
On the Work of Louis
Nirenberg

Simon Donaldson

Louis Nirenberg received the first Chern Medal Award at the International Congress of
Mathematicians (ICM) in August 2010. Sponsored by the International Mathematical
Union and the Chern Medal Foundation, the award will be given every four years at
the ICM to an individual whose lifelong outstanding achievements in the field of math-
ematics warrant the highest level of recognition. The award consists of a medal and
a monetary award of US$500,000. There is a requirement that half of the award will
be donated to organizations of the recipient’s choice to support research, education,
outreach or other activities to promote mathematics.
The Notices solicited the following article about the work of Louis Nirenberg. The Inter-
national Mathematical Union also issued news releases about the Chern Medal Award,
which appeared in the December 2010 Notices.

It is an honour to be asked to write this celebration
of the award of the first Chern Prize of the Interna-
tional Mathematical Union to Louis Nirenberg, but
the author’s enthusiasm for the task is matched
by considerable doubts about his adequacy for it.
Nirenberg is a giant in the subject of partial differ-
ential equations and has made fundamental contri-
butions to that area over more than half a century.
The author is far from being a PDE specialist, and
this account is of necessity highly selective, empha-
sising those topics (mainly connected with geome-
try) that the author knows a little better. I will say
nothing about huge swathes of Nirenberg’s work,
which might well be the focus of other essays—
for example, his work with Agmon and Douglis on
very general elliptic boundary value problems, or
his place as one of the fathers of pseudodifferen-
tial operators. Our small selection perhaps gives a
glimpse of the range of his work, melding PDE the-
ory with classical differential geometry, with the
theory of complex manifolds, with harmonic anal-
ysis, even though this leaves out much else, such
as his work on fluid mechanics.

Isometric Embedding
Nirenberg’s Ph.D. thesis [8] completed the solution
of a famous problem in differential geometry,
developing 1916 work of Weyl. The statement is
very simple: an abstract Riemannian metric on the
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2-sphere with positive curvature can be realised

by an isometric embedding in R
3. (Another proof

was given by Pogerolov at about the same time.)
This is a wonderful result for several reasons.
The statement is easy to grasp and decisive. The
strategy of proof, by the “continuity method”, is a
model for many other PDE problems in differential
geometry and elsewhere. For example, the overall
strategy in Yau’s proof of the Calabi conjecture
has just the same shape. Finally, while it might
appear an elementary problem, some serious dif-
ficulties arise. Nearly one hundred years after
Weyl’s paper and nearly sixty years after Niren-
berg’s and having in mind the huge development
in “geometric analysis” over this period, one might
think that supplying a proof would nowadays be a
straightforward exercise, but that is very far from
the case.

Let g1 be a Riemannian metric of positive cur-
vature on S2. In the continuity method one first
shows that g1 can be joined to a standard “round”
metric g0 by a path gt , t ∈ [0,1] of metrics of posi-
tive curvature. This is quite easy, using the fact that
any metric is conformal to a round metric. Now one
considers the set T ⊂ [0,1] of parameter values t
such that gt can be realised by an isometric em-
bedding. The task is to show that T is both open
and closed, and hence must be the whole interval
(since the round metric is certainly realised by an
embedding and so T is not empty).

A first difficulty is that, if set up in the obvious
way as a PDE for a map ι : S2 → R3, the isometric
embedding problem is degenerate. Infinitesimal
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variations of the map in the normal direction
change the induced metric by an algebraic, rather
than a differential, operator. Thus the usual ap-
proach to prove openness, through the inverse
function theorem in Banach spaces, does not im-
mediately apply. A more sophisticated machine,
the Nash-Moser theory, can be applied [3], but this
came later and Nirenberg used an intricate and
ingenious argument, partly following Weyl, to get
around the difficulty.

The closedness comes down to establishing a
priori estimates. One estimate goes back to Weyl.
The Gauss curvature K of an embedded surface
is given by a quadratic expression in the second
fundamental form B, and one finds that

∆K = b∆b−〈B,∇∇b〉+|∇b|2−|∇B|2+K(b2−4K),

where ∆ is the intrinsic Laplacian on the surface
and b = TrB is the mean curvature. Then an ap-
plication of the maximum principle, considering
the point where b attains its maximum, gives an a
priori bound on b that translates into a C2 bound
on the isometric embedding ι : S2 → R3. The
other major component in Nirenberg’s proof is
to promote this first to a C2,α bound and then to
all higher derivatives. This follows from general
theorems about elliptic equations in two variables
that he had developed at about the same time [9],
together with another ingenious differential geo-
metric device, considering the equation satisfied
by the distance on the surface to a fixed origin in
R3.

Nirenberg has many other papers related to clas-
sical differential geometry and isometric embed-
ding. There is a particular difficulty at points at
which the sign of the Gauss curvature changes and
the PDE changes from elliptic to hyperbolic type.

Complex Geometry
Another of Nirenberg’s renowned achievements
in geometry is the Newlander-Nirenberg theorem
on the integrability of almost-complex structures
[10], which is a foundation stone for the Kodaira-
Spencer-Nirenberg treatment of deformations of
complex manifolds [5]. (In the context of this es-
say, note that the authors of [10] thank Chern for
bringing the problem to their attention.) Recall that
an almost-complex structure on a 2n-dimensional
manifold M is a bundle map I : TM → TM with
I2 = −1. The question is: when does such an
almost-complex structure come from a complex
structure; that is, when can one find a diffeomor-
phism between the neighbourhood of any point in
M and a polydisc in Cn that takes I to the standard
almost-complex structure on Cn? The eigenspaces
of I yield a decomposition of the complexified
tangent bundle TM ⊗C = T ′⊕T ′′, and a necessary
condition is that sections of T ′ are closed under
the Lie bracket. The Newlander-Nirenberg theorem
asserts that this condition is also sufficient. This is
formally analogous to the Frobenius integrability

condition, for a real sub-bundle of the tangent
bundle to define a foliation, and when the data is
real-analytic one can derive the result from the
Frobenius theorem by a complexification argu-
ment that goes back, in the case n = 1, to Gauss.
But if the data is C∞ or worse, different methods
are required.

There are now many different approaches to the
proof of this integrability theorem. We have to con-
struct a diffeomorphism between some neighbour-
hood N ⊂ M and a polydisc B ⊂ Cn. The character
of the problem appears rather different depend-
ing on whether one seeks to construct a map f :
N → B or a map g : B → N . Of course, at the
end of the day, once one has shown that the con-
structed maps are diffeomorphisms, one follows
from the other by inversion, but at the outset the
problems look different. If we seek a map f , then
the problem is linear, the condition is just that f
be a vector of holomorphic functions and the PDE

to be satisfied is ∂Mf = 0 where ∂M is the natu-
ral Cauchy-Riemann operator defined on M . In the
classical case when n = 1 the problem can easily
be solved this way. One takes the neighbourhood

N very small so that, in suitable coordinates ∂M can
be written as a small perturbation of the standard
Cauchy-Riemann operator which is essentially just
∂

∂z
. Then a local holomorphic function can be con-

structed by perturbation methods, using the ex-

plicit integral operator inverting
∂

∂z
. The essential

difficulty that appears when n > 1 is that the equa-

tion ∂Mf = 0 is overdetermined. Indeed, we have
to use the integrability condition in some way, and
in fact if this condition does not hold there will
typically be no nonconstant local solutions of the

equation ∂Mf = 0.
Subsequent advances in several complex vari-

ables, due to Kohn and Hörmander, do lead to
proofs of the integrability theorem via linear
theory along the above lines, but the original
Newlander-Nirenberg approach takes the other
point of view, with the construction of a map
g : B → N ⊂ M . Taking n = 2 for simplicity, we
will have g(z,w) ∈ N for z,w in the standard
disc D ⊂ C. The condition we want to achieve re-
quires that, for each fixed w the map γw : D → M
defined by γw (z) = g(z,w) is holomorphic, so
we seek a family of holomorphic curves γw in M ,
parametrised by w . From the point of view of
the local theory of holomorphic curves, almost-
complex manifolds behave much like complex
ones—in contrast to the situation with holo-
morphic functions above. Thus one can produce
families of curves γw and the integrability con-
dition can be brought in to show that such a
family can be constructed so that γw (z) is also
holomorphic in the w variable. Related ideas have
become important in the context of Gromov’s
theory applying holomorphic curves in almost-
complex manifolds to symplectic topology. One
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area in which the Newlander-Nirenberg theorem
has been crucial is “twistor theory”, which encodes
equations satisfied by a metric on space-time in
the integrability condition for an almost-complex
structure on twistor space.

Now we turn to the work of Kodaira, Nirenberg,
and Spencer [5]. Many readers will be familiar
with the simplest example of variation of complex
structure—the classification of Riemann surfaces
of genus 1 by a discrete quotient of the upper
half plane. The Kodaira-Nirenberg-Spencer theory
gives a vast extension of this idea to a general
compact complex manifold M . Deformations of
the almost-complex structure can be parametrised
by certain tensors µ ∈ Ω0,1(TM)—the differential
forms of type (0,1) with values in the tangent
bundle ofM—and the integrability condition takes
the form of a first-order nonlinear PDE

∂µ + [µ,µ] = 0.

The problem of deformation theory is, roughly
speaking, to describe the small solutions µ of
this equation, modulo the action of the diffeo-
morphism group of the manifold. If we naively
linearise the equation about µ = 0 by dropping
the quadratic term, we simply have the equation

∂µ = 0, which states that µ defines a class in
H1(TM) viewed as the Dolbeault cohomology
defined by the complex

Ω0(TM)
∂
→ Ω1(TM)

∂
→ Ω0,2(TM)

∂
→ . . . .

Kodaira, Nirenberg, and Spencer considered the
case when H2(TM) = 0, which is just the state-

ment that for any ρ ∈ Ω0,2(TM) with ∂ρ = 0 one

can solve the equation ∂ν = ρ. They construct
deformations parameterised by a neighbour-
hood of 0 in H1(TM) with a universal property
that implies that any sufficiently small deforma-
tion of M is isomorphic to one in their family.
Their method is to construct µ as a power series

µ = µ0+ tµ1+ t
2µ2+ . . . where µ0 satisfies ∂µ0 = 0

and the subsequent terms are found by solving

equations of the form ∂µi = ρi with ρi determined
by µ0, . . . , µi−1. The proof was an early application
of Hodge theory, which gives a preferred solution

to an equation ∂ν = ρ, admitting Hölder estimates.
The theory was later extended by Kuranishi [6] to
cases in which H2(TM) does not vanish.

For a very simple example of these ideas,
go back to a Riemann surface of genus 1 (a
torus). Then TM is trivial, so the cohomology
group H1(TM) is the same as H1(O), which is
isomorphic to C. The theory gives a family of
deformations of the complex structure parame-
terised by a small disc in C, and of course this
is just what we see in the familiar explicit repre-
sentation using the upper half plane. A striking
example of the power of the theory comes in the
case of K3 surfaces. Here one gets certain “visible”
deformations arising from algebraic geometry. For
example, if we consider the family of K3 surfaces

defined by smooth surfaces of degree 4 in CP3,
then one finds a nineteen-dimensional family of de-
formations (the quartic polynomial has thirty-five
coefficients and the linear group has dimension
sixteen). On the other hand, calculation shows
that dimH1(TM) = 20 and the theory tells us that
there is actually a twenty-dimensional family of
deformations. This is an analytical statement—the
generic member is not an algebraic surface at
all, and the picture is inaccessible from algebraic
geometry.

Analysis
One of Nirenberg’s most famous achievements is
his introduction, with F. John, of the function space
BMO [4]. The Lp norms of functions are a famil-
iar tool in PDE theory and analysis generally, but
often the information one has is limited to some
fixed value of p. For example, the L2 norm of the
derivative of a function appears as the Dirichlet
integral in the theory of harmonic functions and
harmonic maps. Rather than varying the exponent,
one can vary the domain of the integrals consid-
ered. The Morrey spaces Mp on Rn are defined by
the finiteness of the norm

‖φ‖Mp
= sup

B

1

|B|1−1/p

∫

B
|φ|.

Here B runs over the set of balls in Rn, and we write
|B| for the volume. Hölder’s inequality implies that
Lp ⊂Mp, and in fact many results about Lp extend
to Mp. Thus one can get good information about a
function f from consideration of the Mp norm of

|∇f |2—which is defined by the Dirichlet integral
over balls—as opposed to the less accessible L2p

norm of the derivative.
The Morrey norm when p = ∞ reduces to the L∞

norm. John and Nirenberg’s BMO (bounded mean
oscillation) norm is somewhat different:

‖φ‖BMO = sup
B

1

|B|

∫

B
|φ−φ

B
|,

where φ
B

is the mean value of φ over B. A ba-

sic example of an unbounded function in BMO is
log |x| on R. The famous John-Nirenberg inequal-
ity fills out the idea that BMO is “slightly larger”
than L∞ but smaller than any Lp. For a function φ
supported on the unit ball B ⊂ Rn, with integral
zero and with BMO norm 1 the inequality gives a
fixed bound on the integral of eaφ for a certain def-
inite value of a, depending on n. The proof uses
the Calderón-Zygmund cube decomposition. It is
related to the fact, discovered subsequently by Fef-
ferman, that BMO is the dual of the Hardy space
H1. Indeed, a function in H1 has an “atomic de-
composition” [11] f =

∑
λifi (a.e.) where λi ∈ R,∑

|λi| < ∞, each function fi is supported on a ball
Bi has integral zero and is bounded in modulus
by |Bi|

−1. Given this representation (which is re-
lated to wavelet expansions) it is clear, at least,
that if φ is in BMO, then the integral

∫
φf is well
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defined, and this leads to the duality between the
two spaces. Many fundamental results of harmonic
analysis involving Lp spaces fail for the extremes
p = 1,∞, and the pair BMO,H1 provide the correct
substitutes. For example, if a harmonic function on
a half-plane has normal derivative on the bound-
ary in L∞, then the tangential derivative need not
be in L∞ but it must be in BMO. In PDE theory the
John-Nirenberg inequality often appears through
a Sobolev-type estimate for functions at the crit-
ical exponent n/(n − 1). A compactly supported
function f with derivative in Ln/n−1 is not continu-
ous, but it does lie in BMO and hence satisfies the
corresponding exponential integral estimate.

General PDE Theory
It is ridiculous to attempt to describe Nirenberg’s
massive contribution to PDE theory in the few lines
here. We are looking at a period of more than a half
century in which the literature on even, say, elliptic
second-order equations runs to many thousands of
pages and whose intricate developments are cov-
ered in texts such as [2]. The awesome number
of citations to Nirenberg’s papers is one measure
of the central nature of his contributions to this
huge field. Nevertheless, let us try to pick out some
strands.

As a model for a nonlinear PDE consider the
Monge-Ampère equation

det

(
∂2u

∂xi∂xj

)
= eρ,

where u is to be convex. Linear theory enters when
one considers the equation satisfied by a derivative

h =
∂u

∂xk
which is L(h) = ρk, where L is the linear

operator

L(h) =
∑
aij

∂2h

∂xi∂xj
,

(aij) being the inverse matrix of the Hessian
∂2u
∂xi∂xj

.

The idea is that a good theory of linear operators
with suitably general coefficients aij will allow
bootstrapping to derive improved information
about the derivatives. One important issue is the
uniform ellipticity of the linear equation: a bound
on the ratio of the maximum and minimum eigen-
values of (aij). Another is the continuity of the
coefficients aij . If these satisfy a fixed modulus
of continuity, then the linear operator L can be
approximated by a constant coefficient operator
on balls of a fixed size, and the situation is rather
well controlled.

The two-dimensional case is special because
an operator L can be related to a generalised
Cauchy-Riemann operator and thus to the theory
of quasiconformal maps. We have mentioned in
the first section above Nirenberg’s early work [9]
deriving regularity theorems, using this approach,
for a very general class of elliptic PDE in two
dimensions (related to work of Morrey). Here the
crucial point is to show that (aij) uniformly elliptic

implies a C1,α bound on
∂u

∂xk
and hence a Hölder

(C ,α) modulus of continuity of aij . A renowned
development in the years around 1960, due to
de Giorgi, Nash, and Moser, was a general regu-
larity theory for “quasilinear” elliptic equations in
higher dimensions. The John-Nirenberg inequality
was applied by Moser [7] to (quoting from [2])
“bridge a vital gap” in the proof of the fundamen-
tal Harnack inequality in the relevant linear theory.
A general theory for fully nonlinear equations in
higher dimensions, such as the Monge-Ampère
equation, came later with the work of Caffarelli,
Nirenberg, and Spruck [1]. This concerns the
Dirichlet problem, where u is defined on a convex
set Ω ⊂ Rn with prescribed value on the bound-
ary. The crucial issue turns out to be deriving a
modulus of continuity for the second derivatives
of u along the boundary. Caffarelli, Nirenberg,
and Spruck obtained a logarithmic modulus of
continuity by an extremely delicate application of
the maximum principle (construction of a barrier
function). This crucial logarithmic bound, finer
than any Hölder estimate, has some relation, in
spirit and content (involving the relation between
tangential and normal derivatives), with the ideas
surrounding BMO.
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