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On June 3, 2010, Paul Malliavin died at the Ameri-

can Hospital in Paris. At the time of his death, he

was four months short of his eighty-fifth birthday.

Malliavin was a major mathematical figure

throughout his career. He studied under Szolem

Mandelbrojt, who had returned to France after

World War II from the United States, where he

had been on the faculty of what, at the time, was

the Rice Institute. Both Malliavin and Jean-Pierre

Kahane received their degrees under Mandelbrojt

in 1954, and Yitzhak Katznelson received his from

Mandelbrojt a couple of years later. Thus, in less

than three years, Mandelbrojt produced three stu-

dents who would go on to become major figures

in mid-twentieth-century harmonic analysis.

Malliavin’s own singular contribution to har-

monic analysis is described here by Kahane. Like

many other definitive solutions to mathematical

problems, Malliavin’s solution to the spectral syn-

thesis problem killed the field, with the ironic

consequence that few young mathematicians even

know the statement of the problem, much less the

name of the person responsible for its solution.

Not one to rest on his laurels, Malliavin soon

turned his attention in new directions. His early

work won him an invitation to visit Arne Beurl-

ing at the Institute for Advanced Study, where,

as Kahane explains here, during a second visit,

Malliavin and Beurling completely solved two fun-

damental problems in classical complex variable

theory. After completing his project with Beurling,

Daniel W. Stroock is professor of mathematics at the Mas-
sachusetts Institute of Technology. His email address is
dws@math.mit.edu.

Marc Yor is professor of mathematics at the Université
Pierre et Marie Curie. His email address is deaproba@

proba.jussieu.fr.

Paul Malliavin,
surrounded by books,

circa 2000.

Malliavin contin-
ued to think about
complex variable
theory and ex-
panded his inter-
ests to include
analytic functions
of more than one
variable. This line
of research culmi-
nated in his joint
paper, with his wife
Marie-Paule Malli-
avin. As Gundy
explains in his
essay here, this
paper represents
a departure from
classical, purely an-

alytic thinking about analytic functions and
potential theory. Instead, the ideas in the Malliavin
and Malliavin paper can be seen as descendants of
stochastic analytic techniques with which Joseph
Doob had given a novel derivation of the Fatou
theorem for analytic functions on the disk.

It would appear that Malliavin’s excursion into
probability theory made a lasting impression on
him. Ever since Laplace, France has had a proud
tradition in probability theory. At the turn of the
twentieth century, Emile Borel and Henri Lebesgue
were laying the foundations on which Andrey
Kolmogorov would build the axiom system which
has become the generally accepted one for the
mathematical analysis of random phenomena. At
the same time, Henri Poincaré’s student Louis
Bachelier was constructing the model which has
recently provided employment for many young
mathematicians in the financial industry.

That tradition was continued in France by Paul
Lévy, whose uncanny understanding of stochastic
processes became, once it was explained to the
rest of us by Kyoshi Itô, the basis for much of
the work that probabilists have done ever since.
Further, under the masterful tutelage of Jacques
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The young boy
Malliavin, circa
1940.

Neveu and, on the more
analytic side, Gustave
Choquet, postwar France
was producing a new co-
hort of mathematicians
whose primary interest
was probability theory.
Until recently, perhaps
the most influential of
these was Choquet’s stu-
dent Paul-André Meyer,
who realized that, in their
haste, Lévy, Doob, and
others had treated sev-
eral notions too casually,
a situation that Meyer,
first by himself and later

with his student Claude Dellacherie, remedied.
In spite of the existence of many active French

research groups in probability theory, Malliavin
charted his own course. He came to the subject
as an analyst with wide-ranging interests, and he
brought to the subject a vision which only someone
with his encyclopedic knowledge of mathematics
could provide. Free from prejudice about what
topics and methods are or are not “probabilistic”,
Malliavin trained his formidable technical exper-
tise on aspects of the field that had not been
fully considered. His initial project was to under-
stand Brownian motion on a Riemannian manifold
from a differential geometric standpoint. Building
on a key observation made by David Elworthy
and James Eells, Malliavin understood that the
Brownian motion on a manifold could be real-
ized by “rolling” a Euclidean Brownian motion in
the tangent space onto the manifold. In order to
overcome the technical difficulties posed by the
nondifferentiability of Brownian paths, he lifted
everything to the bundle of orthonormal frames,
where he could apply well-established techniques
from Itô stochastic differential calculus. As a
result, he gave an elegant construction of the
Brownian paths on the manifold, one in which
they came equipped with an intrinsic notion of
parallel transport. Malliavin’s ideas were quickly
absorbed and exploited by Jean-Michel Bismut,
who used them in his proof of the Atiyah–Singer
index theorem.

Having thoroughly assimilated Itô calculus,
Malliavin began to realize that Itô’s stochastic
differential equations could be viewed as a pre-
scription for defining nonlinear transformations
of Wiener space, transformations that, although
they are defined only up to a set of Wiener measure
0, are nonetheless “smooth” and, as such, are sus-
ceptible to analysis. This realization was the origin
of what Malliavin called the stochastic calculus of
variations and what one of the present authors
dubbed the “Malliavin calculus”, a cursory résumé
of whose initial formulation is given below.

Not content to have been its inventor, Malliavin
played a leading role in the application of the
Malliavin calculus. Over the past twenty-five years,
he and his collaborators produced a large body of
work in which his calculus played a central role.
The essay here by Leonard Gross gives a glimpse
into one of the programs in which Malliavin was
involved at the time of his death. Missing here
are accounts of the many other projects in which
Malliavin was engaged. For example, together with
his son-in-law Anton Thalmaier, Malliavin wrote a
book in 2000 in which various applications of his
calculus to mathematical finance are proposed.

Finally, we have included here an homage to
Malliavin composed by Michele Vergne. Her essay
portrays Malliavin the man, not just Malliavin
the mathematician. Most people, even those who
have made profound contributions, are unable
to sustain their vigor and eventually enter their
dotage. Malliavin never did. Indeed, his student
and longtime collaborator Hélène Airault was at
his bedside as he was dying, and she reports
that he was discussing mathematics from behind
the oxygen mask covering his face. He was a
remarkable individual, and, at least for those of us
who were privileged to know him, the world will
be a less interesting place now that he is gone.

Jean-Pierre Kahane

Malliavin and Fourier Analysis
It is worth reading Malliavin’s articles again and
again, and it would be useful to have them collected
and published together. He worked in several
branches of mathematics, but all his mathemati-
cal endeavors have in common a truly exceptional
vision which dominates the raw technical ac-
complishment: he insisted on understanding the
problem “from above” before he would delve into
the jungle of details involved in its solution. Here
I will restrict myself to a description of Malliavin’s
most important contribution to Fourier analysis.
Although it is only one of Malliavin’s many achieve-
ments, it exemplifies the vision that he brought to
all his work.

Rather than presenting the events in chrono-
logical order, I will start with Malliavin’s Compte-
Rendus note of April 13, 1959,1 the one that won
him instant recognition. Afterward, I will look back
on his 1954 thesis and forward to his collaboration
with Beurling in the 1960s.

Jean-Pierre Kahane is professor emeritus at the Univer-
sité de Paris-Sud. His email address is jean-pierre.

kahane@math.u-psud.fr.

This is a translation (slightly adapted for the Notices) of
an article published in La Gazette des mathematicians,
no. 126, October 2010.
1“On the impossibility of spectral synthesis on the line”.
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There is much more that I might have, and

maybe ought to have, included, but perhaps

this brief selection will hasten the day when

his collected works are made available.

The Spectral Synthesis Problem
In harmonic analysis, synthesis refers to the re-

construction of a sound, signal, function, or some

other quantity from its harmonics. For example,

periodic functions can be reconstructed via Fourier
series. More generally, such reconstruction is pos-

sible for functions that are almost periodic in the

sense of H. Bohr, functions that are quasi-periodic

in the sense of Paley and Wiener, and those that are
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Malliavin as a young
man.

mean-periodic in the sense

of Laurent Schwartz. In all

these cases, one associates

with an element f of a speci-

fied function space the closed
subspace τ(f ) generated by

the harmonics of f , and the

harmonics of f are the genera-

tors of the simplest subspaces

contained in τ(f ). (With the ex-
ception of the mean-periodic

case, in the examples cited

these subspaces are necessarily

one-dimensional.)
In terms of these subspaces,

the synthesis problem is that of

determining whether the har-

monics contained in τ(f ) generate τ(f ). This is

a very general question, but suppose that one
restricts one’s attention to spaces of bounded

functions. For example, consider the space L∞(R)
with the weak topology it has as the dual of L1(R).
(If one uses the strong topology, one recovers
Bohr’s almost-periodic functions.) The same ques-

tion can be asked about L∞(G) with the weak

topology when G is a locally compact Abelian

group such as Rd , Z, or Zd . When G is compact,

synthesis always holds, but Laurent Schwartz had
shown [22] in 1948 that it fails when G = R3 or

Rd for any d ≥ 3. Prior to Malliavin, the answer

remained unknown in other cases. In particular, it

was unknown for the crucial cases in which G is
R or Z, and finding the answer was a challenge to

every analyst of the day.

In his note [15], Malliavin solved the problem

whenG = R, and he gave the general solution in his

Annales de l’IHES article [16]. Namely, he proved
there that synthesis fails for L∞(G) whenever G
is a locally compact Abelian group which is not

compact.

The problem has many equivalent forms. By

duality, it can be seen as a question about the
structure of the closed ideals in the convolution

algebra L1(G), in terms of which the question is

whether such an ideal is the intersection of the

maximal ideals containing it. Alternatively, if Γ is

the dual group of G and A(Γ) is Wiener’s algebra,

whose elements are the Fourier transforms of
elements of L1(G), then the synthesis problem

is the same as that of determining whether every

closed ideal ofA(Γ) is the ideal of functions inA(Γ)
that vanish on some closed subset of Γ . If instead

ofA(Γ) one looks at space of continuous functions
on Γ that, if Γ is not compact, vanish at infinity, the

analogous question has a positive answer. In fact,

in that setting, the problem reduces to showing
that if f ∈ C(Γ) vanishes on a closed set E and µ is

a Radon measure on Γ that is supported on E, then

〈µ, f 〉 =
∫
f dµ = 0. For A(Γ), the problem can be

expressed in an analogous way, only the space of

Radon measures has to be replaced by the space

of “pseudo-measures”. That is, one wants to know
whether if f ∈ A(Γ) vanishes on a closed E ⊆ Γ
and if T is a pseudo-measure that is supported on
E, then it is necessarily true that 〈T, f 〉 = 0.

In the case in which G is a Euclidean space,

the space of pseudo-measures can be identified
as the space of tempered Schwartz distributions

with bounded Fourier transform. In his 1948

counterexample for R3, Schwartz took E to be the
unit sphere S2 and T to be the derivative in some

direction (say, for definiteness, the radial direction)
of the surface measure σ for S2. Because, as |u| →
∞, σ̂ (u) = O

(
1

|u|

)
, one knows that T̂ (u) = O(1)

and therefore that T is a pseudo-measure. Thus
Schwartz’s counterexample reduces to the trivial

task of finding a test function that vanishes on S2

and has nonvanishing derivative in the direction

in which σ was differentiated to get T .

What is the choice of E, T , and f when E is the
lineR or circle T? Malliavin’s idea was to start with

f instead of E and to choose f so that the formal

composition δ′0 ◦ f of the derivative of Dirac delta
function δ0 with f can be interpreted as a pseudo-

measure whose support is the zero set of f . This
idea is beautiful. Wholly aside from the technical

challenge posed by its successful implementation,

just the realization that it might work is a tour de
force.

Malliavin’s idea applied equally well to R and

to Z, and its extension to general, noncompact G’s
(i.e., G’s for which Γ is not discrete) is relatively

easy. Furthermore, in what is a nice example of

the way in which probability theory can simplify
otherwise complicated analytic constructions, the

use of random trigonometric series can greatly
simplify his construction of f (cf. [4] and [10]).

Nowadays there exist many other proofs of

Malliavin’s theorem. Varopoulos used his theory
of tensor algebras to derive the general result

from the case, handled by Schwartz, when G = R3.

Returning to the idea of producing E before f ,
Körner produced a strange set E that is meager in

the sense that C(E) = A(E) ≡ {ϕ ↾ E : ϕ ∈ A(Γ)}
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(such a set E is call a “Helson set”) and yet is

sufficiently robust that it carries a pseudo-measure

whose Fourier transform tends to 0 at infinity

Identity photo,
circa 1975.

(such a set is said to be

a “set of multiplicity”).

Körner’s construction is
complicated, but it had

been known for a long

time (cf. [11] and [7])

that the existence of a
Helson set of multiplicity

would show that spectral

synthesis fails.
Malliavin’s theorem has

been the subject of many

lectures, commentaries,
and scholarly articles (cf.

[18], [21], and [7]). How-

ever, it marked the end of the era in which
attention was focused on Wiener’s algebra A(Γ),
which was considered to be an essential object for

analysis. Nonetheless, contrary to what one might
have supposed, his theorem did not mark the end

of commutative harmonic analysis, only the end of

a particular period. Today the subject is alive and
well, having been rejuvenated by the introduction

of new directions in which to go.

The Thesis and the Theorem of Beurling–
Malliavin
In 1959 Malliavin was a professor in the faculty

of sciences at the university in Caen. He already
had a solid reputation in complex analysis. Like

me, he had been a student of Szolem Mandelbrojt.

Szolem used to tell stories and to ask questions.
He had done a joint piece of work with Norbert

Wiener, and he posed to Malliavin the following

question, which had its origins in that joint work:
What can be said about the set of real zeroes

of a holomorphic function f in the right half-space
{z = x + √−1y ∈ C : x > 0} which satisfies an
inequality of the form |f (z)| ≤ M(x) for some M :

(0,∞) -→ (0,∞)?
In his doctorat d’etat thesis, Malliavin gave a

complete and definitive answer to this question.

Simultaneously, his thesis contains several beau-

tiful new results in functional as well as complex
analysis. In addition, it won Malliavin an invitation

in 1954–1955 to the Princeton Institute for Ad-

vanced Study, and it was there that he met Arne
Beurling. But it was when Malliavin returned to the

I.A.S. in 1960–1961 that he and Beurling launched

their extremely fruitful collaboration. During that
year, they were able to completely solve two hard

and intimately related problems:

(1) the characterization of those entire functions
that can written as the quotient of two entire

functions, both of which are of exponential type

and are bounded on the real line.

(2) the computation of the “totality radius” of

a given sequence Λ. That is, find the upper bound

of those a ≥ 0 such that the set
{
e
√−1λx : λ ∈ Λ

}

generates L2
(
(−a, a)).

Although their results did not appear until

1967, the authors knew them as early as 1961, and

these results remain jewels in function theory.

The solution to the first problem makes use of

the logarithmic integral
∫∞

−∞
log |f (x)| dx

1+ x2

and is explained in detail by Paul Koosis in his

monographs [12] and [13]. Their answer is that

an entire function is of the sort in (1) if and only

if its logarithmic integral converges. The most

important part of their answer is the statement that

if f is an entire function whose logarithmic integral

converges, then there is an entire function g of

arbitrarily small exponential type that is bounded

on R and for which fg is also of exponential

type and bounded onR. Combining this statement

with Fourier analysis, one obtains the description

of those hyperfunctions that can be regularized

by convolution functions having arbitrarily small

support.

In order to solve the second problem, Beurling

and Malliavin introduced a new notion of density,

which they called the “effective density”, for a

sequenceΛ. One way to define this notion involves

the notion of a “BM-regular” sequence: a sequence

Λ′ for which there exists a D(Λ′) ∈ [0,∞), the

“density” of Λ′, such that
∫ ∣∣n(r)−D(Λ′)r

∣∣ dr

1+ r 2
<∞,

where n(r) ≡ card
({λ′ ∈ Λ′ : λ′ ≤ r}) is the

counting function for Λ′. The effective density

of a sequence Λ is the infimum over BM-regular

Λ′ ⊆ Λ of D(Λ′). Mimicking analogous ideas in

measure theory, one can associate with each of

these densities notions of interior and exterior

density, in which case Beurling and Malliavin’s

effective density becomes the exterior density

associated with BM-regular sequences. Beurling

and Malliavin’s results are easy to describe, but

the methods by which they are proved are very

elaborate and require intricate refinements of

ideas from potential theory (cf. [1] and [2]).
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Richard Gundy

The Contribution of Paul and Marie-Paule
Malliavin to the Study of Boundary Values
of Harmonic Functions on the Bidisc
In the period 1950–1980, much progress was made

understanding the boundary behavior of harmonic

functions of several variables in the context of the

Richard Gundy is professor of statistics and mathematics
at Rutgers University. His email address is gundy@rci.

rutgers.edu.

study of singular integrals. Most of this work
was done by mathematicians working in the tradi-
tion known as the Calderón-Zygmund school. The
major players during this period were Zygmund
himself [4] and his students, Alberto Calderón,
Elias Stein, Guido Weiss, and later, Stein’s student
Charles Fefferman. Although Paul Malliavin did
not participate in this group, he and his wife did
make a significant contribution, described below,
to work of their American colleagues [9].

Here is a simplified description of the origin
of the Malliavin theorem: Let u(x, y) be a har-
monic function (∆u = 0), defined in the unit
disc x2 + y2 < 1. We can always find another
harmonic function ũ(x, y) such that ∂xu = ∂y ũ,
∂xũ = ∂yu (the Cauchy-Riemann equations). If the
map (x, y) → (u(x, y), ũ(x, y)) is one-to-one, its
Jacobian J(x, y) = |∇(u(x, y))|2 = |∇(ũ(x, y))|2,
by the Cauchy-Riemann equations. Thus, if we
wish to calculate the square root of the area of
the image of a set Γ in the disc, we must com-
pute an integral. The following functional of u
was introduced by Lusin and called the “area inte-
gral”: A(u)(Γ) := {

∫
|∇u(x, y)|2χΓ (x, y)d(x, y)}1/2,

where the set Γ = Γ(θ) is a Stoltz domain, a cone
with its axis of symmetry a radius from 0 to a
point θ on the boundary of the disc. A remark-
able fact is the following: The set of boundary
points θ : A(u)(θ) < ∞ coincides with the set of
boundary points where N(u)(θ) := sup(|u(x, y)| :
(x, y) ∈ Γ(θ)) < ∞ (up to a set of measure zero);
moreover, the harmonic function u(x, y) has a limit
along all paths converging to θ within the cone
Γ(θ). Calderón [3] and Stein [9] extended this
local equivalence to harmonic functions u(x, y)
where x ∈ Rn, y > 0. Somewhat later Stein and
Weiss [10] proved a version of the F. and M. Riesz
theorem for harmonic functions defined on the
generalized half-plane (Rn, y > 0). In so doing,
they defined an H1 space for functions on Rn+1

+ .
However, it wasn’t until 1970, ten years later, that
the functionals A(u),N(u) were shown to char-
acterize the classical H1 space [2]. The extension
of this theorem in [2] to the Stein-Weiss H1-space
of several variables is but one of a number of
important results in a groundbreaking paper by
Fefferman and Stein [5].

Given these developments, other contexts and
conjectures spring to mind. A natural context,
suggested by Fefferman and Stein, is the Cartesian
product of two unit discs, D1 × D2 (or two half-
planes). In either case, the appropriate Laplacian
is ∆12 := (∆1)(∆2). The functionals A(u),N(u) are
defined on the product boundary, say ∂D1 × ∂D2.
In this context, the problem is totally different: for
the classical case, the radius variable 0 < r < 1
is essentially a totally ordered dilation parameter.
In the bidisc, the pair of radii (r1, r2) are still
dilations, but they form a set of parameters that
is only partially ordered. This produces a major
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In China with his wife Marie-Paule, spring
2010.

obstacle for the following reason: In the disc D (or

the ball Bn+1 = {X = (~θ, ρ) : 0 ≤ ρ ≤ 1 ~θ ∈ Sn}),
the workhorse technique is Green’s theorem, ap-
plied to a sawtooth region defined by taking the

union of all cones Γ(θ) where A(u)(θ) ≤ λ (or
N(u)(θ) ≤ λ). Green’s theorem provides an es-
timation of the distribution function of one of

these functionals, saym(θ : A(u) > λ), in terms of
the distribution function of N(u). However, in the
bidisc, Green’s theorem is only easily applicable to
functions defined on Cartesian product domains.
Unfortunately, the sawtooth region that arises in
the two-parameter setting is not necessarily a
Cartesian product. Enter the key idea provided by

the Malliavin collaboration: extend the character-
istic function of the sawtooth region to the entire
bidisc by an approximation that is smooth up to

the boundary. In so doing, one obtains a function
defined on the entire bidisc, a domain to which
Green’s theorem is applicable. Now this is easy

enough to summarize in a few words. However,
the payback comes when one sees the blizzard
of error terms that are produced in the subse-

quent computation. Undaunted, l’équipe Malliavin
managed to plow through the required estimates
with ingenuity and indefatigable courage. To put

it mildly!
The breakthrough paper by Marie-Paule

and Paul Malliavin contains the proof that

A2(u)(θ1, θ2) :=
∫∫
(|∇u1|2 + |∇u2|2 + |∇u12|2)·

χΓ (θ1)χΓ (θ2)d(x1, y1)d(x2, y2) is finite for almost
every (θ1, θ2) where the corresponding nontan-

gential maximal function N(u)(θ1, θ2) is finite.
Subsequently, Jean Brossard [1] obtained the
converse result: N(u) is finite almost everywhere

on the set where A(u) is finite. Independently,
Stein and I [7] obtained the same result, and by
refining the Malliavin estimates, we were able to

show that the Lp “norms”, 0 < p < ∞, of these
functionals were equivalent. In this way, a set of

results that can be called Hp theory for the bidisc
was created. (A comprehensive survey of these
results, including an exposition of the details of
the Malliavin contribution with refinements, may
be found in the St. Flour Lectures of 1978 [6].) In
addition to papers just quoted, several theses and
articles followed from these developments.

In conclusion, I want to remark that the
Malliavin paper contains a rather mysteri-
ous error term T 4(u)(θ1, θ2) := {

∫∫
(|∇u1|2 ·

|∇u2|2)χΓ (θ1)χΓ (θ2)}, notable because it is homo-
geneous of degree four. For me, this term has more
than a mathematical significance. The following
vignette recalls (to me) a scene from Agatha
Christie: One evening, probably in the spring of
1978, I was sitting down for dinner at home in New
Jersey, at the close of an unremarkable day, when
I received a phone call from somewhere on Planet
Earth. “Allo (long pause)... Thees eez Malliavin!”
(another pause) “What do you know about zee
fourth-order term?” Completely flustered, all I
could think of was “It’s locked in the upstairs
bedroom.” I wish I could remember what I really
said.
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Daniel W. Stroock

Malliavin the Probabilist
Like Norbert Wiener, Paul Malliavin came to proba-

bility theory from harmonic analysis, and, like
Wiener, his analytic origins were apparent in

everything he did there.

Under the influence of Paul Lévy, most post-
war (i.e., Word War II) probabilists have studied

stochastic processes as a collection of random
paths. For them, the measure determining the

distribution of those paths is an éminence grise
that is best left in the shadows. This perspec-
tive gained prominence because of the successes

it had in the hands of such masters as K. Itô

and J. L. Doob, and no doubt it is responsible
for some of the most stunning achievements of

probabilists during the last sixty years. However,

this was not Wiener’s perspective, and it was not
Malliavin’s either. Instead, for them, the principal

object is the measure. Thus, according to Wiener,
Brownian motion is a certain Gaussian measure

W , now called Wiener measure, on the space,

Wiener space, of continuous paths, and, insofar
as possible, he analyzed and exploited it in the

same ways that Gauss’s and related measures had

been in finite-dimensional settings. For example,
it is a familiar fact that the Hermite polynomials

are a natural, orthogonal basis for the standard

Gauss measure on RN , and Wiener showed that
there is an analogous orthogonal basis for his

measure on pathspace. More precisely, just as in
RN , it is best to group together all the Hermite

polynomials of a fixed degree n and to consider

the subspace spanned by them, so Wiener looked
at the spaces Z(n) that are obtained by closing in

L2(W;R) the linear span of the nth order Hermite

polynomials on Wiener space. His motivation for
looking at these subspaces was that he wanted to

interpret Z(n) as the subspace of L2(W;R) consist-

ing of functions that have homogeneous nth order
randomness, and, with his usual flair for words,

he dubbed them the subspaces of homogeneous
chaos.1 Put another way, Wiener was attempting a

spectral decomposition of L2(W;R) in which the
spectral parameter is randomness, as opposed to

something more conventional, such as frequency.

In a related example, two of Wiener’s disciples,
R. H. Cameron and W. T. Martin, discovered that

Wiener measure is as translation invariant as any

measure in infinite dimensions has a right to
be. Namely, they showed that if H is the Hilbert

subspace of Wiener space whose elements h are

absolutely continuous and have square integrable
derivative, then translation of W by an h ∈ H

1It should be pointed out that Wiener’s own treatment of
this subject was somewhat awkward and that it was Itô
who put it on a firm mathematical foundation.

results in a measure Wh that is absolutely con-

tinuous with respect to W and has a remarkably

simple Radon–Nikodym Rh, all of whose powers
are integrable. Using Cameron and Martin’s result,

one can show that differentiation Dh of a function

on Wiener space in the direction of an h ∈ H
admits an adjoint D⊤h , and the existence of this

adjoint allows one to make Sobolev-type exten-

sions of Dh and D⊤h as closed, densely defined
operators on L2(W ;R). In addition, one can show

that if {hk : k ≥ 1} is an orthonormal basis in H,

then the operator, known to probabilists as the

Ornstein–Uhlenbeck operator,

N =
∞∑

k=1

D⊤hkDhk ,

is self-adjoint and is independent of the partic-
ular choice of orthonormal basis. Furthermore,

Induction in 1979 into
the French Académie

des Sciences.

Wiener’s spaces of

homogeneous chaos
are the eigenspaces

forN . In fact,Nϕ =
nϕ for ϕ ∈ Z(n),
a fact that accounts

for people doing

Euclidean quantum
field theory calling

N the number oper-
ator. All this should
come as no sur-

prise to anyone who

has dealt with Gauss-
ian measures and

Hermite polynomials

in finite dimensions,
where Cameron and

Martin’s result is a

trivial change of vari-
ables and the operator N is just the ground state

representation of the Hermite operator (a.k.a., the

harmonic oscillator). However, there are techni-
cal difficulties that have to be overcome before

one can transfer the finite-dimensional results to

infinite dimensions.
The preceding discussion provides a context in

which to describe one of Malliavin’s most impor-

tant contributions to probability theory. What he
realized is that the Ornstein–Uhlenbeck operator

N can be used as the starting point for a robust

integration-by-parts formula for Wiener measure.
He was far from the first to attempt integration

by parts for functions on Wiener space. Indeed,

Cameron and his student M. Donsker had been do-
ing it for years, and integration by parts in Wiener

space had been a basic tool of Euclidean quan-

tum field theorists. However, earlier versions had

involved functions that are classically (i.e., in the
sense of Fréchet) differentiable, whereas Malliavin

wanted to apply it to functions that are not even
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classically continuous. Specifically, with the goal

of proving elliptic regularity results, he wanted

to do integration by parts when the functions are

solutions to Itô stochastic differential equations. If

one thinks of an ordinary differential equation as

giving the prescription for turning a straight line

into the integral curve of a vector field, then Itô’s

stochastic differential equations can be thought

of as the analogous prescription for converting

Brownian (i.e., Wiener) paths into the paths of a

more general diffusion. In particular, if X( · , x,w)
is the diffusion path starting at x corresponding

to Wiener path w and

u(t, x) =
∫
f
(
X(t, x,w)

)W(dw),

then u will solve the diffusion equation ∂tu = Lu
with initial data f , where L is the associated dif-
fusion operator, the (possibly degenerate) elliptic

operator that appears in Kolmogorov’s backwards

equation.

Solutions to Itô’s equations have much to

recommend them, but from a classical analytic

perspective they are dreadful when viewed as

functions of w . Indeed, they are defined only up

to a set of W -measure 0, and so they are not

amenable to any classical notion of differentia-

tion. Undaunted by this formidable technicality,

Malliavin realized thatw ⇝ X(t, x,w) nonetheless

ought to be differentiable in the sense of Sobolev.

After all, in infinite dimensions, there is no Sobolev

embedding theorem to prevent there from being

functions that are classically discontinuous and

yet infinitely differentiable in the sense of Sobolev.

To wit, any element of Z(n) will be smooth in the

sense of Sobolev, but few elements of even Z(1)

will be classically continuous. With this in mind,

Malliavin constructed a Schwartz-type space of

functions on Wiener space.2

Rather than use powers of the operators Dh
to measure regularity, he used powers of N ,

because the spectral and stability properties ofN
make it easier to understand questions about its

domain than the corresponding questions about

the domain of Dh. Because everything had to

be based on properties of N , his integration-

by-parts formula had to be an application of the

self-adjointness ofN , and for this purpose he took

advantage of the Leibniz rule satisfied by second-

order elliptic operators. That is, for R-valued F
and G on Wiener space,

(1) N (FG) = FNG +GN F + 〈F,G〉,

2This had been done before by P. Kree, but Kree’s con-
struction had, at least for the applications that Malliavin
had in mind, a fatal flaw: the space he built was not an
algebra. In the absence of a Sobolev embedding theorem,
the only way to achieve an algebra is to abandon L2 and
deal with all Lp spaces simultaneously.

where the symmetric, bilinear operation 〈F,G〉 has

the crucial properties that it is nonnegative and

satisfies

(2) 〈ϕ ◦ F,G〉 =ϕ′ ◦ F〈F,G〉 for ϕ ∈ C1
b (R;R).

Starting from (2), he argued that, because

ϕ′◦F〈F, F〉 = N (
Fϕ◦F)−FN (ϕ◦F)−ϕ◦FN F,

then if 〈F, F〉 > 0, one can write

ϕ′ ◦ F = N (
Fϕ ◦ F)

〈F, F〉 − FN (ϕ ◦ F)
〈F, F〉 − ϕ ◦ F〈F, F〉 ;

and therefore, because N is self-adjoint,
∫
ϕ′ ◦ F dW

=
∫
ϕ ◦ F

[
FN

(
1

〈F, F〉
)
−N

(
F

〈F, F〉
)

−
( N F

〈F, F〉
)]
dW ,

which, by taking advantage of (1) and (2), can be

rewritten as

(3)∫
ϕ′◦F dW = −

∫
ϕ◦F

[
2N F
〈F, F〉 +

〈
F, 〈F, F〉〉

〈F, F〉

]
dW .

The virtue of (3) is that it allows one to draw

conclusions about the distribution of F . Indeed, if

µ is the distribution of F , then (3) says that, in the

language of Schwartz distributions, ∂µ = −ψµ,

where ψ : R -→ R is the function such that ψ ◦ F
is the conditional expectation value EW

[
Ψ
∣∣σ(F)

]

of

Ψ ≡ 2N F
〈F, F〉 +

〈
F, 〈F, F〉〉

〈F, F〉 .

Elementary analysis shows that if ψ ∈ Lp(µ;R)

for some p > 1, then µ admits a density f that

is uniformly Hölder continuous with a Hölder

exponent depending only on p. Furthermore,

since ‖ψ‖Lp(µ;R) ≤ ‖Ψ‖Lp(W ;R), one can estimate

‖ψ‖Lp(µ;R) entirely in terms of Wiener integrals.

Of course, there are at least two technical

details that have to be confronted in order to

carry out Malliavin’s program. For one thing, one

has to check that F is in the domain of the

operations that one wants to perform on it. When

F is the solution to an Itô equation in which the

coefficients are smooth, Malliavin’s description

of his Schwartz space in terms of N makes

this a difficult problem. The Japanese school,

especially S. Watanabe and his student H. Sugita,

vastly simplified matters by describing the same

Schwartz space in terms of the operatorsDh. A key

ingredient in their approach was provided by P. A.

Meyer, who showed that E. M. Stein’s Littlewood–

Paley theory for symmetric semigroups can be
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used to prove that for any orthonormal basis

{hk : k ≥ 1} and any p ∈ (1,∞),

‖N 1
2 F‖Lp(W ;R) ∼

∥∥∥∥∥∥∥




∞∑

k=1

|DhkF|2



1
2

∥∥∥∥∥∥∥
Lp(W ;R)

,

where ∼ means here that one side is dominated

by a constant times the other.
The second detail is a more interesting one.

In fact, it is less a detail than the heart of the

whole program: namely, in deriving (3), it was

assumed that 〈F, F〉 is strictly positive, and in
applying (3) it is necessary to have sufficient

control on its positivity to estimate the Lp(W ;R)-
norm of Ψ . Gaining such control can be a very
challenging problem. In applications to solutions

In conversation, circa 2000.

to Itô’s equa-

tions, 〈F, F〉 can

be recognized
as a path-

wise measure

of ellipticity.
In particular,

when the dif-

fusion operator

L is uniformly
elliptic, it is

relatively easy

to check that
the correspond-

ing 〈F, F〉 will

have reciprocal moments of all orders. How-
ever, Malliavin was not ready to settle for a

rederivation of classical elliptic regularity results.

He wanted to show that his method could also be

applied to derive regularity results of the sort that
Hörmander had proved for subelliptic operators.

Although Malliavin pointed the way, it required

considerable effort by several authors to achieve
his goal, and it must be admitted that in the end

their effort was not rewarded by the discovery of

many facts that more traditional analytic methods

had not already revealed.
Expanding on the remark at the end of the

preceding paragraph, one should recognize why

it is that Malliavin’s ideas do not give an effi-
cient way of looking at questions such as elliptic

regularity. Indeed, his approach takes an inher-

ently finite-dimensional problem, lifts it to an
infinite-dimensional setting, performs the analy-

sis in infinite dimensions, and then projects that

analysis back down to finite dimensions. This is a

little too much like going to a neighbor’s house by
way of the moon: it works, but it is not efficient.

Thus it was not until Malliavin’s ideas were applied

to intrinsically infinite-dimensional problems that
they came into their own. There is now a ma-

jor industry, populated (somewhat worryingly) in

part by financial engineers, who are making such

applications. All this is still in the early stages of

development, but there can be no doubt that the
program that Malliavin initiated is one of the great
contributions to modern probability theory.

Leonard Gross
Among the many areas of mathematics to which
Paul Malliavin contributed in the past twenty years,

the general problem of constructing an interesting
theory of infinite-dimensional manifolds, on which
there is a useful measure for doing harmonic anal-
ysis, was the focus of a large part of his work.
Such a manifold must be able to support a notion

of differentiation that relates well to the measure.
For example, one should be able to carry out
integration by parts at the very least. Preferably,
there should also be some kind of natural second-

order, infinite-dimensional “elliptic” differential
operator ∆, which plays the role of a Laplacian.
After Cameron and Martin’s work in the 1940s
and 1950s, showing that “advanced calculus” on
Wiener space, using Wiener measure, could be

developed in an interesting way, it became reason-
able to seek interesting examples of not necessarily
linear infinite-dimensional manifolds on which to
develop some analog of finite-dimensional har-
monic analysis. Early work in this direction began

in the 1960s (H. H. Kuo, D. Elworthy, J. Eells). Malli-
avin initially sought examples in the form of spaces
of continuous functions from an interval or circle
into a finite-dimensional Riemannian manifold M .
The measure induced by Brownian motion on M
(or by pinned Brownian motion) would provide, in
this case, a natural measure of interest on these
spaces of continuous paths into M . The required
integration by parts theorems were established in

the late 1980s and early 1990s by J. M. Bismut,
B. Driver, E. Hsu, and Malliavin and his wife.

But in the last ten years Malliavin aimed at
producing a natural Brownian motion on the dif-
feomorphismgroup of the circle, thereby replacing

the finite-dimensional manifold M by an infinite-
dimensional one. As is often the case, construction
of a Brownian motion in a manifold is more or
less equivalent to the construction of a heat semi-
group et∆ acting on functions over the manifold.

In case the manifold is the diffeomorphism group
of the circle, there is a natural infinite-dimensional
Laplacian. It is determined by regarding the tan-
gent space at the identity to be vector fields on
S1 of Sobolev class H3/2. The index 3/2 arises

for several seemingly very different reasons. It is
the natural Sobolev class for action on the ar-
gument of loops into a compact Lie group. It is

Leonard Gross is professor of mathematics at Cor-
nell University. His email address is gross@math.

cornell.edu.
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also the correct Sobolev index for capturing the

Weil-Petersson metric on this Lie algebra.

It is well understood, at least for linear spaces,
that if the symbol of an operator ∆ is the norm

on some infinite-dimensional Hilbert space H,

then the associated heat semigroup et∆ cannot
act reasonably on functions over H but will act

well on functions over a suitable enlargement

of H. Otherwise said, the associated Brownian
motion will have continuous sample paths into the

larger space but will jump out of H immediately.

The analog for nonlinear manifolds, such as the
diffeomorphism group, is much more difficult.

Malliavin and his coauthors showed, over the

last ten years, that, for the natural Laplacian
(whose symbol is the Weil-Petersson metric), it

suffices to enlarge the group of H3/2 homeomor-

phisms of S1 to the group of Hölder continuous
homeomorphisms. This enlargement, along with

the obvious weakening of the topology, supports

the associated Brownian motion with continuous
sample paths.

The evolution of this work can be traced through
the papers [10], [1], [9], [7], [4], [2], [5], [11], [3], [12],

[13], [14], [8], and [6], many of which were written

jointly with one or more of Malliavin’s coworkers,
Hélène Airault, Ana-Bela Cruzeiro, Jiagang Ren,

and Anton Thalmaier. The program was completed

only very recently, in the paper [6].
The titles of some of these papers seem to have

more to do with analytic function theory than

diffeomorphisms of the circle. It happens that a
Brownian motion on the diffeomorphism group

of S1 induces, at least informally, a Brownian

motion on the space of closed Jordan curves in
the plane, as well as on certain spaces of univalent

holomorphic functions on the unit disc. At an

informal level the link is easy to understand:
Suppose that J is a Jordan curve and that f is a

holomorphic map from the open unit disk D onto

the interior of the region bounded by J. It is known

that f extends to a continuous function f̂ on the

closure of D and that f̂ is a bijection of S1 onto J.
Moreover, there is a holomorphic function h from
the exterior of the unit disk onto the unbounded

component of the complement of J. This also

extends to the closure of the exterior of the unit
disk, producing another continuous bijection ĥ
from S1 onto J. Insisting that limz→∞ h(z)/z > 0
makes the choice of h unique. On the other hand,

f fails to be unique, but only to the extent that

its argument can be changed by a D-preserving
Möbius transformation. For any such function f the

map (f̂ )−1 ◦ ĥ : S1 → S1 is a homeomorphism φ of
S1. What homeomorphisms can arise in this way? It

is known that ifφ is C∞, then there exists a Jordan

curve and corresponding functions f and h whose
ratio, as above, is φ. Ignoring the nonuniqueness

of f , which only requires replacing Jordan curves

by the space of shapes, the procedure of mapping

a given homeomorphismφ to the pair f , h, the so-

called “welding" procedure, would give a Brownian

motion on the space of shapes if one could extend

the welding procedure to those homeomorphisms

ofS1 that are needed to support a Brownian motion

as above, namely a large subset of the Hölderian

homeomorphisms. This is accomplished in the

paper [6], which welds deep stochastic analysis

techniques with analytic function theory.
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Michèle Vergne

Malliavin and I
Pisa, June 2010: I am in Pisa, I learn via email about
the death of Paul Malliavin. If anyone seemed to
me to be immortal among immortals, it was he.
I think of him introducing me to the Académie
and guiding me on a visit to the Institut Library
and the Bibliothèque Mazarine. We could see the
Seine through the windows. He told me about
Cardinal Richelieu, to whom I think he attributed
the sentence: “I shall regret the beauty of this
place when in the other world”.

I.H.P., May 1968: I am twenty-five-years old,
long hair, in blue jeans. My heroine is Louise
Michel. I can well see myself sent to hard labor for
my ideas.
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k
.

Visit to Versailles in 2008.

Slogans, demonstra-
tions: the system must
be changed. The dusty
“Institut Henri Poincaré”
must be destroyed.
General meetings, decla-
rations. When Malliavin
intervenes with his soft
voice, I shout: “Malliavin
is a bourgeois, Malli-
avin is a fascist”. If the
red guard were gathering
their battalions, I would
be with them and would
send Malliavin out to
serve the people. Malli-
avin continues to smile
serenely. Ever since then,

when I meet him on the streets of Paris, he tips his
hat and addresses me with a ceremonious: “Chère
Madame”.

At the Theater, January 2009: Malliavin is
presenting a candidate for membership in the
Académie des Sciences. It won’t be an easy win. I
sit beside him at the green, oval desk. He draws a

Michèle Vergne is professor of mathematics at the Insti-
tut de Mathématiques de Jussieu. Her email address is
vergne@math.jussieu.fr.

This is a translation (slightly adapted for the Notices) of
an article published in La Gazette des mathematicians,
no. 126, October 2010.

few crumpled sheets of paper out of his pocket.
“Madame, I would like to have your opinion of my
speech,” and, in a low voice, he starts to whisper:
“Already a hundred years ago, Elie Cartan. . . .”
Then comes his turn to speak, and in a loud voice,
he declaims: “Already a hundred years ago. . . .”
Bravo, clap, clap, and his candidate is elected.

The Poisson Summation Formula: Malliavin
and I are ecstatic about the Poisson summation
formula. No doubt, he knows all its finest and
deepest aspects. I don’t, but I nonetheless think it
is the most beautiful formula in mathematics.

Two Things That Malliavin Loves, Mathemat-
ics and Influencing People’s Destiny: These are
not unrelated. Speaking about a colleague, he often
lauds the beauty of his work: “Demailly’s annula-
tion theorem is extraordinary; Madame, consider
that it does not require pointwise estimates, but
only in the mean. . . .” Villani’s work overjoys him.

A Reception at the Malliavins’ Home: I am in-
vited to a reception at the Malliavins’ home. I go
with my daughter Marianne. She was eight years
old at the time. We enter a paved courtyard, we
go up some stairs, we ring a bell, and we enter
an apartment, immersed in semi-darkness. Over-
flowing bookshelves cover the walls; the seats are
antique, I fear that the furniture would disintegrate
into dust were the curtains to be drawn. Malliavin
talks to my daughter, he finds an old, illustrated
edition of The Children of Captain Grant for her.
She sits on a window sill and reads passionately,
while the other guests, mainly mathematicians
from all over the world, tell each other about
their lives. Marie-Paule becomes nervous: the pe-
tits fours must be eaten, the Bertillon sorbets must
be tasted. . . .

Temptations: Malliavin phones me, he wants
to propose me as a candidate for the Académie. I
object: “My father and mother are dead, it is too
late to please them, it would give me no personal
pleasure.” Malliavin responds: “Madame, we are
not Académicians for our pleasure, but to serve
our country”. He then invites me to come to the
Académie and leads me to the salle des séances.
In the dim light, the white marble heads observe
the scene. That night, I have a dream: there is a
lit niche, and inside the niche, a bottle of whiskey
sitting on a pedestal (I had just seen again Rio
Bravo). I realize that, more than anything else,
I wish to have a draught of whiskey and that I
would also like to enter the Académie. I phone
Malliavin: “Yes, I agree to be nominated.” Anyway,
I am totally incapable of saying no to Malliavin.

No: I am elected. My sister Gilberte does not
survive for my election, and my sister Martine is
about to die. Now other plans are afoot behind the
scene: a representative of France for the execu-
tive committee of the International Mathematical
Union is needed. Malliavin and Jacques-Louis Lions
contact me, they have decided it should be me.
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Malliavin calls me daily. “No, I do not want to, I
cannot.” After each phone call, a wave of anxiety
suffocates me. I feel like a fraud.

Honors: I become accustomed to taking plea-
sure in honors. Today is the séance solennelle
(solemn convocation) at the Académie of Sciences.
Going down the stairs between the raised sabers
of the republican guards seems natural.

Malliavin is wearing his ceremonial outfit. Befit-
tingly, the Académie’s paleontologist has a sword
with a dinosaur pommel. Malliavin is happy to be
among his peers. He knows them all. He pushes
a chair forward for Pierre Lelong, who is nearly
ninety. He listens politely to Denisse, he teasesDer-
court, he says a kind word to me. He jokes: “Here,
we we all love researchers studying longevity and
who search for a happiness pill to give the elderly”;
and, all the while, he is predicting the election of
Beaulieu [who specializes in geriatrics] as the new
president of the Académie des Sciences.

Maneuvers: Malliavin has a plan for X: he
sends stacks of mail, phones, counts his cards.
He scrutinizes the weaknesses of the opposition’s
plans for Y . If the maneuver fails, it’s a triumph
for Z , and Y is chosen. Malliavin gives me sibylline
advice. I interpret it as follows: as soon as someone
is chosen for our section, we should all forget
whatever bad things we once thought about him.

Should we do likewise with the dead? It might
be wise, since we will have to spend eternity by
their sides.

Haar Measures and Malliavin Measures: Is
there some sort of Haar measure for loop groups?
Which are the “natural” groups that admit uni-
tary representations? Locally compact groups,
thanks to Haar measure, but the unitary group
also has a unitary representation. We may also
construct ergodic measures for some natural
groups, such as the infinite permutation group.
These are questions that interest Paul Malliavin
and Marie-Paule.

I naïvely believe that mathematical ideas have
no genitors and come forth out of cauliflowers.
But, no, Haar measure did not exist before Haar,
Malliavin calculus did not exist before Malliavin
any more than Itô’s integral existed before Itô.
Malliavin has a more human opinion: he is almost
in tears when he learns that Itô received the Gauss
Prize. Itô dies shortly thereafter, and the world
without Itô seems less beautiful to Malliavin.

In the same way, for me the world without
Malliavin is not quite the same. I miss him.
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