
3N Colored Points
in a Plane
Günter M. Ziegler

Why do I want to tell you about the colored Tverberg
theorem? Well:
• the setting sounds so harmless, so elementary,

as if children were playing with a few colored
points in the plane;

• it comes with anecdotes, like the one about a Nor-
wegian mathematician freezing in a Manchester
hotel room;

• the latest twist in the story, and the key to a
solution, has not been in a very technical proof
but rather in the right wording of the problem
and of the final outcome;

• an interesting mix of geometric, combinatorial,
algebraic, and topological methods have been
used;

• after almost two decades, progress is still being
made (and I am happy I could contribute to it);
and finally

• there is a lot more to do: intriguing conjectures
that again sound harmless, elementary, playful.

A Conjecture by Birch
“On 3N points in a plane” is the title of a short
paper [6] by Bryan John Birch from 1959. Its main
result is right on the first page:

Birch’s Theorem 1: Any 3N points in the plane
determine N triangles that have a point in common.

In order to illustrate this, we may assume that
the 3N points are in general position. For N = 4
we have 3N = 12 points, and the situation might
look like the following diagram:
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The claim would be that for any such point
configuration in the plane there is a partition into
triples, such that the corresponding triangles have
a point in common:
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Birch’s proof for this is remarkable, as it uses
a topological fixed point theorem—years before
Lovász in 1978 proved the Kneser conjecture using
the Borsuk–Ulam theorem, which is commonly seen
as the starting point of topological combinatorics
[9]. Birch indeed derives his result from the center
point theorem, which had been first provided by
Bernhard H. Neumann in 1945 [15]:

Center Point Theorem. For any 3N points in the
plane there is a point c, called a “center point”, such
that any half plane that contains c must necessarily
also contain at least N out of the given 3N points.

Birch criticized Neumann’s proof for this result:
“his proof, though elementary, is long, and does not
extend to higher dimensions”. He thus proceeded
to give his own proof, which also provides an
n-dimensional center point theorem. However,
apparently Birch did not know that Richard Rado
had achieved the result much earlier, published
in 1946 [16]. Rado’s proof for this is elementary
geometry (it uses Helly’s theorem—“if any n sets
in a finite family of convex sets in Rn have a
point in common, then all the sets have a point in
common”); see, e.g., [12, Sect. 1.4].

� Here is how Birch derived his Theorem 1 from
the center point theorem: Label the 3N points
“1,2, . . . ,N,1,2, . . . ,N,1,2, . . . ,N” in clockwise or-
der around the center point c:
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Then the center point c lies in each triangle
determined by three points with the same label i.
Indeed, each half space with c on the boundary
contains at least N contiguous points from the
circular sequence, and thus at least one point of
each label i.

And here is the idea used by Birch to prove
the center point theorem: If a point x is not a
center point, then some, but not all, of the half
spaces that have x on the boundary are “bad”,
i.e., contain less than N of the 3N points. These
half planes at x point you into directions to look
for improvement. By averaging, Birch uses that to
define, on a disk that contains the 3N points, a
continuous (!) vector field which on the boundary

of the disk points inside. By Brouwer’s fixed point
theorem this vector field must have a zero—which
turns out to be a center point. �

In the same little paper [6] Birch observes that
the bound “3N” is not really tight, as one can also
get a result about only 3N − 2 points:

Birch’s Theorem 1*: Any 3N − 2 points in the
plane can be partitioned into N subsets whose con-
vex hulls have a point in common.

The subsets thus consist of one, two, or three
points, and hence their convex hulls are triangles,
edges, or single points—and we require that these
N convex sets have a point in common. The drawing
illustrates this for N = 4:

A solution could thus be given by one single
point that lies in N − 1 triangles, or there could
be N − 2 triangles that all contain the intersection
point of two further edges:

And it is also easy to see that fewer than 3N − 2
points will in general not be divisible intoN subsets
whose convex hulls intersect. (Not even the affine
hulls will intersect, for codimension reasons.) In
that sense, Birch’s Theorem 1* is sharp.

Who is Bryan John Birch? Where does this
problem come from? His paper contains only a
small hint at the end:
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In conclusion, I would like to thank
Professor Eggleston for his enter-
taining lectures, which led me to
perpetrate this note.

But of course I could try to ask him (he was born in
1931 and is an emeritus professor in Cambridge,
England). My email was answered promptly:
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Bryan John Birch

I was an undergraduate at Trinity
(College, Cambridge) from 1951-4,
and in my third year I took Part III
of the Mathematical Tripos; then
as now, one attended 6 to 8 “start-
ing graduate student level” courses
and took a cross-section exam at
the end of the year; nowadays of
course it is no longer taken by 3rd
year students. One of the courses I
took, in the spring of 1954 I would
guess, was a very pleasant course
on “Convexity” by H. G. Eggleston;
this course formed the basis for
his Cambridge Tract, published in
1958 according to my references.
Eggleston’s course contained sev-
eral proofs of the isoperimetric
inequality, as well as Helly’s theo-
rem (of course) and I was involved
with more complicated plane geom-
etry when I started research in the
Geometry of Numbers under Ian
Cassels; so it wasn’t unnatural for
me to be thinking about “3N Points
in a Plane”; but one tends not to

remember details of what one was
thinking about 54 years ago.

I submitted a thesis in competi-
tion for a Trinity Junior Research
Fellowship in September 1956; this
thesis was a compendium of vari-
ous bits and pieces, including “3N
points in a plane”. The judges of the
competition came from all faculties,
so one had to include a summary
that laymen could read. I remem-
ber that my summary included a
picture of the application of the
first non-Helly case (7 points in a
plane) to the configuration formed
by the seven brightest stars in the
Pleiades. I don’t remember why the
paper wasn’t submitted till 1959:
I was working on several other
things—I switched to additive an-
alytic number theory, and then to
elliptic curvery—and very probably
1959 was when I gave up trying to
prove higher dimensional cases of
Tverberg’s theorem; another pos-
sibility is that I was jogged into
writing up by the publication of
Eggleston’s tract.

Indeed, Birch became famous for his work on
elliptic curves—in particular since it led to a one-
million-dollar millennium problem that carries his
name, the “Birch and Swinnerton-Dyer conjecture”.

Another one of his conjectures did not carry
such a cash prize but turned out to be important
and influential nevertheless: again in his paper “On
3N points in a plane”, on the same page as his
Theorem 1*, we find a conjectured n-dimensional
version of it:

Birch’s Conjecture: Any (n+1)N−n points inRn

can be partitioned into N subsets, whose convex
hulls have a point in common.

And when Birch now writes that probably 1959
was when he gave up trying to prove “higher
dimensional cases of Tverberg’s theorem”, then
he reverses the historical order of things: he gave
up trying to prove higher dimensional versions of
Birch’s theorem, that is, cases of his own conjecture.
Tverberg came later.

Tverberg’s Theorem
Helge Tverberg, born in 1935, is a Norwegian
mathematician. In 1961 he attended a workshop on
functional analysis at University College London,
where on the sidelines there was also a course on
convexity, presumably taught by Rogers [12, p. 16]:

I found this material fascinating,
and read upon it more back in
Bergen. Helly’s Theorem was es-
pecially fascinating, and, in my

552 Notices of the AMS Volume 58, Number 4



reading, I came upon the following
application. Let S be a set of 3N
points in the plane. Then, there is a
point p, not necessarily in S, such
that every half-plane containing p
contains at least N points from S.
It struck me that this would follow
simply if it were always possible to
split S into N triplets so that the N
triangles so formed would have a
common point p. For, a half-plane
containing p would contain at least
1 vertex from each triangle.

Thus Tverberg ran into Birch’s problem in an
attempt to prove Rado’s center point theorem—
just the opposite direction from that taken by
Birch.
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Helge Tverberg, 1981.

In 1962 Tverberg attended the ICM in Stockholm,
Sweden, and there, after a dinner with Bryan Birch
and Hallard Croft from England, before parting
at some street corner, he told Croft about his
problem about 3N points in the plane. Croft had to
disappoint him, the result already being known and
having been published by Birch—but he suggested
that Tverberg could try his luck on the higher-
dimensional case, which Birch had been unable to
do.

Then in 1963 Tverberg first solved the three-
dimensional case by a complicated proof that
consisted of seven separate cases and offered no
hope for an extension to higher dimensions.

One year later, in 1964, he then obtained a travel
stipend to England, where he wanted to discuss the
problem with Birch (then in Manchester) and with
Richard Rado (at the University of Reading). Rado
had also obtained partial results. What happened
then, Tverberg describes as follows [21, p. 16/17]:

I recall that the weather was bitterly
cold in Manchester. I awoke very
early one morning shivering, as the
electric heater in the hotel room
had gone off, and I did not have an
extra shilling to feed the meter. So,
instead of falling back to sleep, I
reviewed the problem once more,
and then the solution dawned on
me!

I explained it to Birch, and, after
an agreeable day of mathematical
conversation with him, returned
to Norway to start writing up the
result.

Birch disagrees on this: he remembers that Tverberg
was not all that interested in explaining his solution,
and rather more in seeing a bit of England on his
last day. But it’s not our job to resolve this apparent
contradiction here. In any case, in 1966 (submitted
May 8, 1964) Tverberg’s paper “A generalization of
Radon’s theorem” [20] appeared, which he refers to
as “T66”. The Tverberg theorem is his most famous
result, which he came back to again and again. Thus
“A generalization of Radon’s theorem, II” appeared
in 1981 with a new proof, and “On generalizations
of Radon’s theorem and the ham sandwich theorem”
(joint work with Siniša Vrećica) in 1993, which
contains a tantalizing conjecture, an extension of
Tverberg’s theorem to transversals. The original
Tverberg theorem now has several different proofs,
including those by Tverberg, Roudneff, Sarkaria,
and more recently by Zvagel’skii. An especially
elegant version is due to Karanbir Sarkaria [17],
with further simplifications by Shmuel Onn [4]
[11] [12, Sect. 8.3].

Tverberg’s theorem, as proved in the “T66”
paper, happens to be exactly Birch’s conjecture.
Nevertheless, we would phrase it differently today.
Thus from now on we used to denote the dimension
(that is, d = 2 in Birch’s classical theorem). We use
the letter r for the number of subsets we want to
partition into (which was previously denoted by N).
And we use the letterN to denoteN := (d+1)(r−1)
(and thus unfortunately it now means something
completely different than before). And instead of
discussingN+1 points in the plane and the convex
hulls of subsets, we now consider anN-dimensional
simplex ∆N (which has N + 1 = (d + 1)(r − 1)+ 1
vertices) and an affine map that in particular
positions the N + 1 vertices of ∆N in Rd . Thus
Tverberg’s theorem gets its modern form:

Birch’s Conjecture = Tverberg’s Theorem: Let
d ≥ 1, r ≥ 2, and N := (d + 1)(r − 1). For every
affine map f : ∆N → Rd there are r disjoint faces of∆N whose images under f intersect.

The following diagram illustrates this result for
the small parameters d = 2 and r = 2, where we
get N = 3, and thus have to consider a map of
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a tetrahedron (three-dimensional simplex) to the
plane.

The Topological Tverberg Theorem
The modern version of the Tverberg theorem is
not only more succinct (and a bit more abstract),
but it also has the advantage of suggesting a
generalization, known as the “topological Tverberg
theorem”, which the Hungarian mathematicians
Imre Bárány and András Szűcs, together with the
Russian Senya B. Shlosman, presented in 1981.

Topological Tverberg Theorem: [5] Let d ≥ 1,
r ≥ 2, andN := (d+1)(r−1). For every continuous
map f : ∆N → Rd there are r disjoint faces of ∆N
whose images under f intersect.

The name “topological Tverberg theorem” hap-
pens to be pretty bad terminology, not only since
neither Tverberg nor the theorem is “topological”
but—much more seriously—since in the version
I have just stated this is not a theorem, but only
a conjecture. Indeed, Bárány et al. claimed and
proved this only for the case where r ≥ 2 is a prime.
Only later was this extended to the case of prime
powers r , first by Murad Özaydin in an unpublished
preprint from 1987. We refer to the wonderful
textbook Using the Borsuk–Ulam Theorem by Jǐrí
Matoušek [13] for details and references. In any
case the conjecture remains open and a challenge
up to now for d ≥ 2 and nonprime powers r .

“… We Need a Colored Version …”
A team of three Hungarians, Imre Bárány, Zoltan
Füredi, and László Lovász, in an influential com-
putational geometry paper “On the number of
halving planes” (conference proceedings version
1988, journal publication 1990 [3]) stumbled upon
a situation with three disjoint sets A,B,C of points
in the plane and observed:

For this we need a colored version
of Tverberg’s theorem.

In their paper they needed only a very simple
small special case:

LetA,B,C be sets of t red, green, resp. blue points
in the plane, then one can find r = 3 disjoint triples
consisting of one of point of each color such that the
convex hulls of the triples have a point in common.

They gave a proof for t = 7, asserted they also
had a proof for t = 4, but also noted that they had
no counterexample even for t = 3.

The call for a colored version of Tverberg’s
theorem was seen as a challenge and attacked
immediately. The first answer, by Imre Bárány and
David Larman in 1991, treated the case of 3r points
in the plane, with three different colors:

“… given r red, r white, r green
points in the plane …”.

(Question: Why these particular three colors? I
have recently asked David Larman; he didn’t know.
Perhaps his coauthor managed to slip in the colors
of the Hungarian flag?)

Anyway, here is the answer suggested by Bárány
and Larman:

Colored Tverberg Theorem: Let d ≥ 1 and
r ≥ 2, and f : ∆N -→ Rd affine (order at least
continuous), where the N + 1 vertices of ∆N carry
d + 1 different colors, and every color class Ci has
size |Ci| ≥ t for a sufficiently large t . Then ∆N has
r disjoint rainbow faces, whose images under f
intersect.

Of course again here neither Tverberg nor
the theorem is colored. And the statement just
proposed is not a useful theorem, as it does not
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specify the “sufficiently large t”. A rainbow face
refers to a d-dimensional face of the simplex whose
d + 1 vertices carry the d + 1 different colors. In
the case d = 2 thus we have at least 3t points in
the plane, which carry the three different colors.
The claim is that then there are r rainbow triangles
that have a point in common:

For d = 2 Bárány and Larman proved this, and
indeed they obtained a “sharp” colored version of
Birch’s theorem: for d = 2 it suffices to require
that t ≥ r . For d = 1 the analogous colored version
of Tverberg’s theorem is a nice exercise. For d > 2
Bárány and Larman presented it as a conjecture.

This was answered by a breakthrough paper by
Rade Živaljević and Siniša Vrećica from Belgrade,
Yugoslavia, published in 1992 [24]. They introduced
new concepts and methods to topological combi-
natorics (in particular, “chessboard complexes”)
and thus could show that the colored Tverberg, in
the version just given, holds for t ≥ 2r − 1, if r is a
prime, and thus also for t ≥ 4r − 3 and all r ≥ 2,
due to Bertrand’s postulate that there is always a
prime between n and 2n [1, Chap. 2].

Živaljević and Vrećica’s breakthrough got a lot
of attention. In particular, Jǐrí Matoušek in Prague
was so excited that he gave a course that eventually
led to the textbook [13] mentioned before, which
develops all the mathematics from scratch that
is needed to arrive eventually, in the last section
of the book, at the Živaljevíc–Vrećica proof of the
colored Tverberg theorem.

Nevertheless, the gap between t = r and t ≥
4r − 3 remained: the colored Tverberg theorem
of Živaljević and Vrećica is not sharp. And also
it is not a generalization or strengthening of the
classical, color-free Tverberg theorem.

A sharp version was obtained only very recently,
again by a team of three. Pavle V. M. Blagojević
from Belgrade, my Berlin Ph.D. student Benjamin
Matschke, and I were ready in October 2009 to
present a proof that t = r suffices when r + 1 is a
prime (and thus t = r + o(r) is good enough for
large r ).

This result was a surprise to us (and even more
to others, perhaps), since we arrived at it via
considerable detours and it needed a substantial
change of perspective. Indeed, we arrived at a
new colored Tverberg theorem that uses more
colors, requires different assumptions about the
color classes, and contains the classical Tverberg
theorem as a special case—and turns out to be
much easier to prove.

A New Colored Tverberg Theorem
Here it is:

New Colored Tverberg Theorem [7]: Let d ≥ 1,
r ≥ 2 prime, N := (d + 1)(r − 1) and f : ∆N -→ Rd

affine (or at least continuous), where the N + 1 ver-
tices of ∆N have at least d + 2 different colors, and
each color class Ci has size |Ci| ≤ r − 1. The ∆N
has r disjoint rainbow faces whose images under f
intersect.

Thus, for example, we consider the following
situation in the plane (d = 2) for r = 5, in which
theN+1 = 3·4+1 = 13 points have four different
colors and no color is used more than r − 1 = 4
times (see the following figure).

In comparison to the original colored Tverberg
theorem the number of colors has changed (not
d + 1 any more, but at least d + 2), the sizes of
the color classes have changed (not “large enough”
any more, and at least r , but instead less than r ),
and the definition of a rainbow face has changed
(they do not have to carry all the colors any more,
and indeed they can’t, but now they are defined as
faces on which no vertex color appears more than
once). One of the solutions looks like the figure at
the top of the next page. Try to find one yourself,
before you turn the page!

Our theorem admits the special case that all
color classes have size 1; thus all the vertices
of the simplex ∆N have distinct colors, and thus
all faces have the rainbow property, and thus we
obtain the original topological Tverberg theorem
by Bárány–Shlosman–Szűcz as a special case.
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In a second special case we could have d + 1
color classes of size r − 1, and one final color class
would consist of a single additional vertex with a
separate color. This special case turns out to be
important since we can derive the sharp classical
Tverberg theorem from it (for primes r ), but also
since this special case indeed also implies the
theorem in full generality. Both these reductions
are elementary geometric (and the ideas needed
have been used before in similar contexts).

Thus we must prove the new colored Tverberg
theorem for the case of color classes |C0| = |C1| =
· · · = |Cd| = r − 1 and |Cd+1| = 1. For this we use
the by-now classical configuration space/test map
scheme, which can be learned from the textbook
[13]—which recently on German eBay appeared in
the category “Books>Children’s & Youth Literature
> Fun & Games > Knowledge for Children”. So this
is certainly a book you and your family cannot do
without:

According to this scheme we have to show
that a certain equivariant map does not exist.
More precisely, we want to show that there is no
continuous map

F : (∆r−1,r)∗(d+1) ∗ [r] -→G SN−1

that is compatible with the action of a finite group
G (here a cyclic or a symmetric group). Here

the topological space on the left-hand side is a
simplicial complex that encodes the sets of r points
on r disjoint rainbow faces of ∆N ; the right-hand
side encodes the r -tuples of points (not all equal)
they would map to.

The classical “there is no such map” result of
this type is the Borsuk–Ulam theorem, which says
that there is no continuous map

F : Sn -→Z2 S
n−1

that would be compatible with the antipodal action
of the group Z2.

For our more complicated setup we have even
provided three different proofs. The easiest one
may be found in [8]; it uses the mapping degree.
One interesting aspect of this proof is that it asks
us to count the number of Tverberg partitions for a
certain point configuration, where we get the result
(r − 1)!d . We eventually conclude that (r − 1)!d
must be divisible by r , which is not true if r is a
prime. (See also [23] for a sketch of this proof, and
[14] for an elementary “topology-free” version.)

The second proof (which we found first) is
technically more demanding; it uses equivariant
obstruction theory, which one can learn from
Tammo tom Dieck’s book on transformation groups
[19, Sect. II.3] and then apply to our concrete
situation. Here one has to act with care, as the
action of the symmetric group is not free. This
proof is not only more difficult than the first one,
but it also yields more: we get that the configuration
space/test map proof scheme works, even if we use
the full symmetric group, if and only if (r − 1)!d is
not divisible by r , that is, if r is a prime and in the
uninteresting case r = 4, d = 1. In all other cases,
the equivariant map F in question does exist, and
we cannot conclude anything.

The third proof, also from [8], is the most
complicated one: it computes the Fadell–Husseini
index, an ideal of the cohomology ring of the
group that we have acting. However, it also yields
even more: We get the full theorem directly,
without previous reduction to the special case
of color classes of sizes d − 1 resp. 1, and thus
it can be extended to a proof of the transversal
generalization of the new colored Tverberg theorem.

“Proofs should be communicated
only by consenting adults in private”

— Victor Klee (U. Washington)

Questions, Problems, Challenges
1. As mentioned above, for the classical Tverberg

theorem we have “elementary” linear algebra proofs
that would work for all r ≥ 2. Is there a similar
proof also for the affine case of the new colored
Tverberg theorem?

2. The Tverberg theorems, whether colored or
not, promise to us the existence of a specified type
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of partition of a point configuration. How would
one find one? Is it easy to find such a partition,
can one compute one in polynomial time? This is
not clear at all—not even for the probably much
simpler colored Carathéodory theorem of Bárány
[2] [12, Sect. 8.2].

3. Whoever plays around with instances of the
Tverberg theorem will notice that typically there is
not only one Tverberg partition, but indeed many
of them. For the configuration of (d+ 1)(r − 1)+ 1
points in Rd that is suggested by our third figure,
there are exactly (r − 1)!d distinct partitions.
Gerard Sierksma from Groningen, Netherlands,
has conjectured that there are always (that is, for
all point configurations) at least (r − 1)!d distinct
Tverberg partitions. Indeed, he has offered one
whole Gouda cheese for a proof of his conjecture,
which is why it is known as “Sierksma’s Dutch
Cheese Problem”. This problem is open even for
the case of d = 2. Lower bounds on the number of
solutions have been obtained by Aleksandar Vučíc
and Rade Živaljević [22] in the case of primes and
by Stephan Hell [10] for the case of prime powers.
It may well be that good lower bounds are easier
to prove for the Tverberg theorem with colors and
that those could eventually be put together to yield
tight bounds for the case without colors.

4. The case when r is not a prime power
continues to be the greatest challenge. For d = 2
Torsten Schöneborn and I have recast this into a
graph drawing problem [18]. Thus, for the smallest
case of r = 6, we would ask whether every drawing
of the complete graph K16 in the plane either has
a vertex that is surrounded by five triangles (with
winding number not equal to zero) or whether
some crossing of two disjoint edges is surrounded
by four triangles. Counterexample, anyone?

“I was of course flabbergasted by the variety
of generalisations that have blossomed
in that particular garden!”

— Bryan Birch (2010)
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