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In January 1975, Jacques Tits gave a lecture

during which he wrote down the order, 246 · 320 ·

59 ·76 ·112 ·133 ·17·19·23·29·31·41·47·59·71,

or about 8 · 1053, of a sporadic simple group M

that Bernd Fischer and, independently, Robert

Griess had predicted in 1973. Andrew Ogg, an

expert in modular functions who happened to

be in the audience, was uniquely qualified to

recognize something peculiar about this order: he

had recently determined the primes that give rise

to a certain family of genus 0 modular curves,

and the primes he had discovered were precisely

the fifteen prime divisors on the blackboard. It

was an astonishing coincidence. At the time, to

suggest anything more than that would have been

moonshine.

Three years later, in 1978, Fischer, Donald

Livingstone, and Michael Thorne calculated the

character table of the Monster, as John Horton

Conway had christened M , by assuming an ad-

ditional prediction of Griess, the existence of

an irreducible character of degree χ1 = 196883.

Shortly thereafter, John McKay noticed that the
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coefficient c1 of the elliptic modular function,
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is given by c1 = 1 + χ1. The evidence of a
link between M and the j-function became too
overwhelming to dismiss when McKay and John
Thompson discovered additional equations involv-
ing the characters ofM and the Fourier coefficients
of j, of which the first few are c2 = c1 + χ2,
c3 = c1 + c2 + χ3, and c4 = c1 + c3 + χ3 + χ4. At
this stage, Thompson cautiously referred to these
curious equalities as “numerology”, but, prompted
by some of his suggestions, Conway and Simon
Norton discovered further evidence of a deep
relationship between the Monster and modular
functions, a relationship they dubbed monstrous

moonshine.
The whimsical term “moonshine” had a certain

suitability. There was something humorous about
so unexpected a connection between seemingly
unrelated branches of mathematics. Writing in
1979, six months before Griess constructed M ,
Ogg remarked, “It is particularly amusing that
new light should be shed on the function j, one of
the most intensely studied in all of mathematics,
by the most exotic group there is (or is not,
as the case may be).” At the time, the light to
which Ogg referred was not the bright, direct light
that a theoretical connection would have shone.
It was a dimmer, reflected light. As Conway put
it, “The stuff we were getting. . . had the feeling of
mysterious moonbeams lighting up dancing Irish
leprechauns.”
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Few writing tasks could seem more foolhardy
than authoring a popular book about monstrous
moonshine, but the publication of Marcus du
Sautoy’s Finding Moonshine in Great Britain gave
the appearance that one had emerged. Con-
cerned, perhaps, that Finding Moonshine might be
mistaken for a revenuer’s memoir, du Sautoy’s
American publisher issued it as Symmetry: A
Journey into the Patterns of Nature.

It is difficult to categorize du Sautoy’s book in
a few sentences, but the mathematical content is
centered around finite simple groups and their
classification (CFSG). After setting the scene with
some autobiography, du Sautoy uses a discussion
of symmetry to introduce the finite group concept.
The groups of rotations of regular prime-sided
polygons become the first simple groups the reader
encounters. After learning about the regular solids
of the Pythagoreans and Theaetetus, du Sautoy’s
reader visits the Alhambra with the author, as
he hunts for the seventeen symmetries of its
decorations. After finding the last, du Sautoy asks,
rhetorically, “How can I be sure there isn’t an 18th
one out there to be discovered?” It is a question
to which he will return.

Finding a seamless transition, du Sautoy directs
his attention to the theory of equations. Sometime
late in the 1400s or early in the 1500s, 125
years or so after the completion of the Alhambra,
the Bolognese mathematician Scipione del Ferro
discovered formulas that express the roots of
cubic polynomials in terms of radicals. Another
Bolognese mathematician, Lodovico Ferrari, solved
the quartic in 1540. In du Sautoy’s formula-free
discussion of these advances, algebra takes a
back seat to the antics of the cast of eccentric
characters. The work of Niels Abel and Évariste
Galois on higher degree equations follows, with
biographies of these interesting but short-lived
mathematicians. The breakthrough of Galois in
1832 brings us not only to the notion of the simple
group but also to noncyclic examples (PSL(2, p)
and An).

Camille Jordan, Felix Klein, Sophus Lie, Émile
Mathieu, Arthur Cayley, and William Burnside are
the remaining nineteenth-century group theorists
to whom du Sautoy accords more than a few
lines of attention. The contributions of Jordan and
Lie were fundamental to the emerging theory of
groups, but, more germane to the subject at hand,
Lie introduced an important family of continuous
groups, and Jordan enriched the supply of simple
groups with several infinite families of finite ana-
logues of Lie groups. In publications of 1861 and
1873, Mathieu complicated the developing pat-
tern by discovering five finite simple groups that
did not belong to the known families. Burnside
inadvertently gave a name to such groups many
years later when he remarked, “These apparently
sporadic simple groups would probably repay a

closer examination than they have yet received”
[3, p. 504].

The inclusion of Cayley in Symmetry is welcome,
if surprising. Although he did not play a direct role
in the classification of simple groups, his indirect
influence was instrumental, for it was Cayley
who, in a series of papers published in 1854,
introduced the abstract group concept. Cayley’s
dictum, “A group is defined by means of the laws
of combination of its symbols,” translated by du
Sautoy as, “Forget the equation and its solutions,
just look at the interaction of the permutations,”
provides an effective segue from the theory of
equations to modern group theory.

The abstract approach did more than unify
group-theoretic results that were arising in geom-
etry, number theory, the theory of equations, and
the theory of invariants. It also suggested ques-
tions that would otherwise have seemed pointless.
Thus it was Cayley who first asked, What are all the
possible groups of a given order? Among the math-
ematicians whom Cayley influenced, Otto Hölder
is particularly noteworthy (but is overlooked by
du Sautoy). In 1889, Hölder completed the basic
theorem on composition series that Jordan began
in 1870, and, in 1892, it was Hölder who kicked
off the CFSG program when he stated, “It would
be of the greatest interest to gain an overview
of the entire collection of simple groups.” In the
same article, he proved that there is no simple
group with order p1p2 or p1p2p3, where the pi ’s
are primes, not necessarily distinct. He also de-
termined all simple groups up to order 200. Later
that year, Frank Nelson Cole, remarking that it
was “desirable to extend this census as far as
possible”, stretched it to 500 (and to 660 the next
year). The progress of subsequent censuses may
be found in [4].

The decade of the 1890s saw several other
developments related to the topics of Symmetry.
In a coda to his chapter, The Palace of Symmetry,
du Sautoy states that “The language of group
theory gives us the means to prove that 17—and
no more—different symmetry groups are possi-
ble on a two-dimensional wall.” This imperceptive
assertion, which refers to the independent deter-
minations of the plane crystallographic groups
by William Barlow, Yevgraf Stepanovich Fyodorov,
and Arthur Schönflies between 1891 and 1894,
comes as a letdown. In the Alhambra chapter,
du Sautoy had promised, “As we shall see later
in our story, [the proof that there cannot be an
18th pattern] depends on mastering group theory.”
Language is not mastery, and we do not see. (Al-
though we know how many symmetries could be
at the Alhambra, there is some controversy about
how many there actually are [10]. I would rather
gaze at a Mark Rothko canvas than say anything
more about these busy ornamentations.)
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Some other important steps taken in the 1890s
are not mentioned. Examples of such omissions
are the theory of group characters, introduced by
Gerhard Frobenius in 1896, and the development
of Lie theory and its finite analogues. The last of
Wilhelm Killing’s papers on the classification of
the finite dimensional simple Lie algebras over C
appeared in 1890. Later in the decade, beginning
with his thesis in 1894, Élie Cartan completed
Killing’s project by constructing the exceptional
simple Lie algebras. In 1896 Leonard Eugene Dick-
son receivedhis doctorate, the first in mathematics
awarded by the University of Chicago. His disserta-
tion, supplemented by the more than thirty papers
on group theory he wrote over the next few years,
was the basis of his 1901 book, Linear Groups
with an Exposition of the Galois Field Theory. In
it, Dickson included all the classical projective
groups over finite fields and listed fifty-three of
the fifty-six noncyclic simple groups of order less
than 1 000 000. Shortly thereafter, in 1905, Dick-
son constructed finite simple analogues of the
exceptional Lie group G2. Additionally, he intro-
duced finite analogues of E6. Dickson is cited but
once in Symmetry, and that reference concerns a
remark Dickson made decades after this work.

One additional event of the 1890s that was
auspicious for CFSG was Burnside’s switch in 1893,
at the age of forty-one, from applied mathematics
to group theory. His first result was to show that
the alternating group A5 is the only simple group
with order p1p2p3p4, where the pi ’s are primes,
not necessarily distinct. (At more or less the same
time, Frobenius proved that a group of order
p1p2 · · ·pn cannot be simple if n ≥ 2 and the pi ’s
are distinct primes.) In 1904, Burnside proved the
paqb theorem, which states that a group whose
order is divisible by fewer than three distinct
primes is solvable. As a result, such a group is not
simple unless it is cyclic of prime order.

In his history of CFSG, Solomon describes Burn-
side’s paqb theorem as the final triumph of the
first era of investigation [13]. In the second edition
of his book, Burnside made room for more promis-
ing techniques, such as group representations, by
jettisoning antiquated material. The verification
of the list of simple groups to order 660, which is
found in the last chapter of the first edition, was
among the discards. Surveying Dickson’s greatly
extended list, Burnside noted, “An examination of
the orders of known non-cyclical simple groups
brings out the remarkable fact that all of them
are divisible by 12” [3, p. 330]. He did not ele-
vate that observation to a conjecture, but, having
pondered the divisor 2 for fifteen years, he was
ready to assert, “The contrast. . .between groups of
odd and even order suggests inevitably that [non-
cyclic] simple groups of odd order do not exist”
[3, p. 503]. Burnside’s restraint about the divisor 3
proved to be well judged—in 1960, Michio Suzuki

discovered a simple group of order 29120, the
first addition to Dickson’s sixty-year-old list.

With its first ten chapters, which comprise
about 300 pages, Symmetry outlines the develop-
ment of group theory from its origins through the
first twelve years of CFSG. The next half-century
did not see continuous progress, but it did span
important advances, such as the beautiful charac-
terization of finite solvable groups by Philip Hall,
du Sautoy’s mathematical great-great-grandfather.
Because these results are too technical for a book
aimed at the lay person, Symmetry skips over
them. Its final two chapters, which total some 50
pages, are concerned with the concluding forty-five
years of CFSG, as well as monstrous moonshine.
When du Sautoy picks up the trail, he describes
the Odd Order Theorem of Walter Feit and John
Thompson, which states that all odd order groups
are solvable, a result that affirms Burnside’s con-
jecture. Du Sautoy does his best to convey the
difficulty of the theorem, but there is no way for
his reader to gauge the sea change in methodology
that has occurred since the Burnside epoch.

Ironically, the Feit-Thompson Theorem, “the
single result that, more than any other, opened
up the field” [7, p. 1], is a dead end in Symmetry.
We are told that it “inspired a whole generation
of young mathematicians”, but, for du Sautoy’s
reader, it is a largely anonymous generation pur-
suing undisclosed paths. The true completion of
CFSG came, we are told, when Michael Aschbacher
and Stephen Smith plugged a “gap” in a “missing
step” of a “16-point plan”. That is the extent of
what we learn about the classification machinery.
After Feit-Thompson, even the statements of the
theorems are too technical.

As good luck would have it, a long-dormant
byway of CFSG was about to awaken. In 1965
Zvonimir Janko announced the discovery of a new
sporadic simple group. This sixth sporadic group,
the first to be found in more than ninety years
(and, with order 175 560, the second addition to
Dickson’s list), was the start of an enormously
successful eleven-year treasure hunt, which ended
in 1975 with Janko’s discovery of his fourth new
sporadic group, the twenty-sixth and, as it turned
out, last of these exceptions. To fully appreciate
the feverish activity involved, read du Sautoy’s ac-
count of Conway’s twelve-hour-and-twenty-minute
determination of the 4 157 776 806 543 360 000 el-
ement sporadic groupCo1. Or how Donald Higman
and Charles Sims took a stroll around a quadran-
gle while dinner plates were being removed, and,
by the time they sat down to dessert, had the
44 352 000 element sporadic group HS in their
possession (modulo some paper and pencil calcu-
lations that went on into the early hours of the next
morning). Further details, as told by Sims himself,
may be found in a survey of the mathematics of
Higman [2].
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In his last chapter, du Sautoy describes the con-
structions of M and the final sporadic group, J4.
His account highlights quite a contrast: the team
assembled by Norton relied on Richard Parker’s
computer program to answer Yea or Nay, whereas
Griess accomplished his construction ofM entirely
by bare-handed calculations. Du Sautoy also de-
votes eight pages of his last chapter to moonshine,
a topic he introduced near the beginning of his
book. In that earlier discussion, he describes how
he learned of moonshine directly from Conway
and Norton during a visit to Cambridge in 1985
as a prospective graduate student. At the end of
Chapter 1, moonshine is left a tantalizing mystery.
It remains a mystery, still tantalizing, one hopes,
at the end of Chapter 12. At least readers will
know that the experts have figured out quite a bit
in the years since 1985. For those who want to
learn more, Chapter 0 of [5] makes an excellent
continuation.

I have come to the end of du Sautoy’s book but
have touched on less than half its content. That
is because the author has managed to effectively
embed selected episodes from the history of group
theory into a narrative that sometimes resembles
a personal journal and sometimes a travelogue. In
the mix, we find many extended, nonmathematical
discussions of symmetry as it is manifested in a
broad panorama of guises. Facts about icosahedral
Chinese incense burners from the first millennium
CE and dodecahedral Roman dice from the fifth
century BCE stay within our comfort zone. When
du Sautoy strays from such topics, the results are
dicier. He tells us that “Studies indicate that the
more symmetrical among us are more likely to start
having sex at an earlier age.” Ovulating women,
du Sautoy continues, can sniff out symmetry
from the sweaty tee-shirts men have worn, but
men, apparently, do not pick up the scent of a
symmetrical woman. Enquiring minds that want
to know more are out of luck: Symmetry does not
come with any notes. One discussion that has no
need for footnotes is an experiment devised by
psychologists to pit symmetry against logic (page
278). You can try it out on your own, as I did when
teaching truth tables in a transitions course. The
results amused the students and enlightened the
instructor.

We have now met du Sautoy the biographer, the
historian, and the spokesman for symmetry. He is
also an anthropologist who reports on the rituals
of the strange tribe in the midst of which he lives.
He does not have to go native—as a prominent
group theorist, he is a native. Readers of the Notices
will find this aspect of his book highly entertain-
ing. You may not have encountered protesters
outside your department bearing “No more group
theory” placards, but I guarantee you will flash on
scenes from your lives. When the author admits,
“Like most mathematicians, I am naturally quite

shy. I’m not someone. . .who likes to introduce
myself to people. I hate parties, and I’m terrified
of the telephone,” I recognize many colleagues
around the world, and I recognize myself. From
among Symmetry’s readers, perhaps a parent or
partner of a mathematician will empathize with
the mother who complained, “There is something
wrong with my son. He sits in his room all day
studying mathematics” (page 337). Perhaps the
general reader will come away understanding Lie’s
firsthand observation that, “A mathematician is
comparatively well suited to be in prison” (page
228).

Du Sautoy examines the entire mathematical
process—the inspiration, the serendipity, the hard
labor, the setbacks, the frustration, the elation,
the disillusionment, and the competition. “Big
theorems are like jigsaw puzzles,” he advises.
“Who wouldn’t enjoy being the person to put in the
last piece?” He stresses our compulsion to classify,
our obsession with pattern hunting, our reluctance
to admit defeat. His book is structured as a year-
long diary, and he updates us on the progress he is
making, or the ground he is losing, with respect to
a research problem concerning the enumeration
of finite groups. As he realizes that the number
theory of elliptic curves is shedding light on his
work, we realize that Finding Moonshine was a sly
choice of title.

On several occasions du Sautoy emphasizes that
mathematics provides “a haven for the weird”, a
niche in which social oddness is tolerated. How-
ever, he does not sound all that tolerant when he
describes a colleague as looking “like a tramp”,
or “a slightly mad clown”, or “Neanderthal”, or
“frothing slightly at the mouth”. One mathemati-
cian is said to have “distinctly inferior social
skills”. Another “will avoid eye contact with you at
all costs”. There is one mathematicianwho appears
to be an outgoing communicator, but, “With him,”
du Sautoy divulges, “it’s one-way traffic. . .. He
doesn’t seem remotely interested in what anyone
else has to say. It’s almost as if he is compelled
to. . .forestall any possibility of normal two-way
interaction.” And then there is the group theorist
who suffers a manic episode brought on by con-
templating the ramifications of a new sporadic
group. These are not anonymous members of the
tribe. In every case, du Sautoy names names.

I have already mentioned the only major prob-
lem with Symmetry, an absence of footnotes. I
do have a few minor quibbles. The term “shuffle”
should probably not be used as a synonym for
permutation: it suggests the special permutations
employed, for example, in the definition of the
wedge product. On seven occasions, du Sautoy
writes “Lie group” when he means “finite group of
Lie type”. Three of the nineteen digits of |Co1| on
page 317 are incorrect.
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In the chapter on the Alhambra, du Sautoy
expresses annoyance at his guide’s claim that the
Arabs invented zero (page 71). He asserts that
“the Indians discovered zero. The Arabs were just
good messengers bringing the idea from the East
to the West.” Perhaps this statement refers to the
Hindu-Arabic zero in use today, but, if one goes
back further in time, a case can be made that
zero originated in the Middle East. A tablet that
was unearthed at Kish, about eighty kilometers
southeast of present-day Baghdad, indicates that
the Babylonians used zero as a placeholder in their
system of numeration around 700 BCE. Indeed,
Hans Freudenthal advanced the theory that the
Babylonian zero migrated to India. Bartel van der
Waerden deemed this proposal “quite possible”,
but it remains a conjecture.

On page 240, du Sautoy declares that Burnside’s
paqb theorem “proved to be just what was needed
to identify the simple groups with a small number
of symmetries”. The example he gives, the list
of noncyclic simple groups of orders up to 200,
is an unsatisfactory illustration of his assertion,
given that Hölder determined the same list in
1892, twelve years before Burnside proved the
paqb theorem. In his next paragraph, du Sautoy
asserts that Burnside used the paqb theorem in [3]
to determine all simple groups up to order 1092.
As remarked earlier, Burnside did not pursue this
fruitless path in his second edition; he provided
only a reference to this determination, which he
published in 1895, nine years before the paqb

theorem. Special cases of the theorem, such as
paq with p < q, were known in 1895, and Burnside
used them alongside his interesting observation
that, Z2 excepted, no simple group of even order
n can exist unless 12 |n, 16 |n, or 56 |n.

We are informed on page 305 that Graham
Higman (no relation to Donald Higman) and McKay
were in Oxford when they constructed J3. The
next page reminds us of “Graham Higman and
John McKay in Oxford”. British place names are
recorded at every opportunity, with enough detail
to separate Oxford from neighboring Chilton,
but, with few exceptions, American locations are
omitted. As a result, du Sautoy’s readers will gain
no impression of the disproportionate amount of
group theory that has been done at Cal Tech,
Rutgers, and the Universities of Chicago, Illinois,
and Michigan. By contrast, Cambridge University
merits three lines in the index.

Du Sautoy’s reportage is spotty in places.
Michael O’Nan, Richard Lyons, the sporadic groups
they discovered (ON and Ly), and the construc-
tions of these groups by Sims are not mentioned.
The construction of the Baby Monster is not as-
cribed to Jeffrey Leon and Sims. The contribution
of David Wales to the construction of the sporadic
group Ru is acknowledged, but, for the 604 800
element group J2, the third and final addition

to Dickson’s list, only Wales’s coauthor, Marshall
Hall Jr., is credited. In this context du Sautoy
alludes to a “rather tense stand-off that got the
whole group theory community talking.” Should
a group be named after its predictor, or its con-
structor? “Hall would get rather upset if the group
he’d constructed was called simply the second
Janko group.” There may be some legitimacy to
the controversy, but du Sautoy chose an unsuitable
example. As Griess has pointed out [8, p. 237], Hall
discovered J2 independently, so, in this case, joint
credit is due regardless of the larger controversy.
(Chapter 17 of [6] supplemented by [7, p. 110] is
a good place to sort out matters of divination and
fabrication.)

On pages 310 and 315, du Sautoy spins an
entertaining tale of how McKay alerted Conway
to the possibility of a simple group associated
with the Leech lattice. It was the summer of
1966, and both mathematicians were in Moscow
for the International Congress of Mathematicians.
Conway, who was manning the pirozhki stand
McKay approached, handed over a roll, and McKay
handed back the Leech. This is almost too good
a story to scrutinize, but the problem is that du
Sautoy’s unsourced version does not agree with
the firsthand accounts that McKay and John Leech
gave in telephone interviews a quarter century
closer to the event [14, pp. 118–119]. Ultimately, it
is of no consequence whether the exchange took
place in Moscow in 1966 or, as McKay and Leech
both say, in Cambridge in 1967. This discrepancy,
however, does illustrate the confusion that can
arise from the absence of documentation.

On page 330, du Sautoy states that, “By the mid
1970s, a total of 25 different sporadic groups had
been discovered or conjectured to exist. . .. The
feeling was that 25 might be the limit of what
was possible.” Is this portrayal of a consensus
accurate? Referring to the late 1970s, by which
time Janko had predicted a twenty-sixth sporadic
group, du Sautoy remarks, “It seemedthat only two
of the 26 [sporadic groups] were still unclaimed
[i.e., not yet constructed]” (page 335). Was it really
so apparent then that there would be no additional
sporadic groups to construct? According to Griess
[9],

By the late 1970s the classifica-
tion program had been making a
lot of progress, and there were
increasing expectations of even-
tual closure. However, there was
not a firm conjecture that the list
of simple groups known or sus-
pected to exist at that time must
be the complete list. There seemed
to be no certainty that the num-
ber of sporadic groups must be
a particular number (such as 26).
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During the early 1970s there was a
gap of about two and a half years
in which no new sporadic group
was discovered (between the dis-
coveries of the Lyons group and
the Rudvalis group). Within that
time period, no one felt confidence
about predicting numbers of spo-
radic groups to come. The fourth
Janko group was conjectured to
exist in 1975. During the remain-
der of the 1970s it was too soon
after Janko’s latest discovery to
feel strongly that 26 must be the
right number.

Du Sautoy reports that Daniel Gorenstein de-
clared CFSG to be “all over” in February 1981,
when, to quote du Sautoy, “a paper. . .proved that
there couldn’t be two different groups that looked
like the Monster.” This assertion may refer to a
footnote in [7, p. 1]. It is true that the unique-
ness theorem for M was an essential ingredient
of CFSG—in 1900, Ida Schottenfels proved that A8

and PSL(3,4) are nonisomorphic simple groups
of order 20160 (and Dickson proved that there are
infinitely many orders to which there correspond
pairs of nonisomorphic simple groups). However,
du Sautoy’s use of the term paper is misleading.
Gorenstein, at the end of his footnote, added the
cautionary remark that the work to which he re-
ferred was a manuscript in preparation. When a
paper was finally published in 1985, it contained
an outline of a procedure for determining unique-
ness but no claim that the method had actually
been implemented. Griess, Ulrich Meierfranken-
feld, and Yoav Segev established uniqueness of
the Monster in 1989 [13, p. 341]. (Additionally,
this result finally yielded the irreducible character
of degree 196883 whose assumed existence had
been the basis of the calculation of the character
table of M a decade earlier.)

In his concluding pages, du Sautoy’s tone
becomes noticeably downcast. Although the af-
termath of CFSG was a period of “intense activity”
[13, pp. 345–347], du Sautoy portrays the opposite
when he asserts, “A sense of anticlimax descended
on group theory.” With pronouncements such as,
“The mathematicians who truly understood all the
intricacies of [CFSG] were getting old,” “Very spe-
cial techniques could die out with the passing of
this generation of practitioners,” and “Few young
and aspiring mathematicians were attracted to the
field,” du Sautoy is neither accurate nor attentive
to the lessons that can be gleaned from the histo-
ries of CFSG and moonshine. After all, the passing
of Hermite, Weierstrass, Dedekind, and Klein did
not bequeath a dire future for the modular func-
tion. A more fitting outlook is that of Solomon [13,
§10], who concludes, “We await the visionaries of

new generations. . .who will shed unexpected new
light on this ever-fascinating subject.” Visionaries
and, perhaps, moonbeams.

Based on subject matter and level, Mark Ronan’s
Symmetry and the Monster: One of the Greatest
Quests of Mathematics [11] may be regarded as
a competitor of du Sautoy’s book. It was released
slightly earlier and reviewed (favorably) by Griess
in the Notices [8]. As the titles suggest, Journey
and Quest treat similar mathematical topics. Some-
times the resemblance is uncanny. Walter Feit’s
description of his wardrobe, “I now possess five
new pairs of trousers, two new jackets plus new
shoes,” written shortly after he arrived in New
York, is perfectly unremarkable, but both authors
saw fit to quote it. To Ronan, a simple group is
a “symmetry atom”. To du Sautoy, it is a “sym-
metry building block”. Ronan nicknames Jacques
Tits “The Man from Uccle”, a pun on the 1960s
television series and a reference to the Belgian
town where Tits was born. Also playing on words,
du Sautoy labels Griess “the mathematical Doc-
tor Frankenstein”. Whereas Ronan is a disciplined
chronicler who likes to share interesting tales, du
Sautoy is a raconteur who aims to educate his
readers by means of stories that unfold vividly.

For anyone who is interested in the CFSG pro-
gram, both books are recommendedas informative
supplements to articles such as [1], [2], [4], [12],
and [13]. If I were forced to choose only one of
these books, and if CFSG were the only criterion,
then I would give the nod to Ronan’s more fo-
cused approach. But du Sautoy’s work is also up
to the task, and his broad sweep and imaginative
writing will have great appeal. He has gathered
a wide range of loosely related topics and has
very cleverly assembled them into a coherent, ab-
sorbing narrative. Readers of the Notices will find
Symmetry: A Journey into the Patterns of Nature

enjoyable and worthwhile.
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The Department of Applied Mathematics presents the 

2011 KARL MENGER LECTURE 
Statistical Combinatorics
by Peter Winkler

Dartmouth College

This lecture is part of an annual day-long event celebrating the life 

of Karl Menger, our distinguished colleague of the previous century. 

Menger made important contributions to many �elds of mathematics, 

including dimension theory, probability and graph theory. The 

Menger Sponge, a three-dimensional analog of the Cantor set, is 

pictured below.  

For more information and directions, please visit  

www.iit.edu/csl/am/about/menger.

Monday, April 4, 2011  
IIT Main Campus

The answer:
43,252,003,274,489,856,000

The question:
How many positions are hidden in this cube?

KNOWINGMATTERS

You already know that mathematicians like big challenges. But 
here’s something you may not know: NSA tackles the biggest, 
coolest, most engaging mathematics problems known to man. In 
the beautiful, complex world of mathematics, we identify structure 
within the chaotic, and we discover patterns among the arbitrary. 

Work with the finest minds, on the most challenging problems, using 
the world’s most advanced technology. Apply online today at NSA.

Excellent Career Opportunities in the Following Disciplines:

■ Number Theory
■ Probability Theory
■ Group Theory
■ Mathematical Statistics

■ Finite Field Theory
■ Combinatorics
■ Linear Algebra
>> Plus other opportunities

W H E R E  I N T E L L I G E N C E  G O E S  T O  W O R K®

MATHEMATICS   AT THE N ATIONAL S ECURITY A GENCY

U.S. citizenship is required. NSA is an Equal Opportunity Employer. Rubik’s Cube® is used by permission of 

Seven Towns Ltd. www.rubiks.com
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