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Dedicated to Roland Speicher on the occasion of his fiftieth birthday.

Cumulants are quantities coupled to combinato-

rial notions of “connectivity” and probabilistic

notions of “independence”. There are two princi-

pal species of cumulants: classical and free. Our
discussion begins with the more widely known

classical cumulants.

Suppose one wishes to determine the num-

ber cn of connected graphs on the vertex set

[n] = {1, . . . , n}. The total number of (possibly

disconnected) graphs on [n] is mn = 2(
n
2), and

because any graph is the disjoint union of its

connected components, we have

(1) mn =
∑

π∈P(n)

∏

B∈π

c|B|,

where the sum runs over all partitions π = B1 ⊔

B2⊔ . . . of [n] into disjoint nonempty subsets. The

sequence (mn) thus recursively determines (cn)

via (1).

More generally, if mn is the number of “struc-

tures” that can be placed on [n], and cn is the

number of “connected structures” on [n] of the

same type, then the sequences (mn) and (cn) are re-

lated as in (1). This fundamental enumerative link,

which is often expressed in terms of generating

functions, is ubiquitous in mathematics. Promi-

nent examples come from enumerative algebraic

geometry, where connected covers of Riemann

surfaces are counted in terms of all covers, and
quantum field theory, where sums over connected

Feynman diagrams are computed in terms of sums

over all diagrams.
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Formula (1) is also well known to probabilists.

In stochastic applications, mn = mn(X) = EX
n is

the moment sequence of a random variable, and

the quantities cn(X) implicitly defined by (1) are

called the cumulants of X. This term was coined

by R. Fisher and J. Wishart in 1932. Cumulants

were, however, first investigated by the Danish

astronomer T. Thiele as early as 1889. He called

them half-invariants because

X,Y independent =⇒ cn(X+Y) = cn(X)+cn(Y).

This linear behavior is what gives cumulants their

advantage: in most situations cumulants are the

“right” quantities to work with. For example, the

universality of the standard Gaussian distribu-

tion is reflected in the simplicity of its cumulant

sequence 0,1,0,0,0, . . . .

Let us now consider a geometric variation of our

initial graph-counting problem. Given a graphG on

[n], we may represent the vertices of G as points

on a circle and the edges of G as line segments

joining these points. The resulting picture may be

connected even if G is not (Figure 1). Let κn denote

the number of “geometrically connected” graphs
on [n]. As before, we consider a partition π of [n]

which tells which vertices of G belong to the same

connected component of its geometric realization.
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Figure 1. Example of a geometrically
connected graph.
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It turns out that π is always noncrossing: if we

represent its blocks as convex polygons, they will

be disjoint (Figure 2). It follows that

(2) mn =
∑

π∈NC(n)

∏

B∈π

κ|B|,

where now the summation runs over noncrossing

partitions of [n].

Remarkably, just like the cn’s of formula (1),
the κn’s of formula (2) may be realized as

half-invariants. Recall that a noncommutative

probability space is a complex algebra A to-

gether with a linear functional ϕ : A→ C sending
1A to 1.One regards the elements ofA as random

variables, with ϕ playing the role of expectation.

The decision to view noncommutative algebras as

probability spaces is justified a posteriori by the

fact that this framework supports a new notion of
independence, called free independence, modeled

on the free product of algebras. Free independence

is the key to a rich noncommutative probability

theory—D. Voiculescu’s free probability theory—
which is now widely studied and well known to

appear in a wide variety of contexts, for example,

in the large dimension limit of random matrix

theory.
The realization that formula (2) holds the key

to free half-invariants is due to R. Speicher.

Given a random variable X in a noncommu-

tative probability space, we associate with its

moment sequencemn(X) =ϕ(X
n) the free cumu-

lant sequence κn(X) via (2). This is completely

analogous to the construction of classical cumu-

lants, the only difference being that the lattice of

all partitions has been replaced by the lattice of
noncrossing partitions. Fundamentally, this means

that set-theoretic connectivity has been replaced

with geometric connectivity. Speicher showed that

X,Y freely indep. =⇒ κn(X + Y) = κn(X)+ κn(Y).

Indeed, the relationship between free indepen-

dence and free cumulants mirrors the relationship
between classical independence and classical cu-

mulants in every conceivable way. For example, the

analogue of the Gaussian distribution in free prob-

ability theory is the Wigner semicircle distribution,

and its universality is reflected in the simplicity of
its free cumulant sequence 0,1,0,0,0, . . . .

Figure 2. Noncrossing (left) versus a crossing
(right) partition.

Free probability theory was initiated by
Voiculescu in the 1980s, who used it to solve
several previously intractable problems in op-
erator algebras. Thus it is a very new field of
mathematics, albeit an exceptionally successful
one. It therefore came as a surprise when P. Biane
and S. Kerov discovered that free cumulants
play an important role in a very classical the-
ory, namely the representation theory of the
symmetric groups.

Given a finite group G and a conjugacy class C
of G (viewed as an element of the group algebra
C[G]), one knows that C acts as a scalar operator
in any irreducible representation of C[G]. The
value of this scalar defines a function on conju-
gacy classes, called the central character of the
irreducible representation. Understanding an irre-
ducible representation amounts to computing its
central character which, typically, is very difficult.
In the case of the symmetric group G = SN , free
cumulants shed substantial light on this question.
One begins by considering the Jucys-Murphy ele-
ment XN = (1 N+1)+·· ·+ (N N+1) ∈ C[SN+1],
which is the sum of all transpositions interchang-
ing N + 1 with a smaller number. The spectrum
of XN can be completely understood in any ir-
reducible representation; thus XN and simple
functions of XN may be considered “known”.
One then defines the nth moment mn = mn(XN)

of XN to be that part of the expansion of XnN which
belongs to C[SN]. These moments are not scalars
but central elements in C[SN], and they give rise
to free cumulants κn = κn(XN) via (2). Remark-
ably, the conjugacy class Ck of k-cycles can be
expressed as a polynomial in the free cumulants
of Xn, and furthermore one has the first-order
approximation Ck = κk+1 + lower order terms.

This is not the only surprising appearance of the
free cumulant concept. For example, R. Stanley has
shownthat the free cumulantsofM.Haiman’spark-
ing function symmetric functions are precisely
the complete symmetric functions. M. Lassalle has
formulated conjectures linking free cumulants
to Jack polynomials. Where will free cumulants
appear next?
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