
A Brief but Historic
Article of Siegel
Rodrigo A. Pérez

À Adrien Douady et les hiboux

T
he two papers published by Carl L. Siegel
in 1942 were printed on ten consecutive
pages in the October issue of the Annals
of Mathematics. In one of these papers
Siegel gave the first positive solution to

a small denominator problem, and by doing so
he showed that there was hope for a successful
attack on one of the most important problems
of the previous sixty years. It was a remarkable
achievement that has earned [15] acclaim as

“one of the landmark papers of the

twentieth century.”1

To justify this high opinion, we need to under-
stand Siegel’s proof and its historical background.
In this article I will explain

◦ What small denominators are and why they
are important.

◦ The linearization problem and its status
in 1942.

◦ Siegel’s original proof, including the cor-
rection of a minor gap.

◦ Some of the major mathematical develop-
ments in the wake of [15].

How to Read This Article
Siegel was a master of concise writing. In only six
pages he included a motivation for the result and
presented an intricate yet self-contained proof.
One drawback of his exposition is that it takes
considerable ingenuity to see how all the pieces fit
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1The quote is from [3, p. 482]. The present title is derived

from similar praise in [18, p. 6].

together, even though the only prerequisite is to

be able to compute the radius of convergence of a

power series using the root test.

The initial aim of this article was simply to

give an easy-to-read account of the original proof,

but soon I found myself tracking the ideas that

must have gone into play as Siegel found his

arguments and prepared them for publication.

As a result, the proof I first produced is now

substantially simplified and annotated. Motivated

undergraduates with a semester of analysis under

their belts should be able to follow the entire

argument. Graduate students writing a paper for

the first time may find it interesting to pursue

a comparative reading of this material and [15],

which is widely available through jstor. As a note

of warning for them, I kept Siegel’s notation for the

most part but made some changes (particularly

regarding subindices) that simplify the exposition

and keep compatibility between sections.

The following two sections give some histori-

cal background on small denominators. The next

section explains the problem, and the subsequent

section describes diophantine conditions. The the-

orem and its proof span the remaining sections.

Note that the two lemmas are numbered as in

[15]; nevertheless, Lemma 1 is proved at the end

because it is only incidental to the main argument.

The remarks at the end give a minimal account

of events after the publication of [15]. The reader

interested only in the historical aspects of this

story can safely skip the section on diophantine

conditions and the last five sections.

What Is a Small Denominator?

Before we can answer this question, consider a

harmonic oscillator ẍ +ω2
1x = 0, whose general
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C. L. Siegel

solution x(t) = A cos(ω1t +ϕ) represents a peri-
odic motion of frequency ω1. If we add a periodic
perturbation of frequency ω2 ≠ω1,

ẍ+ω2
1x+ cos(ω2t) = 0,

the new solution has the form

x(t) = A cos(ω1t +ϕ)−
cos(ω2t)

ω2
1 −ω2

2

.

This function is only periodic whenω2 is a rational
multiple ofω1 , but even when that is not the case, it
features nice, bounded, quasi-regular oscillations.
Note that if ω2 is close to ±ω1, the quotient on
the right can become arbitrarily large. To see what
happens asω2 approachesω1, let us focus on the
simplest initial conditions x(0) = ẋ(0) = 0. Then

x(t) = cos(ω1t)− cos(ω2t)

ω2
1 −ω2

2

,

and L’Hôpital’s rule gives x(t) = −t sin(ω1t)
2ω1

in the

limit asω2 →ω1. This last function is unbounded
because the periodic kicks of the perturbation
build up without canceling. This is the essence
of the phenomenon of resonance which is so
troublesome to engineers.

A striking example of amplitude growth near
resonance is given by the tide system in the Bay
of Fundy, Nova Scotia: tides are caused by the
gravitational influence of the moon and the sun
on big bodies of water. The largest component of
this influence is the principal lunar semidiurnal
constituent whose frequency is 12.42 hours (one
half of the average time needed for the Earth to
rotate once relative to the moon). This is very close
to the 13.3 ± 0.4 hours needed by large waves to
travel from the mouth of the bay to the inner shore
and back [7]. Combined with a host of secondary
effects, this match of frequencies produces the
highest tides in the world.

A more sophisticated phenomenon than simple

resonance occurs when two distinct periodic mo-

tions of frequenciesω1 andω2 interact with each

other. If nonlinear terms are present, the pertur-

bation is often expressed by a power series whose

coefficients have terms mω1 + nω2 (m,n ∈ Z) in

the denominators. We say that ω1 and ω2 display

a near resonance whenever the linear combina-

tion mω1 + nω2 is unusually small. Now we can

describe the small denominator problem, which

is simply(!) to establish convergence of the series

on the face of multiple near resonances that may

yield big coefficients.

Small denominators are found most commonly

in the perturbative theory of hamiltonian me-

chanics. The prototypical setting is the mutual

perturbation of two planets around the sun. In-

deed, the question of stability in the solar system,

which eluded Poincaré, was the initial motivation

for Siegel’s work.

Celestial Mechanics

In celestial mechanics, small denominators are

linked to long-term irregularities in planetary or-

bits. Here, “long term” is meant relative to the

period of the orbits. The earliest observed in-

stance of this phenomenon is known as the great

inequality of Jupiter and Saturn.

The mean motions of Jupiter and Saturn (the

average angle they cover daily in their orbits

around the sun) are ω1 = 299.1283′′ per day

and ω2 = 120.4548′′ per day, respectively. Since

ω1/ω2 is so close to 5/2, the time needed by

Jupiter to complete five orbits around the sun

(21662.945 days) is nearly identical to the time

taken by Saturn to complete two orbits (21518.440

days).

After a conjunction occurs (i.e., Jupiter aligns

between Saturn and the sun), it takes 21760.362

days for Jupiter to cover 8◦5′40′′ in excess of

five orbits and for Saturn to cover the same

8◦5′40′′ in excess of two orbits, thus reaching

alignment again. Two other conjunctions occur

at one third and two thirds of this time interval.

As a consequence, the perturbation exerted by

the two planets on each other, which is largest

near conjunction, tends to build up around three

equally spaced regions that slowly advance along

the orbits. The cumulative effect goes though a

cycle of about 918 years, during which Jupiter is

displaced as far as 48.5′ and Saturn as far as 21′

from their undisturbed trajectories.

This discrepancy was noticed in actual observa-

tions and troubled astronomers during the better

parts of the seventeenth and eighteenth centuries.

It was finally explained by Laplace in a famous

three-part memoir published between 1784 and

1786. The first exposition of the methods of
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Figure 1. If the ratio of periods was exactly
2/5, Saturn would cover two thirds of its orbit
in the time that Jupiter covers five thirds of its

own.

perturbation theory is also due to Laplace and ap-

peared in the first two volumes of his Mécanique

céleste, published in 1799. By the second half of

the nineteenth century, perturbation theory had

been developed to a very high degree. In 1860–67,

C.-E. Delaunay published two 900-page volumes

[6] in which he computed the orbit of the moon

under the perturbative influence of the sun. The

three resulting series for the moon’s latitude, lon-

gitude, and parallax include all terms up to order 7

and span 121 pages altogether.

Chapter III of Delaunay’s opus contains the

first analytic description of small denominators

[6, pg. 87]. The hamiltonian of the perturbed mo-

tion of the moon is a function R of the mean

motions ωM ,ωS of the moon and the sun (n and

n′ in [6]), and two other astronomical quantities.

When the periodic component of R is written ex-

plicitly, the solutions to Hamilton’s equations

feature trigonometric series with linear com-

binations of ωM and ωS in the denominators.

Delaunay pointed out that because of this, higher

order terms can be larger than first-order terms,

making a truncated approximation useless.

Although small denominators show up in other

contexts in celestial mechanics, the underlying

setting is always a series of the form

∑

m∈(Zn)∗
am
ei(m·ω)t

m ·ω ,

whereω is a vector of frequencies. If ω has many

near resonances, the coefficients may grow too

large too often, threatening the convergence of

the series. H. Poincaré was the first to recognize

and address this difficulty. In an often quoted frag-

ment of the Méthodes Nouvelles [14, §148–149], he

admitted that his methods did not guarantee the

convergence of these series, but he granted the (re-

mote) possibility that some particular convergent

cases may exist. Poincaré was remarkably pre-

scient in guessing both the existence of solutions

and the difficulty of the proofs.

The Linearization Problem

Small denominators appear in many other settings

in which irrational frequencies resonate. Siegel

focused on a model problem in which no physi-

cal considerations obscure the small-denominator

issue.

Let f (z) =
∑∞
r=1 arz

r be a nonlinear complex

analytic function with a fixed point at 0. The value

f ′(0) is called the multiplier of 0 and will be

denoted λ. Here, λ is assumed different from 0.

The linearization problem asks if there is a

function ϕ(z) =
∑∞
k=1 ckz

k satisfying

(1) ϕ(λz) =
(
f ◦ϕ

)
(z).

Note that if such a map exists, multiplication by a

constant c before applying ϕ simply rescales the

domain, so z ֏ ϕ(cz) is also a linearizing map.

By setting c = 1/ϕ′(0), the coefficient c1 can be

assumed to be 1.

The Kœnigs-Poincaré theorem [12, p. 77] guar-

antees a solution to the linearization equation (1)

whenever |λ| ≠ 1. If λn = 1, an easy computation

shows that f is linearizable if and only if f n = id.

This leaves λ = e2πiθ with irrational θ as the

most interesting case, and this condition will be

assumed from now on. Geometrically, (1) says that

f is conjugate to an irrational rotation around the

fixed point. The maximal domain of linearization

is known today as a Siegel disk.

Figure 2. The Julia set of f (z) = z2 + cf (z) = z2 + cf (z) = z2 + c, where ccc
was chosen so that fff has a Siegel disk with

rotation number θ = ( 3
√

2− 1) ≈ 0.259921 . . .θ = ( 3
√

2− 1) ≈ 0.259921 . . .θ = ( 3
√

2− 1) ≈ 0.259921 . . .
The disk is the large highlighted region in the

center.

In terms of the power series of f and ϕ,

equation (1) has the form

∞∑

k=1

ck
(
λz
)k =

∞∑
r=1

ar




∞∑

ℓ=1

cℓz
ℓ



r

;
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or, singling out the first term on the right (note

that a1 = λ),

(2)

∞∑

k=2

ck
(
λk − λ

)
zk =

∞∑
r=2

ar




∞∑

ℓ=1

cℓz
ℓ



r

.

Since c1 is taken to be 1, equation (2) gives a
concrete recursive description of the sequence
{ck}. It states that ck

(
λk − λ

)
zk is the sum

of all zk-monomials present in the right-hand

side. Now, the expression ar
(∑∞

ℓ=1 cℓz
ℓ
)r

pro-

duces zk-monomials exactly when 2 ≤ r ≤ k. These

monomials have the form ar ·(cℓ1z
ℓ1)·. . .·(cℓr zℓr ),

where the powers of z add up to k, so for k ≥ 2,
(3)

ck =
(

1

λk − λ

)


k∑
r=2

∑

ℓ1+...+ℓr=k
ar · cℓ1 · . . . · cℓr


 .

Equation (3) seems to solve the linearization
problem as it defines explicitly the coefficients of
a power series solution to (1). However, depending

on the value of λ, the absolute values

(4) εk := 1

|λk+1 − λ| =
1

|λk − 1|
(note the index discrepancy)

can get very large very often. This threatens the
convergence of the power series forϕ, and, indeed,
it is possible that the series solution is only formal.
We will call εk an sd-term, leaving the reader at
liberty to decide whether sd stands for “Small

Denominator” or “Siegel Disk”.
Poincaré’s opinion on the scarcity of lineariz-

able maps was prevalent for half a century. In 1917
G. Pfeiffer [13] constructed the first nonlineariz-
able example, and in 1928 H. Cremer [5] found a
dense Gδ set of angles for which no rational func-

tion is linearizable. In this atmosphere, Siegel’s
paper came as a surprise, as he found a large
family of angles θ (satisfying condition (5)) for
which linearization is possible. To state his result
we need the following definition and a discussion

of diophantine conditions.

Definition. The power series of f is convergent,
so there is a smallest a > 0 satisfying |ar | ≤ ar−1

for all r . If f is replaced by the conjugate function
af (z/a), the multiplier remains intact, but we can
assume |ar | ≤ 1. Such f is said to be normalized.

Diophantine Conditions
Siegel required that λ satisfy

(5) log |λn − 1| = O(logn) as n →∞.
This says that there is a constant ν̂ > 0 such that
for sufficiently large n,

∣∣ log |λn − 1|
∣∣ ≤ ν̂ logn.

Since log |λn − 1| is at most log 2 (for λm accu-
mulating at −1), condition (5) makes sense as a

bound on− log |λn−1|when λn−1 becomes small.

Taking exponentials gives |λn − 1|−1 ≤ nν̂ for n
larger than some M . This can be changed to a

condition for every n by letting K be the larger

of 1 and maxn≤M
{(
nν̂|λn − 1|

)−1
}

. Then, setting

ν = ν̂ + log2K gives2

(6) |λn − 1|−1 ≤ Knν̂ < (2n)ν .
Recall that λ = e2πiθ , so |λn−1| = 2| sin(πnθ)|.

More precisely [12, p. 129], if m is the nearest

integer to nθ, i.e., if |nθ−m| < 1/2, then |λn−1| =
2 sin(π|nθ −m|), and since the graph of sin(πx)
lies between the lines y = 2x and y = πx when

0 ≤ x ≤ 1/2,

4|nθ −m| ≤ |λn − 1| < 2π|nθ −m|.
Thus, (6) is equivalent to

(7)

∣∣∣∣θ −
m

n

∣∣∣∣ >
Q

nν+1
,

which is the defining property of a diophantine

number θ of order ν + 1. Denote the set of all θ
satisfying (7) by D(ν + 1). It turns out that the

lowest ν such that D(ν +1) is nonempty is ν = 1,

and that D(2) has measure 0. On the other hand,⋂
ν>2D(ν) has full measure on [0,1]. This implies

that λ satisfies (5) with probability one.

The Theorem
With the above notation, Siegel’s result can be

stated in its full strength as follows:

Theorem. Given ν ≥ 1, let bν = (3−
√

8)/25ν+1. If

θ ∈ D(ν + 1), then all normalized f of multiplier

λ = e2πiθ are linearizable, and the linearizing map

ϕ has radius of convergence at least bν .

In other words, all normalized f with multiplier

λ in a subset of full measure of the circle have

a guaranteed radius of linearization. The bound

depends only on the diophantineness order of λ
and is given explicitly.

The Majorant Method

To prove that the radius of convergence of ϕ is

positive, Siegel used Cauchy’s majorant method

to estimate the exponential rate of growth of the

sequence {ck}. This requires several steps. First,

note from (3) that the absolute values |ck| are

bounded by the real sequence {ĉk} defined by

ĉ1 = 1 and

(8) ĉk = εk−1




k∑
r=2

∑

ℓ1+...+ℓr=k
ĉℓ1 · . . . · ĉℓr




(recall the normalization assumption |ar | ≤ 1).

2See the comment following the proof of Lemma 2 for a

justification of this choice of logarithmic base.
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The structure of these numbers is somehow

obscured by their recursive definition. Following

(8), the first coefficients are

ĉ2 = ε1

(
[ĉ1ĉ1]

)
= ε1 ,

ĉ3 = ε2

(
[ĉ1ĉ2 + ĉ2ĉ1]+ [ĉ1ĉ1ĉ1]

)
= 2ε2ε1 + ε2 ,

ĉ4 = ε3

(
[ĉ1ĉ3 + ĉ2ĉ2 + ĉ3ĉ1]+ [ĉ1ĉ1ĉ2 + ĉ1ĉ2ĉ1

(9)

+ ĉ2ĉ1ĉ1]+ [ĉ1ĉ1ĉ1ĉ1]
)

= 4ε3ε2ε1 + 2ε3ε2 + ε3ε1ε1 + 3ε3ε1 + ε3.

Thus, ĉk is the sum of many expressions, each

of which is the product of several sd-terms (not

necessarily different). It is possible to describe

explicitly which products appear, but that is not

important here and will be omitted.

Let τk be the number of products in the ex-

pansion of ĉk, and δk the maximum of their

values. From (9), it is clear for instance that

τ4 = 4 + 2 + 1 + 3 + 1 = 11, but the precise col-

lection of sd-terms whose product realizes the

maximum δk will depend on λ. Note, however,

that (setting aside the factor εk−1 of ĉk) the largest

product of sd-terms in the expansion of ĉk appears

in some product ĉℓ1 · . . . · ĉℓr and therefore has to

be the product of the largest products in each of

ĉℓ1 , . . . , ĉℓr . In other words, δk is given by δ1 = 1

and

(10) δk = εk−1· max
ℓ1+...+ℓr=k

2≤r≤k

{δℓ1 ·. . .·δℓr } (k ≥ 2).

This recursive definition allows for a much more

efficient computation of δk.

Cauchy’s majorant method is based on the

obvious fact that

(11) |ck| ≤ ĉk ≤ δkτk,
and on the observation that the values τk are given

by τ1 = 1 and the recursion

τk =



k∑
r=2

∑

ℓ1+...+ℓr=k
τℓ1 · . . . · τℓr




(compare with (8)).

The theorem will follow from (11) and the

exponential bounds (12) on {τk} and (23) on {δk}.
It is useful to keep in mind that the definition of

the numbers τk is related to the structure of the

linearization equation (1), while the definition of

δk reflects the effect of the angle θ on the sd-terms

εk.

τk Grows Exponentially

The Schröder numbers {τk} are well known in

combinatorics (see [16, sequence A001003], [17],

and references therein). The initial values are 1, 1,

3, 11, 45, 197, 903, 4279, 20793, 103049, . . . , and

their generating function y(x) =
∑
τℓxℓ satisfies

the functional equation

y = x+
∞∑
r=2

yr

essentially by the same line of reasoning that

produces (3) from (2). Since the above is just

y = x+ y2

1−y , it follows that

y(x) = 1+ x−
√

1− 6x+ x2

4
,

so the radius of convergence of y is the absolute

value of the smallest root of 1 − 6x + x2; i.e.,

(3−
√

8). In particular, the sequence {τk} grows as
a power of (3−

√
8)−1 = (3+

√
8). More accurately,

it is known [11] that it has the asymptotic behavior

(12) τk ∼
W
(
3+

√
8
)k

k3/2
,

where W = 1

4

√(√
18− 4

)
/π = 0.069478 . . .

The Subtle Estimate
The bulk of Siegel’s proof is concerned with show-

ing that the sequence {δk} defined by recursion

(10) has an exponential bound whenever the sd-

terms satisfy (6). Using the notation in (4), the

diophantine condition reads

(13) εk ≤ (2k)ν .
This will be called the basic estimate. Since each

δk is a product of O(k) sd-terms, (13) is far from

giving an efficient bound on the growth of the

sequence. Siegel’s insight, and one of the reasons

his result was so influential, was the realization

that once an sd-term is large, it takes several steps

before another sd-term can have comparable size.

This is made precise in the following argument.

Since

λq(λp−q − 1) = (λp − 1)− (λq − 1),

and |λq| = 1, we get via the triangle inequality,

|λp−q − 1| ≤ |λp − 1| + |λq − 1|.
In sd-notation the above reads

ε−1
p−q ≤ ε−1

p + ε−1
q ≤ 2

(
min{εp, εq}

)−1
.

Then, applying the basic estimate (13) to εp−q,

(14) min{εp, εq} ≤ 2ν+1(p − q)ν .
This is much better than the trivial min{εp, εq} ≤
min{(2p)ν , (2q)ν} and will be called the subtle

estimate. Siegel must have been pleased with the

simplicity of this core idea, because he actually

allowed himself a small boasting note at this point

[15, p. 610]:

“This simple remark is the main

argument of the whole proof.”
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A Bound on a Product of SD-Terms
How does an estimate on the least of two sd-terms
yield an upper estimate on a product of sd-terms?
The following proof of Lemma 2 reformulates the
inductive argument in [15] to answer this question.
To simplify notation, letN = 22ν+1 (a constant that
depends on the diophantineness value).

Lemma 2. Given r + 1 indices k0 > . . . > kr ≥ 1,
the following holds:

(15)

r∏
p=0

εkp < N
r+1 · kν0

r∏
p=1

(
kp−1 − kp

)ν
.

Note that it is the indices, rather than the sd-
terms themselves, that are arranged by size in
(strictly) descending order.

Proof. The proof is by induction. The basic esti-
mate (13) covers the case r = 0. If r = 1, the basic
and subtle estimates give

εk0 · εk1 ≤ (2ν max{kν0 , kν1}) · (2ν+1|k0 − k1|ν)
< N2 · kν0 · |k0 − k1|ν .

Now consider the case of r + 1 ≥ 3 sd-terms,
and let εkj be the smallest one. By the induction hy-

pothesis, the remaining sd-terms satisfy (15) with
the index kj missing. If j = 0, then εkj = εk0 is

bounded by

2ν+1(k0 − k1)
ν < N(k0 − k1)

ν

and (15) holds. A similar argument applies when
j = r .

When 0 < j < r , the inductive bound on εk0 ·. . .·
εkj−1·εkj+1·. . .·εkr contains the factor (kj−1−kj+1)ν .

Let a,b be such that {ka, kb} = {kj−1, kj+1} and
|ka − kj| ≥ |kj − kb|. It follows that (kj−1− kj+1) ≤
2|ka − kj |, while (14) gives εkj ≤ 2ν+1|kj − kb|ν .

Then the product
∏r
p=0 εkp of all r + 1 sd-terms is

bounded by

Nr ·k0 ·(k0 − k1)
ν·. . .· (kj−1 − kj+1)

ν ·εkj ·. . .·(kr−1 − kr )ν

≤ Nr ·k0 ·(k0 − k1)
ν·. . .·2ν |ka − kj |ν ·2ν+1|kj − kb|ν·. . .·(kr−1 − kr )ν

= Nr+1·k0 ·(k0 − k1)
ν·. . .· (kj−1 − kj )ν ·(kj − kj+1)

ν ·. . .·(kr−1 − kr )ν.�

It is worth noting that in the factorization
N = 2ν · 2ν+1 used in the last equality, both
powers of 2 come from different sources. The
factor 2ν is due to the fact that the interval
[kj−1, kj+1] is shorter than twice the longer of

[kj−1, kj] and [kj , kj+1]. The factor 2ν+1 on the
other hand comes from (6), where logarithmic
base 2 was chosen simply so that N has a clean
expression.

δk Grows Exponentially
The stage is set to find an exponential bound onδk.
It may be impossible to reconstruct what Siegel did
to discover a proof, but here is a plausible scenario.
Start by writing δk ≤ ACk/kB with the intention
of exploiting the recursive decomposition (10) to
find values A,B,C that make the inequality true.

The case δ1 ≤ AC suggests setting A = C−1 and

solving

(16) δk ≤
Ck−1

kB

for all k. A solution to (16) can always be upgraded

to one that satisfies

B
(a)
> 0 and C

(b)
≥ 2B

by a suitable increase in C. The extra conditions

(a) and (b) have the advantage that

δj1 · δj2 ≤
Cj1+j2−2

jB1 · jB2
= C−1

(
1

j1

+ 1

j2

)B
Cj1+j2−1

(j1 + j2)B

(a)
≤ C−12B

Cj1+j2−1

(j1 + j2)B
(b)
≤ Cj1+j2−1

(j1 + j2)B
,

and more generally,

(17) δj1 · . . . · δjt ≤
CJ−1

JB
,

whenever j1 + . . .+ jt = J.

Now suppose we are in possession of numbers

B and C that satisfy (a), (b), and (16) for all k ≥ 1

smaller than k0. Then inequality (19) below can be

reached by the following argument:

In the decomposition (10) of k0 the sum of

indices of all deltas is equal to k0. In particular,

there can be at most one index larger than k0/2. If

this is the case, write δk0 = εk0−1 · δk1 · ∆1 where

k1 > k0/2, and consider the decomposition (10) of

k1. There may still be an index larger than k0. If

so, write δk1 = εk1−1 · δk2 · ∆2, and continue this

process until the decomposition of some δkr has

no delta with index larger than k0. This produces

the following tower

δk0 = εk0−1 · δk1 ·∆1 ,

δk1 = εk1−1 · δk2 ·∆2 ,

...(18)

δkr−1 = εkr−1−1 · δkr ·∆r ,
δkr = εkr−1 · δℓ1 · . . . · δℓs ,

where k0 > k1 > . . . > kr > k0/2. Note that each

∆p lumps together many unnamed deltas. Their

indices add up to kp−1− kp, and are all at most k0.

The indices ℓq add up to kr and are also at most

k0. These conditions on indices will be necessary

in order to apply Lemma 1 in (22).

Let us collapse the tower by repeated substitu-

tion to get

δk0 =
r∏
p=0

εkp−1 ·
r∏
p=1

∆p · (δℓ1 · . . . · δℓs ).

Then, applying Lemma 2 to the product of sd-

terms, inequality (17) to each ∆p, and inequality
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(16) to each δℓq gives

δk0 ≤

Nr+1 · kν0

r∏
p=1

(
kp−1 − kp

)ν



(19)

·



r∏
p=1

C(kp−1−kp)−1

(kp−1 − kp)B


 ·




s∏
q=1

Cℓq−1

ℓBq




=
(
Nr+1 · C−r−s

)

·

kν0 ·

r∏
p=1

(kp−1 − kp)ν−B ·
s∏
q=1

ℓ−Bq


 · Ck0 .

Recall that this inequality is contingent on
finding B, C that satisfy (a), (b), and (16) with
1 ≤ k < k0. The goal is to discover a smart choice
of B and C so that the right-hand side of (19) is

also bounded by
Ck0−1

kB0
. Accordingly, the next step

is to find a way to extract a factor k−B0 from the
middle parenthesis. More precisely, we look for an
auxiliary inequality of the form

(20)




r∏
p=1

(kp−1 − kp)ν−B ·
s∏
q=1

ℓ−Bq


 ≤ k−ν−B0 · Ξ,

where Ξ may depend on r and s, but not on k0.
Since the sum of factors

∑
(kp−1 − kp)+

∑
ℓq is k0,

a simple heuristic for an inequality like (20) to be
possible is that the sums of exponents on the left
and right sides balance out. In the present case
this means (ν − B)− B = −ν − B, or

B
(c)= 2ν.

This is compatible with condition (a). As it turns
out, the heuristic works, and Siegel found the
inequality (24) of Lemma 1 (see the following
section). Together with (c) and the index conditions
mentioned after (18), inequality (24) yields the
following version of (20):
(21)


r∏
p=1

(kp−1 − kp)−ν ·
s∏
q=1

ℓ−2ν
q


 ≤

(
k0

2r+s−1

)−3ν

,

which means that (19) is bounded by

(22)
(
Nr+1 · C−r−s

)
·
(
kν0 ·

(
k0

2r+s−1

)−3ν
)
· Ck0

=
((

22ν+1
)r+1 ·

(
23ν

)r+s−1 · C−r−s+1
)
· C

k0−1

k2ν
0

≤
(

22ν+1 · 23ν

C

)r+s−1

· C
k0−1

k2ν
0

.

The last expression is smaller than
Ck0−1

k2ν
0

when

C ≥ 25ν+1. This last condition is compatible with (b)
and (c); and so, substituting B = 2ν and C = 25ν+1

in (19) and (22) yields a proof that

(23) δk0 ≤
(
25ν+1

)k0−1

k2ν
0

for all k0 ≥ 1, and the theorem is proved.

The Auxiliary Inequality
Althoughthe proof is correct, the middle inequality

in line (8) of [15] does not hold when k is odd and

t =
⌈
k
2

⌉
. The following proof of Lemma 1 simplifies

Siegel’s exposition and avoids this minor lapse by

considering instead inequality (29), which calls

for a separate treatment of the cases t = 2 and

k = 2,3,4.

Observation 1. The cubic polynomial P(x) = (R−
x)(x−S)2 with R > S has derivative P ′(x) = (2R+
S − 3x)(x− S), so S is a critical point. The second

derivative is P ′′(x) = 2R+4S−6x, which, evaluated

at x = S, is 2R − 2S > 0. Thus S is the only local

minimum of P . It follows that if the interval I =
[a,b] lies to the right of S, then

min
x∈I
{P(x)} = min{P(a), P(b)}.

Lemma 1. Let three integers k ≥ 2, r ≥ 0, and s ≥ 2

be given. If the integers x1, . . . , xr and y1, . . . , ys be-

long to
{

1, . . . ,
⌊
k
2

⌋}
and satisfy

∑r
p=1 xp+

∑s
q=1 yq =

k with
∑s
q=1 yq > k/2, then

(24)

r∏
p=1

xp ·
s∏
q=1

y2
q ≥

(
k

2r+s−1

)3

.

Proof. Let t = r + s ≥ 2. Since 2t − 2 ≤ 2t−1, it

suffices to prove

(25)
∏
xp ·

∏
y2
q ≥

(
k

2t − 2

)3

.

Some cases are immediate. If t = 2, then r = 0 and

s = 2, so y1 = y2 = k/2 and (25) holds. Also, (25)

holds trivially when k ≤ 2t − 2; this is the case for

k = 2,3,4 when t ≥ 3. It remains to consider what

happens when t ≥ 3, k ≥ 5, and k > 2t − 2, or

equivalently,

(26) 3 ≤ t ≤
⌈
k
2

⌉
.

The smallest product
∏
xp is realized when r−1

factors are equal to one, and the remaining factor
is what is left of

∑
xp. Thus,

∏
xp has the lower

bound
∑
xp − (r − 1). Analogously, the product∏

yq can be estimated from below by
∑
yq − (s −

1). However, a sharper bound is available when∑
yq − (s − 1) >

⌊
k
2

⌋
, for in that case the least

product is realized by s − 2 factors equal to one,

a factor equal to
⌊
k
2

⌋
, and a factor equal to the

rest (so that no yq is larger than
⌊
k
2

⌋
). In short,

(27)
∏
xp ≥

∑
xp − r + 1 ,

∏
yq ≥




∑
yq − s + 1 if

∑
yq − s + 1≤

⌊
k
2

⌋
,(∑

yq − s −
⌊
k
2

⌋
+ 2

)
·
⌊
k
2

⌋
if
∑
yq − s + 1≥

⌊
k
2

⌋
.
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The sum
∑
yq can take values between

(⌊
k
2

⌋
+ 1

)

and (k− r). The analysis that follows breaks into
two cases.

Case 1: If
(⌊

k
2

⌋
+ 1

)
≤
∑
yq ≤

(⌊
k
2

⌋
+ s − 1

)
, then

(27) gives
(28)∏
xp ·

∏
y2
q ≥

(
k−

∑
yq − r + 1

)
·
(∑
yq − s + 1

)2
.

Let R = k − r + 1 and S = s − 1, so (28) reads∏
xp ·

∏
y2
q ≥ P

(∑
yq
)
. Now, R > S so Observa-

tion 1 applies. The product
∏
xp ·

∏
y2
q is bounded

from below by the minimum of P in the range of∑
yq . Since the range is included in the (larger)

interval I =
[(⌊

k
2

⌋
− r + 1

)
,
(⌊

k
2

⌋
+ s − 1

)]
, and(⌊

k
2

⌋
− r + 1

)
> S by (26), the product

∏
xp ·

∏
y2
q

is bounded by the least of

P
(⌊

k
2

⌋
− r + 1

)
=
⌈
k
2

⌉ (⌊
k
2

⌋
− t + 2

)2

and

P
(⌊

k
2

⌋
+ s − 1

)
=
(⌈

k
2

⌉
− t + 2

) ⌊
k
2

⌋2

.

But
⌈
k
2

⌉
·
(⌊

k
2

⌋
− t + 2

)2

≤
⌈
k
2

⌉
·
(⌊

k
2

⌋
− t + 2

)
·
(⌈

k
2

⌉
− t + 2

)
≤

(⌊
k
2

⌋
+ 1

)
·
(⌊

k
2

⌋
− 1

)
·
(⌈

k
2

⌉
− t + 2

)

because t ≥ 3. The last line is smaller than(⌈
k
2

⌉
− t + 2

)
·
⌊
k
2

⌋2

, so for
∑
yq in this range,

∏
xp ·

∏
y2
q ≥

⌈
k
2

⌉ (⌊
k
2

⌋
− t + 2

)2

.

Case 2: If
(⌊

k
2

⌋
+ s − 1

)
≤
∑
yq ≤ (k− r), then (27)

gives
∏
xp ·

∏
y2
q ≥

(
k−

∑
yq−r+1

)
·
(∑
yq−s−

⌊
k
2

⌋
+2

)2
·
⌊
k
2

⌋2
.

In this case, let R = k−r +1 and S = s+
⌊
k
2

⌋
−2,

so (26) implies R > S. Now the range of
∑
yq is

in the interval I =
[(⌊

k
2

⌋
+ s − 1

)
, (k− r)

]
, which

clearly lies to the right of S. Observation 1 bounds∏
xp ·

∏
y2
q from below by the least of

P
(⌊

k
2

⌋
+ s − 1

)
=
(⌈

k
2

⌉
− t + 2

)
·
⌊
k
2

⌋2

and

P(k− r) =
(⌈

k
2

⌉
− t + 2

)2

·
⌊
k
2

⌋2

.

Obviously the former is smaller, so
∏
xp ·

∏
y2
q ≥(⌈

k
2

⌉
− t + 2

)
·
⌊
k
2

⌋2

; but at the end of Case 1 this

was shown to be larger than
⌈
k
2

⌉ (⌊
k
2

⌋
− t + 2

)2

, so

(29)

∏
xp ·

∏
y2
q ≥

⌈
k
2

⌉
·
(⌊

k
2

⌋
−t+2

)2
≥ k

2
·
(
k− 1

2
−t+2

)2

for all valid values of
∑
yq.

Now, (k− 1)/2 − t + 2 is a linear function of t ,
while (k−1)/(2t−2) is convex. Since the former is

larger than the latter when t = 3 and when t =
⌈
k
2

⌉
,

the same inequality is valid in the full range of t ,
so continuing from (29),

k

2
·
(
k− 1

2
− t + 2

)2

≥ k

2
·
(
k− 1

2t − 2

)2

=

(t − 1) ·
(
k− 1

k

)2

·
(

k

2t − 2

)3

≥

2 ·
(

4

5

)2

·
(

k

2t − 2

)3

>

(
k

2t − 2

)3

. �

Conclusion
The influence of [15] was due in part to the

elementary nature of the majorant method, which

I hope to have conveyed; but its major impact

was conceptual. Although the small-denominator

problem he solved was simpler than those found

in celestial mechanics, Siegel’s proof showed that

the convergence issue could be handled. His main

observation was that it is possible to quantify

how frequently small denominators of comparable

size can appear. This was a fruitful idea that he

extended to similar problems in several variables.

Moreover, the notion that number theory was

relevant to dynamical systems (via diophantine

approximations) served as a catalyst for much

ensuing research. In time, the study of rotation

domains became a subject of its own, with major

contributions by A. Brjuno, T. Cherry, M. Her-

man, J.-C. Yoccoz, R. Pérez-Marco, M. Shishikura,

C. McMullen, X. Buff, and A. Chéritat. In this area,

much of the effort was directed to geometric con-

siderations; for instance, the behavior of critical

points near the boundary of a Siegel disk or the

existence of Siegel disks with smooth boundary.

Alas, the approach in [15] did not apply in the

setting of hamiltonian dynamics where techniques

were most urgently sought. In 1954, at the Interna-

tional Congress of Mathematicians in Amsterdam,

A. Kolmogorov announced a theorem (inspired

in part by Siegel) that would change the face of

dynamical systems in the form of KAM theory:

In an integrable hamiltonian system the phase

space is foliated by invariant tori, each with an

associated rotation vector ω ∈ Rd . The solutions

within a given torus are conjugate to the linear

translation p ֏ p+ωt . When the entries of ω are

rationally independent, the solutions are dense in

the torus and are said to be quasi-periodic.

Prior to 1954 it was expected that a small per-

turbation of an integrable system would destroy

this structure, so that most trajectories would

break away from their original tori and wander

around phase space. That is, the assumption was

that the perturbed system should be ergodic.

Kolmogorov showed that the structure of the

perturbed solutions is much more interesting than

that. While many solutions do wiggle about phase
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space, diophantine3 rotation vectors still give rise

to (deformed) invariant tori where solutions are

quasi-periodic. Thus the regions of chaotic and

regular behavior are inextricably blended together,

and each has positive measure. In other words,

the ergodic hypothesis has to be discarded.

Notice how this result takes us from study-

ing the convergence of individual series to a

global study of the space of solutions. The the-

ory does not verify convergence for individual

initial conditions, but rather guarantees a positive

probability of convergence, while making clear the

role of the diophantine condition. In a sense, the

small-denominator problem has been bypassed.

After Kolmogorov’s announcement, techniques

like the majorant method were abandoned (even by

Siegel) in favor of global analysis in the KAM spirit.

One of the few people to revisit Siegel’s method

was A. Brjuno [1]. He improved the original proof

and described (what Yoccoz [18] would later prove

is) the largest class of angles θ for which every

analytic function f with fixed point 0 of multiplier

e2πiθ is linearizable. References to a few other

applications of the majorant method can be found

in [4].

Many questions remain open. Are there

bounded Siegel disks whose boundary is not

a Jordan curve? What is the structure around

Cremer points, where linearization is impossible?

In 2005 X. Buff and A. Chéritat completed a

project, started by A. Douady in the 1990s,

to construct polynomial Julia sets of positive

measure. The strategy is to approximate a Cremer

polynomial (whose Julia set has no interior) by

a sequence of linearizable polynomials while

delicately controlling the reduction in area of

the corresponding Siegel disks. Their results [2]

promise new life for an interesting subject.
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