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It is probably our common experiences in
struggles for human rights and our commitment
to understanding how the mind might work when
a student is trying to learn mathematics that has
allowed us, in spite of disparate backgrounds and
life experiences, to communicate about high school
algebra. In any case, the mathematician has been
able to contribute to the philosopher-educator’s
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Algebra Project, which has grown and which we
both hope will continue to grow in coming years.

It is the purpose of this article to discuss the
thinking that has gone into this work and to de-
scribe some examples of what has come out of
it. First we will give our separate points of view
about the epistemology of learning mathematics,
then discuss a synthesis of the two approaches,
and then describe our high school algebra curricu-
lum as it relates to modular arithmetic. Finally, we
will describe how the Algebra Project, founded by
Moses, relates to the civil rights movement.

Ed’s Story
Throughout the twenty-five years I spent doing
research in functional analysis and teaching un-
dergraduate mathematics at six universities in five
countries and on three continents, I was always
interested in effective teaching. Unfortunately,
in spite of trying a myriad of popular methods
(modified Socratic, self-paced instruction, mastery
learning, etc.), what I produced, more often than
not, was ineffective teaching. I was a good lecturer,
enthusiastic about teaching, serious in my attempt
to do it well, and I cared about my students. They
liked me and my courses, but from everything
I could see, they were not learning much more
than students of other teachers, and that was
woefully inadequate—as many national reports of
the 1970s and 1980s concluded.

At one point, I decided in my frustration that if
I were to significantly improve my students’ learn-
ing, I was going to have to figure out something
about the process of learning mathematics. That
is, I would need to study what might be going on
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in a student’s mind when he or she is trying to
understand a mathematical concept. What mental
activities need to take place in order for a student
to be successful in such learning? I thought that,
as I came to know more about the learning process
in mathematics, I would be able to figure out peda-
gogical strategies that would help students engage
in appropriate mental activities so as to be more
successful. So I began to read. I read a lot over
the first two years of my new career (new because,
shortly after I started, all of my interest in func-
tional analysis shriveled up). Some of the educa-
tion literature I read was good; most was not very
helpful. It was not until I came across the work of
Piaget that I thought I had found an author who
understood the mental processes of learning math-
ematics. I remembered that, as a young student
of functional analysis, I had considerable difficulty
with the idea of the dual of a locally convex space. I
was fine with the notion of a linear functional that
acted on elements of a locally convex space to pro-
duce numbers—linearly. But the idea of applying
actions to these transformations, putting them to-
gether in a set, equipping the set with arithmetic
and even topologies, was really tough for me. These
linear functionals were doing things to elements
of a vector space, so how could things be done to
them? It was terribly confusing. I struggled for a
long time and eventually mastered the mathemat-
ics. But I can’t say I understood what had gone on
in my mind.

It was when I read Piaget’s discussions of trans-
formations, the content which they transformed,
the fact that these dynamic transformations could
be stabilized in one’s mind and thereby become
contents for higher level transformations, and
that this latter step was very difficult both histor-
ically and for individual students, that I knew I
had come home. I began to see that it might be
possible to identify mental constructions required
to understand a mathematical concept. Working
with the ideas of Piaget, I began to express them
in an explicit theory called APOS theory. APOS is
an acronym for Actions, Processes, Objects, and
Schemas. It was developed by a team of mathe-
maticians and mathematics education researchers
led by me (see Asiala et al., 1996)

APOS Theory

APOS theory is based on Piaget’s principle that an
individual learns (e.g., mathematics) by applying
certain mental mechanisms to build specific men-
tal structures and uses these structures to deal
with mathematical problem situations. According
to this principle, for each mathematical concept,
there are mental structures one can develop that
are appropriate for this concept and that can be
used to learn it, understand it, and use it (Asiala
et al., 1996). If one has built appropriate struc-
tures, very elementary concepts can be grasped
easily and early through normal life experiences,

trial and error, and discussions with peers. Later,
with such structures, more advanced concepts
can be learned without undue difficulty via any
pedagogical method that relates the concept to
the structures. If, however, one does not possess
structures appropriate for a concept, it is nearly
impossible to learn it.

This aspect of Piaget’s theory can explain a
phenomenon that seems to be almost universal
with respect to learning mathematics. Just about
everyone learns the most elementary mathemat-
ics: counting, sequential ordering, forming sets,
the concept of number. Even as the mathemat-
ics becomes less elementary, an individual may
feel for a while that the mathematical ideas are
almost obvious. One need only have a concept
mentioned, perhaps explained, and then it is un-
derstood almost immediately and automatically.
This period of “automaticity” can last for very dif-
ferent periods of time depending on the individual
(from months to decades), but, for everyone, the
time comes when the ideas become more diffi-
cult. Intervention of others (teachers, colleagues,
books) becomes necessary, and learning can be
delayed, eventually even stopped. What is happen-
ing, according to Piaget’s principle—what needs
intervention and takes time—is that the individual
is building new mental structures to deal with the
more complex concepts. At first, with the elemen-
tary concepts, the mental structures are built more
or less automatically through normal day-to-day
experiences. Later, as the mathematics becomes
more sophisticated and the requisite structures
more complex, intervention, or at least reflec-
tion over a period of time, is necessary and, for
even the most powerful research mathematician,
there are, eventually, mathematical concepts he or
she cannot fully understand. The stopping point
comes at different places for different people, and
one measure of mathematical talent can be the
extent of mental structures one is able to build
with minimal intervention.

This principle has important consequences for
education. Simply put, it says that teaching should
consist of helping students use the mental struc-
tures they have to develop an understanding of
as much mathematics as those available structures
can handle. For students to move further, teaching
should help them build new, more powerful struc-
tures to handle more and more advanced mathe-
matics.

These ideas raise certain questions. Given a
mathematical concept, what are the mental struc-
tures that can be used to learn it, and, knowing
that, how can we help students build them?
It is these questions that APOS theory and a
pedagogical strategy based on it try to answer.

According to APOS theory, the mental struc-
tures are what we call actions, processes, objects,
and schemas. The mental mechanisms used
to build these mental structures are called
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interiorization and encapsulation. An action is
a transformation of a physical or mental object
that requires specific instruction and must be
performed explicitly, one step at a time. A math-
ematical concept begins to be formed when an
action transforms objects to obtain other objects.
As an individual repeats and reflects on an action,
it may be interiorized into a mental process. A
process is a mental structure that performs the
same operation as the action being interiorized,
but wholly in the mind of the individual, thus
enabling her or him to imagine performing the
transformation without having to execute each
step explicitly. Given a process structure, one
can reverse it to obtain a new process or even
coordinate two or more processes to form a new
process via composition. If one becomes aware
of a process as a totality, realizes that transfor-
mations can act on that totality and can actually
construct such transformations (explicitly or in
one’s imagination), then we say the individual has
encapsulated the process into a mental object.
In some situations, when working with a mental
object, it is necessary to de-encapsulate the object
back to the process from which it came. While
these structures describe how an individual con-
structs a single transformation, a mathematical
topic often involves many actions, processes, and
objects that need to be organized and linked into
a coherent framework, which is called a schema.
The mental structures of action, process, object,
and schema constitute the acronym APOS.

Determining the specific actions, processes,
objects, and schemas for a given concept requires
research and a specific methodology that I will not
discuss in this article. It may be helpful, however,
to consider an example from elementary mathe-
matics that will also allow a proposed explanation
for a difficulty in arithmetic that is widespread
among students and even some teachers. I am
talking about the concept of division by a frac-
tion. One understanding of division by a number
requires that the number be understood as an
object, and the division question is: How many
of this object can be found in the dividend? Now
think about the notion of a fraction, say 2/3. Ini-
tially, one can take a specific object (e.g., a pie or
a rectangle), divide it into 3 equal pieces, and pick
two of them. If an individual can think of 2/3 only
in terms of such an activity, then he or she has
an action conception of 2/3. After repeating such
an action and reflecting on it, the individual may
construct an internal process that allows her or
him to imagine dividing an unspecified object into
3 parts and taking 2 of them. This is a process
conception of 2/3, and most people, as the result
of normal human activity, will come to this point
without too much difficulty. It is the next step,
necessary for understanding division by 2/3, that
is difficult. In order to divide, say, 5 by 2/3, that is,
to ask: “How many 2/3s are there in 5?” one must

understand that this question requires thinking of
2/3 as an object. Without such an understanding,
one can’t begin to think about an answer to the
division problem. Thus, one must encapsulate the
process conception of dividing into 3 parts and
selecting 2 into an object which becomes a some-
what abstract entity in the mind of the individual.
Most people need help with this process, and it is
not immediately obvious how to help students to
use the mechanism of encapsulation to come to
see the 2/3 process as an object, also called 2/3.
In the next section we discuss methods to help
students do this.

The above is a very brief description of an anal-
ysis that requires considerable research and that
must be done for every mathematical concept one
wishes one’s students to learn. After reading about
these ideas applied to very elementary mathemat-
ics, we developed APOS theory as a formulation
of Piaget’s theories that could be applied to more
advanced mathematical concepts.

APOS-Based Pedagogy: Writing Computer Code

and Programs

I began to look for pedagogical approaches to fit
with this theory. I wanted to find ways to induce
students to make the mental constructions called
for by the theoretical analyses of concepts. I found
that one could go a long way in this direction by
having the students write certain computer pro-
grams or just code. That is, for each mental con-
struction that comes out of an APOS analysis, one
can find a computer task of writing a program or
code such that, if a student engages in that task,
he or she is fairly likely to make the mental con-
struction that leads to learning the mathematics. I
am not saying that the computer task is the men-
tal structure but rather that performing the task
is an experience that leads to one or more mental
constructions.

Here is an example. Consider the concept of
function. As with fractions, an APOS analysis says
that development of understanding the function
concept begins with an action understanding.
That is, a function is understood to be an al-
gebraic/trigonometric expression with numbers
and a symbol, usually x. The action consists in
replacing x with a number, making the calculation
specified by the expression, and getting a number
as the answer. It is externally directed in the sense
that it follows a formula that is external to the
individual performing the action. With repetition
and reflection, the learner can interiorize this ac-
tion, which means that he or she builds a mental
structure that does the same thing internally that
the action does externally. This mental structure
is called a process, and it allows an individual to
imagine the action as being performed without
actually having to perform it. It is then possible
to think of the function in terms of “something
comes in, something is done to it, something
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comes out”. With a process conception one can
coordinate two or more processes to obtain a new
process and reverse a process, first in one’s mind
and then, if needed, with pencil and paper. Finally,
if an individual wishes to perform an action on
this mental process, he or she first has to see it
as a totality and encapsulate it mentally into an
object. Then the individual can act on it. (For more
details, see Asiala et al., 1996.) Now what kind
of pedagogy can be based on such a theoretical
analysis?

First, the teacher needs to have an idea of where
the students are relative to the construction of req-
uisite mental structures. Is the student restricted
to thinking about functions as actions, or is he or
she able to understand a function as a process but
is still unable to encapsulate these processes as
objects? The teacher needs to know this mental
activity in order to navigate through the course ma-
terial. The students may also need to know this in
order to have a good idea of their progress. The
research provides indicators that can help make
reasonable conjectures about where students are
relative to an APOS analysis. For example, if a stu-
dent insists (as many do) that unless there is an
explicit formula, there is no function, then such
a student is probably at the action level for func-
tions. On the other hand, if he or she is comfortable
with forming sets of functions or realizes that the
derivative can be interpreted as an operation that
transforms a function into another function, then
the student may be thinking at the object level for
functions.

Working together with several colleagues, we
found that a host of mathematical concepts could
be analyzed in terms of these actions, processes,
and objects. Such analyses could explain student
difficulties in terms of mental constructions not
made. On the other hand, we found that if we
asked students to perform a mathematical action
and write a computer program expressing that
action, then, in performing this task, the student
tended to interiorize the action into a process.
Even more exciting was that if the student then
wrote another program that accepted the first pro-
gram as an input, transformed it in some way, and
returned a new program, then this student was
very likely to encapsulate the process and see it
as an object. Going back and forth between object
and process conceptualizations of a mathematical
idea, so necessary in doing mathematics, resulted
from this pedagogy almost effortlessly (Weller et
al., 2003).

Based on these ideas, we devised a structured
pedagogical approach. It works by a division of the
course material into small units, each to last about
one week. Each week is a cycle of three kinds of
work. First, the students work (usually in cooper-
ative groups) in a computer lab to write programs
and code designed to foster mental constructions
that can help them build an understanding of the

concepts in that unit. They complete this work
outside of class. Second, meeting in a classroom,
the students work (again in groups) on tasks de-
signed to help them convert the mental structures
they have built into understandings of mathe-
matical concepts. Third, based on the assumption
that most of the students have at least begun to
build understandings that fit with the mathemat-
ical ideas held by mathematicians, they are given
exercises designed for practice, reinforcing the
knowledge they are building, and extending that
knowledge (Asiala et al., 1996).

We have designed and implemented undergrad-
uate courses that follow this approach. Textbooks
have been written that in their structure and
content reflect the three-part cycle. We have
conducted empirical studies using both qualita-
tive and quantitative research methodologies of
student performance and attitudes. Our results
suggest that this approach can be highly effective
in helping students learn various advanced math-
ematical concepts that appear in subjects such
as precalculus, calculus, discrete mathematics,
abstract algebra, and linear algebra (Weller et al.,
2003). It must be acknowledged, however, that this
pedagogical strategy requires teachers not only
to significantly alter their thinking about learning
and teaching but also to exert considerable effort
to learn the method. We believe that these require-
ments are among the things that have limited
the widespread adoption of such a strategy in
undergraduate mathematics teaching.

Bob’s Story
In the 1987–1988 school year, I was a parent vol-
unteer teaching algebra to eighth graders in the
open program at the Martin Luther King Jr. school
in Cambridge, Massachusetts. My son, Omo, was
in the class and wanted very much for some of
his friends to be part of the class. He said he
felt lonely when he was doing algebra. One of his
friends wanted to be part of the group but didn’t
know his multiplication tables. I agreed to take him
in the group and we worked side by side, one on
one, every day. When we came to questions about
the number line, adding integers on the number
line, he always got the same kind of answers. That
is, he consistently answered a question different
from the one the book was asking. He had only
one question about numbers in his mind, namely
the “how many” question. My problem was to
figure out another question about numbers that
he needed to get into his mind.

I finally settled on a “which way” question.
This question was a part of his daily routines and
vocabulary. He knew how to ask: “Which way to
the mall?” or “Which way to a friend’s house?” But
he didn’t have his “how many” questions together
with his “which way” questions as part of his
concept of number. My problem became how to
get his “which way” questions into his number
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concept on an equal footing with his “how many”
questions.

One day, while traveling from Cambridge to
Boston, I entered the T-stop on the Red Line at
Central Square and noticed that all passengers
are called upon to decide whether they are going
inbound or outbound—two answers to a “which
way” question. At this point, I recalled Quine’s
ideas about the process of generating elementary
mathematics along with the concepts of experi-
ential learning that had been a part of pedagogy
at the open program in the Martin Luther King
Jr. school. I, along with other teachers, then orga-
nized students to take trips on the T and asked
them to write, talk, and draw pictures about their
trips. We thought of these representations as their
commonsense representations, what Quine calls
“ordinary discourse”. We then asked them to iden-
tify important aspects, called features, of these
representations and discussed with them obvious
features that they may not have paid attention
to, such as the start and finish of the trip, as
well as features that were not so obvious, such as
locations and relative positions of stops.

This process, which Quine identifies as a pro-
cess for mathematizing events, involves moving
from ordinary discourse to regimented language,
that is, the language used in mathematics. Adapt-
ing his theories to the classroom, we called the
commonsense representations people-talk and
the regimented or strait-jacketed representations
feature-talk. We engaged the students in the
process of constructing iconic symbols, that is,
symbols that are also pictorial representations,
as well as abstract symbols for the features that
we intended to mathematize, and we developed
iconic, as well as abstract, representations for
various mathematical features of these trips.

Over time, it became clear that students math-
ematizing these trips acquire powerful metaphors
and concepts for addition and subtraction very dif-
ferent from their arithmetic metaphors for those
operations, including the concept of displacement
as a mathematical object representing answers to
both the “how many” and the “which way” ques-
tions. For example, consider the following two
questions: “Where is Porter Square in relation to
Central Square on the Red Line in Cambridge?” and
“Where is Harvard Square in relation to Kendall
Square?”

Underlying both questions is the concept of the
relative position of two stops on the Red Line. The
answer to both questions is the same: two stops
outbound, an answer to both “how many” and
“which way”.

The geometrical representation of this answer
is a displacement two units outbound. Students
thought of the movement from Central Square to
Porter Square as starting at Central Square and
moving two units outbound, and of the movement
from Kendall to Harvard as starting at Kendall and

moving two units outbound. Thus we have two
movements which have the same number of stops
and are in the same direction. That is, these two
movements represent the same displacement.

P H C K

−−−−−•−−−−−•−−−−−•−−−−−•−−−−−

<−−−−−−−−−−

<−−−−−−−−−−−

We call this diagram an iconic representation of
the trips. The people-talk representations are the
statements:

Porter Square is two stops out-
bound from Central Square.

Harvard is two stops outbound
from Kendall.

Feature-talk involves explicit reference to location
and relative positions of stops. This gives us ad-
dition as movement from the location of one stop
to the location of another in one of two directions,
and subtraction as the comparison of the location
of the ending to the location of the starting stop.
In other words,

starting at the location of Kendall
and moving two stops outbound
one arrives at the location of
Harvard

is feature-talk leading to addition, and

the location of Harvard compared
to the location of Kendall is 2 stops
outbound

is feature-talk leading to subtraction.
To obtain this mathematization, we select some

stop as the benchmark. We then discuss with
the students assigning symbols such as 0 for
the benchmark, x1 for the location of Kendall,
x2 for the location of Harvard, and ∆x for the
displacement. Then the first feature-talk sentence
becomes

x1 +∆x = x2,

and the second becomes

x2 − x1 = ∆x.

We can summarize the mathematization of this
type of sentence in the following eight steps:

1. Identify the observation sentence.
Harvard is two stops outbound from
Kendall.

2. Identify the name(s) in the sentences.
Harvard, Kendall.

3. Identify the predicate of the sentences.
The predicate in this case is the relation of
equality (“is”) between a name (“Harvard”)
and the object resulting from applying
an operation (“two stops outbound”) to a
name (“Kendall”).

4. Construct an icon for the name(s).
The students will do this.
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5. Construct an icon for the predicate.
The students will do this.

6. Construct an iconic representation of this
sentence.
This is the Trip Line diagram shown above.
The students will do this.

7. Translate the observation sentence into a
sentence using regimented language.
In this case there are two ways of doing so:

a. Starting at the location of Kendall
and moving two stops outbound one
arrives at the location of Harvard.

b. The location of Harvard compared to
the location of Kendall is 2 stops out-
bound.

8. Identify the conventional symbols that
are needed to translate the regimented
language into conventional mathematical
symbols and make that translation.

We might take L(H), L(K) for the locations
of Harvard and Kendall, respectively, and
we take + for “move” and − for “com-
pared to”. This leads to the following
abstract symbolic representation of the
two sentences:

a. L(K)+− 2 = L(H)
b. L(H)− L(K) =− 2

This recipe for converting an experience into a
mathematical expression can be applied in a wide
variety of situations and, together with students
actually experiencing the situation, represents our
main contribution to the pedagogy referred to as
experiential learning.

A Synthesis
The synthesis of the above sets of ideas in our
curriculum materials uses the structure described
in Bob’s story as the basic navigational framework
of the material while paying attention to possi-
ble actions, processes, and objects that students
might be constructing in their minds, as described
in Ed’s story. Thus writing computer programs has
been replaced by playing certain games, discussing
them, and writing about them. On the other hand,
many of the specifics of the games are driven by
the need to make certain mental constructions
suggested by APOS theory.

We can make other uses of a synthesis of the two
“stories”. Consider, for example, the relation that
appears in every Algebra 1 high school textbook:

a − b = a +− b.

Here, a,b are any two integers. As we saw in the
discussion of trips in Bob’s story, an integer can
be interpreted as a movement of a certain num-
ber of steps in a certain direction or as a location
on a line. So is an integer a movement or a loca-
tion? The APOS theory in Ed’s story resolves this
seeming ambiguity. If an integer is interpreted as
a movement, then this is a process in the sense of
APOS theory. The encapsulation of that process is

an object that, in the case of an integer, is a loca-
tion on the number line. With the mechanism of
encapsulation and its opposite, de-encapsulation,
we may go back and forth between interpreting an
integer as either a movement or a location.

Now, suppose we start at a location b and make
the movement

a+− b.

This movement is constructed by moving from the
benchmark to the location a, making the move-
ment −b to arrive at the location a +− b, which is
then de-encapsulated to a movement that we also
call a +− b.

Now we can start at the location b and make the
movement a +− b, which, by our interpretation of
addition, brings us to the location

b + (a +− b),

which, using standard properties of integers,1 is
equal to the location a. To summarize, we have
said that if we start at b and make the movement
(a +− b), then we arrive at a. According to our in-
terpretation of subtraction, this movement is just
a− b. So we have:

a − b = a +− b.

Now this relation may seem too obvious to men-
tion to experienced mathematicians, but it appears
explicitly in almost every high school algebra text
and is one of the more difficult parts of beginning
algebra.

To develop this material for the classroom, we
divide the content into segments. Each segment
begins with an experience, such as a game. The
students play the game and record salient infor-
mation. Each student then writes a description
of what happened in the plays of the game. They
are encouraged to write in complete sentences,
organized in paragraphs (people-talk). Then, in
a classroom discussion, the teacher helps them
identify the features of the game (feature-talk),
the operations that were performed with these
features, and the predicate that describes the
goal of the game (process of mathematization).
The students are then asked to work in teams to
answer certain questions designed to move them
further toward mathematization of the situation.
This is completed with the teacher describing the
mathematics in language and symbols that are
used by mathematicians.

We can also use this approach to interpret two
equations that are so important in the mathematics
that comes after algebra:

x2 − x1 = ∆x,

x1 +∆x = x2.

The first relation says, according to our interpreta-
tion of subtraction, that the comparison of x2 with
x1 is ∆x. That is, it is the movement that takes

1These properties are developed in our curriculum before

the treatment being described.
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us from x1 to x2. In other words, if we begin at
x1 and make the movement ∆x, we arrive at x2,
which, according to our interpretation of addition,
is precisely the second equation.

Of course these two equations involve no more
than very simple arithmetic, but, in order to do
that arithmetic with any kind of understanding,
students need to have useful interpretations—
metaphors if you like—for the equations. We
believe that the metaphors we have presented for
addition and subtraction of integers can provide
the necessary interpretations.

An Example
As a final example, here is a brief outline of curricu-
lum material based on certain games for the topic
of modular arithmetic. In discussing these games
and what happens in the classroom, we will explain
how this pedagogy relates to the ideas in Ed’s story
and in Bob’s.

The first goal of this unit is for students to un-
derstand the mathematical operation of division-
with-remainder of a positive integer a by a positive
integer b in terms of the classic equation,

(1) a = qb + r , r = 0,1,2, . . . , b − 1.

The curriculum begins with a game called Wind-
ing Around Positions. There are twelve stations
that could represent hours on a clock or the Chi-
nese years zodiac. A reference station is selected
(in general, selections are made by the class with
some input from the teacher), and one student
sits at that station throughout the game. The class
selects an integer, and a second student goes to
the starting position and then moves through
the stations, counting until the selected number is
reached. While the student is moving, note is taken
of the number of times the second student passes
by the first and of the final position reached by the
second student.

The features of this game are: the starting po-
sition, number of positions to be moved, number
of winds, and final position. The operation is to
count the positions, and the predicate asks how
many winds there are. The purpose of this game is
for the students to construct a mental process of
moving through the stations and winding around
the circle. We do this by first getting the students
to perform the action of multiplying explicit num-
bers b by numbers q and adding quantities r that
are less than b and second by interiorizing this ac-
tion into a process that does the same. The reason
for doing this is that an APOS analysis expresses
the mental process underlying (1) as the reversal
of the process of multiplying b by q and adding r .

The next game is played with the same setup
but, instead of beginning with a single number,
the students select a number of winds and an incre-
ment (which must be between 0 and 11). Here the
features are essentially the same, but the operation
is to multiply the number of winds by 12 and add

the increment to respond to the predicate, which
is: how many positions have been traversed? The
mathematization to which the students are led is
the basic division-with-remainder formula (1). This
expresses a mental process in which a single tra-
versal of all twelve stations has been encapsulated
into a “wind”.

The next game is designed to help the students
reverse the mental process of multiplying the
number of winds by 12 and adding the increment.
It is also played with twelve stations representing
the hours on a clock. A number of hours is given
to represent time elapsed. Working in teams, the
students begin at 12 and count around the clock to
determine the number of winds and the increment
that gives the final time on the clock. In this game,
the features are: the time elapsed, the number
of winds, and the remainder or end time. The
operation consists of dividing the time elapsed by
12 to find the number of winds (quotient) and the
end time (remainder). The mathematization of this
game is division-with-remainder. It is symbolized
by the same formula (1), which now is seen as
expressing the reversal of a process. That process
consists in multiplying a number of winds by 12
and adding an increment to obtain a total. The
reversal consists in starting with the total, deter-
mining the number of winds, and determining the
remainder.

All of the games are now repeated, with the
twelve hours on a clock replaced by the seven days
of the week. Then there is a summary discussion
in which the ideas are mathematized to obtain the
notion of an integer modn where n is 12,7, or
any positive integer. This permits a discussion of
equivalence modn, partitions of a set of integers,
and the relationship between equivalence and
partition.

One can then return to the clock and days-of-
the-week games to do arithmetic, using the same
epistemological perspective and the same peda-
gogy. For addition, one simply plays the winding
game with two numbers. With the first number,
one begins at the starting point (12 o’clock or
Sunday) and then, with the second number, one
begins at the ending point reached by the first
number. A deep mathematical idea that can be
represented in the game (and hence is likely to be
accessible to the students) is that one can add two
numbers a and bmodn by either adding first and
then finding the equivalent modn or finding the
equivalents first and then adding modn. Of course
the standard group properties of Zn with addition
modn can be discussed entirely in terms of trips
around the clock or in the calendar.

For multiplication, we play the addition game
several times using the same number. This leads
to multiplication as repeated addition through the
use of all of the same pedagogy, including people-
talk, feature-talk, mathematization through oper-
ations on the features and evaluating a predicate,
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and assigning symbols. The result is the concept
of multiplication modn. Since the bases 12 and 7
are used, the students can experience directly the
mathematical phenomena of the axioms for a field
being satisfied in the mod 7 system but not in the
mod 12 system. Some of the brighter students may
even be interested in thinking about the properties
of 12 and 7 that lead to this difference.

The Algebra Project and the Civil Rights
Movement
The United States, to lay down the economic foun-
dations for the caste system established after the
Civil War, built a steel industry on the backs of the
indentured slavery of young black men in Alabama
(Blackmon, Slavery by Another Name) and estab-
lished its textile industry on the pittance doled
out to sharecroppers picking cotton in Mississippi
(Barry, Rising Tide; Lemann, Redemption and The
Promised Land). The civil rights movement dis-
mantled the manifestations of the caste system in
public accommodations, voting, and the National
Democratic Party; however, the clearest manifes-
tation of this caste system remains in its public
schools (U.S. v. State of Mississippi, Civil Action
3312). The Algebra Project, a direct descendent of
the 1961 to 1965 Mississippi Theater of the civil
rights movement, tackles head-on this dimension
of the nation’s unfinished work (Moses, testimony
to the U.S. Senate Judiciary Committee).

It is our contention that, with the ascendance of
information technology and the increasing com-
plexity of our society, mathematics joins reading
and writing as a literacy needed for full citizenship.
Like it or not, history has thrust mathematicians
and specialists in mathematics education into the
middle of a central American dilemma: the recon-
ciliation of the ideals in the Declaration of Inde-
pendence and the United States Constitution with
the structures of race and caste and the legacies of
slavery and Jim Crow.

Briefly, in 1875, Congress refused to consider
President Grant’s appeal for a constitutional
amendment to guarantee at the level of the fed-
eral government the right to an education for all
children, including those of the freed slaves. It did
pass a civil rights bill, but the Supreme Court of
1883 declared that Congress had no right to do
this, thus setting the stage for eighty-one years of
rigid race and class divisions (Civil Rights Cases,
1883; see also Justice Harlan’s dissent).

The Court decided that, for the purpose of ac-
cess to public accommodations, the nation’s con-
stitutional people were decisively citizens of states
rather than citizens of the nation, a constitutional
status applicable to the vote and membership in
the national political party structures as well as to
public school education.

The Supreme Court’s landmark 1954 decision
did not challenge, with respect to their education,
this constitutional status of the nation’s children.

Rather it affirmed the “equal protection” clause of
the Fourteenth Amendment: states, rather than the
federal government, have a constitutional obliga-
tion to provide their citizens equal access to pub-
lic school education. As James Bryant Conant re-
minded us in 1961, the nation’s caste system thus
found its clearest manifestation in its education
system (Conant, 1961).

Such inequality was confirmed in 1968, when
four hundred Mexican American high school stu-
dents left school to march on their school board to
demand better physical facilities and better teach-
ers. Their mothers sued, and their case, “San Anto-
nio Independent School District v. Rodriguez” was
decided March 21, 1973:

Justice Lewis Powell’s majority opinion in Ro-
driguez held that education was not a fundamental
right, since it was guaranteed neither explicitly nor
implicitly in the Constitution.

Powell’s decision, in effect, guaranteed that pub-
lic school education remained the clearest mani-
festation of the nation’s caste system, which now
extended over class as well as race. This situation
still holds today.

When, in 1960, Kennedy stepped into the
presidency, black students at historically black
universities and colleges stepped into history:
“On February 1, 1960, four African American
college students sat down at a lunch counter at
Woolworth’s in Greensboro, North Carolina, and
politely asked for service. Their request was re-
fused. When asked to leave, they remained in
their seats. Their passive resistance and peaceful
sit-down demand helped ignite a youth-led move-
ment to challenge racial inequality throughout the
South” (C. Vann Woodward, 2001).

The sit-in students demanded, in effect, a
change in their constitutional status: for purposes
of access to public accommodations, they de-
manded status as citizens of the nation rather
than citizens of a state. This demand was made
crystal clear a year later, with the Freedom Rides.

Thanks largely to Ella Baker, the sit-in move-
ment was transformed into a network of sit-in
leaders called the Student Nonviolent Coordinat-
ing Committee, or SNCC. Then, thanks largely to
Amzie Moore, SNCC transported the sit-in energy
into Mississippi to focus on the constitutional
status of sharecroppers in the Mississippi Delta,
especially with respect to the right to vote. SNCC
organized sharecroppers not only to demand con-
stitutional status as citizens of the nation with
respect to voting rights but also to demand an
equivalent status with respect to participation in
the National Democratic Party structure, making
it possible for a Democratic Party Convention to
consider an African American as its presidential
nominee.

Robert (Bob) Moses, coauthor of this article and
president and founder of the Algebra Project, was
the director of SNCC’s Mississippi operations. He
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left Mississippi in 1965, left the country in 1966,
and made his way to Tanzania with his wife Janet,
where they started their family. They returned to
the United States in 1976 with their four children:
Maisha, Omowale (Omo), Tabasuri (Taba), and Ma-
lika. Bob’s job in the family was to make sure the
kids did their math, a job he enlarged as a par-
ent volunteer in the Open Program of the Martin
Luther King School in Cambridge, Massachusetts,
to teach Maisha and three of her classmates alge-
bra when she hit the eighth grade in 1982. Bob got
a MacArthur fellowship in 1982 and settled into
the issue of algebra for all the eighth graders in
the Open Program, thereby launching the “Alge-
bra Project”, which inevitably found its way into
Mississippi and the issue left hanging from the Mis-
sissippi civil rights movement of 1961–1965: the
constitutional status of children in the nation with
respect to their public school education. It seems
clear that, unless children become decisively citi-
zens of the nation for the purposes of their pub-
lic school education, public school education will
remain the clearest manifestation of the nation’s
caste system.

Conclusion
Today, the Algebra Project, working together with
sister organizations such as the Young People’s
Project, with support from the National Science
Foundation and other public as well as private
agencies, is a national movement that is trying to
transform the educational experiences of children
from the underserved lowest quartile of our pop-
ulation. It is a prime example of how people from
the academic fields of philosophy, mathematics
research, mathematics education research as well
as teachers and administrators from the field of
K–16 education and also those of us who struggle
for social and economic justice in the United States
can find common ground, work together, and con-
tribute to solving some of the major problems
facing our country in the twenty-first century.
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