the 
supervision of Gérard Laumon. He is currently 
professor in the Faculté des Sciences at Orsay and 
a member of the Institute for Advanced Study in 
Princeton. In September 2010 he began his new 
appointment at the University of Chicago. Jointly 
with Laumon, Ngô was awarded the Clay Research 
Award in 2004. In 2007 he was awarded the Sophie 
Germain Prize and the Oberwolfach Prize.

Stanislav Smirnov
Citation: “For the proof of conformal invariance of 
percolation and the planar Ising model in statisti-
cal physics.”

Stanislav Smirnov has put a firm mathematical 
foundation under a burgeoning area of mathemati-
cal physics. He gave elegant proofs of two long-
standing, fundamental conjectures in statistical 
physics, finding surprising symmetries in math-
ematical models of physical phenomena.

Though Smirnov’s work is highly theoretical, it 
relates to some surprisingly practical questions. 

For instance, when can 
water flow through soil 
and when is it blocked? 
For it to flow, small-scale 
pores in the soil must 
link up to provide a con-
tinuous channel from one 
place to another. This is 
a classic question in sta-
tistical physics, because 
the large-scale behavior 
of this system (whether
the water can f low 
through a continuous 
channel of pores) is de-

termined by its small-scale, probabilistic behavior 
(the chance that at any given spot in the soil, there 
will be a pore).

It is also a natural question to model mathemati-
cally. Imagine each spot in the soil as lying on a grid 
or lattice, and color the spot blue if water can flow 
and yellow if it can’t. Determine the color of each 
spot by the toss of a coin (heads for yellow, tails for 
blue), using a coin that might be weighted rather 
than fair. If a path of blue spots crosses from one 
side of a rectangle to the other, the water can pass 
from one side to the other.

Such “percolation models” behave in a remark-
able way. For extreme values, the behavior is as 
you might expect: If the coin is heavily weighted 
against blue, the water almost certainly will not 
flow, and if it is heavily weighted toward blue, the 
water almost certainly will. But the probability of 
flow does not change evenly as the percentage of 
blue spots increases. Instead, the water is almost 
certainly going to be blocked until the percentage 
of blue spots reaches some threshold value, and 
once it does, the probability that the water will flow 
starts surging upward. This threshold is called the 
“critical point”. Abrupt change of behavior like this 
is a bit like what happens to water as it heats: sud-
denly, at a critical temperature, the water boils. For 
that reason, this phenomenon is commonly called 
a phase transition.

But of course, real soil does not come with neat, 
evenly spaced horizontal or vertical pores. So to 
apply this model to the real world, a couple of 
troublesome questions arise. First, how fine should 
the lattice grid be? Physicists are most interested 
in understanding processes at the molecular scale, 
in which case the grid should be very small indeed. 
Mathematicians then ask about the relationship 
between models with ever-smaller grids. Their 
hope is that as the grids get finer, the models will 
get closer and closer to one single model that ef-
fectively has an infinitely fine grid, called a “scal-
ing limit”.

To see why it is not obvious that the scaling limit 
will exist, imagine choosing a particular percent-
age of blue spots for a lattice and calculating the

Stanislav Smirnov
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probability that the pores will line up to form a 
crossing. Then make the grid size smaller and 
calculate it again. As the grids get finer, the cross-
ing probabilities may get closer and closer to some 
number, the way the numbers 1.9, 1.99, 1.999, 
1.9999…get closer and closer to 2. In that case, 
this number will be the crossing probability for the 
scaling limit. But it is imaginable that the crossing 
probabilities will jump around and never converge 
toward a limit, like the sequence of numbers 2, 4, 
2, 4, 2, 4… In that case, should the crossing prob-
ability for the scaling limit be 2 or 4? There is no 
good answer, so we have to say that the scaling 
limit does not exist.

Another potentially problematic question is 
what shape lattice to use. Even if we restrict our-
selves to two dimensions, there are many choices: 
square lattices, triangular lattices, rhombic lattices, 
and so forth. Ideally, the model would be “univer-
sal”, so that the choice of lattice shape does not 
matter, but that is not obviously true. 

Physicists are pretty sure that neither of these 
potential problems is so bad. Using physical in-
tuition, they have argued convincingly that the 
model will indeed approach a well-defined scaling 
limit as the grid gets finer. Furthermore, though 
the choice of lattice shape does affect the critical 
point, physicists have persuaded themselves that 
it will not affect many of the other properties they 
are interested in.

Physicists have figured out even more about 
two-dimensional lattices, including finding evi-
dence for a surprising and beautiful symmetry. 
Imagine taking a lattice of any shape and stretch-
ing it or squinching it but leaving the angles all 
the same. The Mercator projection of the globe 
is an example of this: Greenland is huge, since 
distances are changed, but latitude and longitude 
lines nevertheless stay at right angles. Physicists 
have convinced themselves that if you transform 
two-dimensional percolation models in this way, it 
will not change their scaling limits (as long as you 
are near the critical points). Or, to use the techni-
cal term, they are persuaded that scaling limits are 
“conformally invariant”.

In 1992 John Cardy, a physicist at the Univer-
sity of Oxford, used this insight to achieve one of 
percolation theory’s big goals: a precise formula 
that calculates the crossing probabilities of the 
scaling limits of two-dimensional lattices near the 
critical point. The only problem was that, although 
his physical arguments were persuasive, neither he 
nor anyone else could turn that physical intuition 
into a mathematical proof.

In 2001 Smirnov put all this physical theory on a 
firm mathematical foundation. He proved that scal-
ing limits are conformally invariant, though only 
for the triangular lattice (the shape that pennies, 
for example, fall into naturally when laid flat on a 
table and packed tightly together). In the process, 

he also proved the correctness of Cardy’s formula 
for triangular lattices. His proof used an approach 
independent of ones used earlier by physicists 
that provided fundamental new insights. It also 
provided a critical missing step in the theory of 
Schramm-Loewner evolution, an important, re-
cently developed method in statistical physics.

In another major achievement, Smirnov used 
similar methods to understand the Ising model, 
which describes such phenomena as magnetism, 
gas movement, image processing, and ecology. Just 
as with percolation, the large-scale behaviors of 
these phenomena are determined by their probabi-
listic, small-scale behavior. Consider, for example, 
magnetism. The atoms in a piece of iron behave 
like miniature magnets, with the electrons moving 
around the nucleus, creating a miniature magnetic 
field. The atoms try to pull their neighbors into the 
same alignment as their own. When enough atoms 
have their north poles pointing the same direction, 
the iron as a whole becomes magnetic. Mathemati-
cians model this by visualizing the atoms as lying 
on the nodes of a lattice, with statistical rules that 
determine whether they are aligned with their 
north poles pointing up or down.

Like the percolation model, the Ising model un-
dergoes a phase transition: as the iron is heated, 
the atoms vibrate more quickly, and if it is heated 
above a certain point, the vibrations are so strong 
that neighboring atoms suddenly no longer hold 
one another in alignment and the piece as a whole 
begins to lose its magnetism.

The same questions that mathematicians and 
physicists worry about in percolation also apply 
to the Ising model. The grid should be extremely 
small, since it is operating on the atomic level. 
So as the grid mesh gets finer and finer, does the 
model converge toward some infinitely fine ver-
sion, a scaling limit? Furthermore, how does the 
lattice shape affect the critical point and other 
properties? And what happens if one stretches or 
squishes the lattice without changing the angles; 
does the scaling limit change?

For this model, too, Smirnov was able to show 
that the models do indeed converge toward a scal-
ing limit as the grid mesh gets finer and that they 
are unaffected by stretches and squishes—that 
is, that they are conformally invariant. Later, with 
Dmitry Chelkak, he established universality, ex-
tending the results to a wide range of different lat-
tices. He has also done significant work in analysis 
and dynamical systems. His work will continue to 
enrich both mathematics and physics in the future.

Stanislav Smirnov was born in 1970 in St. Pe-
tersburg, Russia. He received his Ph.D. from the 
California Institute of Technology in 1996 under 
the direction of Nikolai Makarov. He held a Gibbs 
Instructorship at Yale University and short-term 
positions at the Institute for Advanced Study, 
Princeton, and the Max Planck Institute for Math-
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ematics (MPIM), Bonn. He moved to Sweden in 
1998 and became professor at the Royal Institute 
of Technology and researcher at the Swedish 
Royal Academy of Sciences in 2001. Since 2003 
he has been a professor at the University of Ge-
neva, Switzerland. His distinctions include the 
St. Petersburg Mathematical Society Prize (1997), 
the Clay Research Award (2001), the Salem Prize 
(2001), the Gran Gustafsson Research Prize (2001), 
the Rollo Davidson Prize (2002), and the European 
Mathematical Society Prize (2004). 

Cédric Villani
Citation: “For his proofs of nonlinear Landau 
damping and convergence to equilibrium for the 
Boltzmann equation.”

Cédric Villani has 
provided a deep math-
ematical understanding 
of a variety of physical 
phenomena. At the cen-
ter of much of his work 
is his profound math-
ematical interpretation 
of the physical concept 
of entropy, which he has 
applied to solving major 
problems inspired by 
physics. Furthermore, 
his results have fed back 
into mathematics, en-

riching both fields through the connection.
Villani began his mathematical career by reex-

amining one of the most shocking and controver-
sial theories of nineteenth-century physics. In 1872 
Ludwig Boltzmann studied what happens when 
the stopper is removed on a gas-filled beaker and 
the gas spreads around the room. Boltzmann ex-
plained the process by calculating the probability 
that a molecule of gas would be in a particular 
spot with a particular velocity at any particular 
moment—before the atomic theory of matter was 
widely accepted. Even more shockingly, though, 
his equation created an arrow of time.

The issue was this: when molecules bounce 
off each other, their interactions are regulated 
by Newton’s laws, which are all perfectly time-
reversible; that is, in principle, we could stop time, 
send all the molecules back in the direction they 
had come from, and they would zip right back into 
the beaker. But Boltzmann’s equation is not time-
reversible. The molecules almost always go from a 
state of greater order (e.g., enclosed in the beaker) 
to less order (e.g., spread around the room). Or, 
more technically, entropy increases.

Over the next decades, physicists reconciled 
themselves to entropy’s emergence from time-
reversible laws, and, indeed, entropy became a key 
tool in physics, probability theory, and information 
theory. A key question remained unanswered, 

though: How quickly does entropy increase? Ex-
periments and numerical simulations could pro-
vide rough estimates, but no deep understanding 
of the process existed.

Villani, together with his collaborators Giuseppe 
Toscani and Laurent Desvillettes, developed the 
mathematical underpinnings needed to get a rigor-
ous answer, even when the gas starts from a highly 
ordered state that has a long way to go to reach 
its disordered, equilibrium state. His discovery 
had a completely unexpected implication: though 
entropy always increases, sometimes it does so 
faster and sometimes more slowly. Furthermore, 
his work revealed connections between entropy 
and apparently unrelated areas of mathematics, 
such as Korn’s inequality from elasticity theory. 

After this accomplishment, Villani brought 
his deep understanding of entropy to another 
formerly controversial theory. In 1946 the Soviet 
physicist Lev Davidovich Landau made a mind-
bending claim: that, in certain circumstances, a 
phenomenon can approach equilibrium without 
increasing entropy.

In a gas, the two phenomena always go together. 
Gas approaches equilibrium by spreading around 
a room, losing any order it initially had and in-
creasing entropy as much as possible. But Landau 
argued that plasma, a gas-like form of matter 
that contains so much energy that the electrons 
get ripped away from the atoms, was a different 
story. In plasma, the free-floating charged particles 
create an electrical field that in turn drives their 
motion. This means that unlike particles in a gas, 
which affect the motion only of other particles 
they happen to smash against, plasma particles 
influence the motion of faraway particles that they 
never touch as well. That means that Boltzmann’s 
equation for gases does not apply—and the Vlasov-
Poisson equation that does is time-reversible, and 
hence does not involve an increase in entropy. 
Nevertheless, plasma, like gas, spreads out and ap-
proaches an equilibrium state. It was believed that 
this happened only because of the collisions be-
tween atoms. But Landau argued that even if there 
were no collisions, the plasma would move toward 
equilibrium because of a decay in the electric field. 
He proved it—but only for a simplified linear ap-
proximation of the Vlasov-Poisson equation.

Despite a huge amount of study over the next 
six decades, little progress was made in under-
standing how this equilibrium state comes about 
or in proving Landau’s claim for the full Vlasov-
Poisson equation. Last year, Villani, in collabora-
tion with Clément Mouhot, finally came to a deep 
understanding of the process and proved Landau 
right.

A third major area of Villani’s work initially 
seemed to have nothing to do with entropy, until 
Villani found deep connections and transformed 
the field. He became involved in optimal transport 

Cédric Villani
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theory, which grew out of one of the most practical 
of questions: Suppose you have a bunch of mines 
and a bunch of factories, in different locations, 
with varying costs for moving the ore from each 
particular mine to each particular factory. What is 
the cheapest way to transport the ore?

This problem was first studied by the French 
mathematician Gaspard Monge in 1781 and re-
discovered by the Russian mathematician Leonid 
Kantorovich in 1938. Kantorovich’s work on this 
problem blossomed into an entire field (linear 
programming), won him the Nobel Prize in eco-
nomics in 1975, and spread into a remarkable 
array of areas, including meteorology, dynamical 
systems, fluid mechanics, irrigation networks, 
image reconstruction, cosmology, the placement 
of reflector antennas—and, in the last couple of 
decades, mathematics.

Villani and Felix Otto made one of the crit-
ical connections when they realized that gas 
diffusion could be understood in the framework 
of optimal transport. An initial configuration of 
gas particles can be seen as the mines, and a later 
configuration can be seen as the factories. (More 
precisely, it is the probability distribution of the 
particles in each case.) The farther the gas particles 
have to move to go from one configuration to the 
other, the higher the cost.

One can then imagine each of these possible 
configurations as corresponding to a point in an 
abstract mountainous landscape. The distance 
between two points is defined as the optimal 
transport cost, and the height of each point is de-
fined by the entropy (with low points having high 
entropy). This gives a beautiful way of understand-
ing what happens as gas spreads out in a room: 
it is as though the gas rolls down the slopes of 
this abstract terrain, its configurations changing 
as specified by the points on the downward path. 

Now suppose that a fan is blowing when you 
open the beaker of gas, so that the gas does not 
spread uniformly as it diffuses. Mathematically, 
this can be modeled by considering the space 
in which the gas is spreading to be distorted or 
curved. Villani and Otto realized that the curva-
ture of the space in which the gas spreads would 
translate into the topography of the abstract land-
scape. This connection allowed them to apply the 
rich mathematical understanding of curvature (in 
particular, Ricci curvature, which was critical in 
the recent solution of the Poincaré conjecture) to 
answer questions about optimal transport.

Furthermore, Villani and John Lott were able to 
take advantage of these links with optimal trans-
port to further develop the theory of curvature. 
For example, mathematicians had not had a way of 
defining Ricci curvature at all in some situations, 
such as at a sharp corner. Villani and Lott (and 
simultaneously, using complementary tools, Karl-
Theodor Sturm) were able to use the connection 

with optimal transport to offer a definition and 
push the mathematical understanding of curvature 
to new, deeper levels. This depth of understanding 
and development of novel connections between 
different areas is typical of Villani’s work.

Cédric Villani was born in 1973 in France. 
After studying mathematics at École Normale 
Supérieure in Paris from 1992 to 1996, he was 
appointed assistant professor there. He received 
his Ph.D. in 1998. Since 2000 he has been a full 
professor at École Normale Supérieure de Lyon. 
He has held semester-long visiting positions in 
Atlanta, Berkeley, and Princeton. His distinctions 
include the Jacques Herbrand Prize of the French 
Academy of Science (2007), the Prize of the Eu-
ropean Mathematical Society (2008), the Henri 
Poincaré Prize of the International Association 
for Mathematical Physics, and the Fermat Prize 
(2009). In 2009 he was appointed director of the 
Institut Henri Poincaré in Paris and part-time visi-
tor at the Institut des Hautes Études Scientifiques.
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