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a G2-Manifold?
Spiro Karigiannis

A G2-manifold is a Riemannian manifold whose
holonomy group is contained in the exceptional Lie
group G2. In addition to explaining this definition
and describing some of the basic properties of
G2-manifolds, we will discuss their similarities and

differences from Kähler manifolds in general and
from Calabi-Yau manifolds in particular.

The holonomy group of a Riemannian manifold
is a compact Lie group that in some sense pro-
vides a global measure of the local curvature of

the manifold. If we assume certain nice conditions
on the manifold and its metric, then, of the five
exceptional Lie groups, only G2 can arise as such
a holonomy group. Berger’s classification in the
1950s could not rule them out, but it was generally
believed that such metrics could not exist. Then in

1987 Robert Bryant successfully demonstrated the
existence of local examples. Two years later, Bryant
and Simon Salamon found the first complete, non-
compact examples of such metrics, on total spaces
of certain vector bundles, using symmetry methods.

Since then physicists have found many examples of
noncompact holonomy G2 metrics with symmetry.
Finally, in 1994 Dominic Joyce caused great surprise
by proving the existence of hundreds of compact
examples. His proof is nonconstructive, using hard

analysis involving the existence and uniqueness of
solutions of a nonlinear elliptic equation, much as
Yau’s solution of the Calabi conjecture gives a non-
constructive proof of the existence and uniqueness
of Calabi-Yau metrics (holonomy SU(m)metrics) on
Kähler manifolds satisfying certain conditions. In
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2000 Alexei Kovalev found a different construction

of compact manifolds with G2 holonomy that pro-

duced several hundred more nonexplicit examples.

These two are the only known compact construc-

tions to date. An excellent survey of G2 geometry

and some of the compact examples is [3].

In terms of Riemannian holonomy, the aspect of

the group G2 that is important is not that it is one

of the five exceptional Lie groups, but rather that

it is the automorphism group of the octonions O,

an eight-dimensional nonassociative real division

algebra. The octonions come equipped with a pos-

itive definite inner product, and the span of the

identity element 1 is called the real octonions while

its orthogonal complement is called the imaginary

octonions Im(O) ≅ R7. This is entirely analogous

to the quaternions H, except that the nonassocia-

tivity introduces some complications. This analogy

allows us to define a cross product onR7 as follows.

Let u, v ∈ R7 ≅ Im(O), and define u × v = Im(uv),

where uv denotes the octonion product. (In fact

the real part of uv is equal to −〈u, v〉, just as it is

for quaternions, where 〈·, ·〉 denotes the Euclidean

inner product.) This cross product satisfies the

following relations:

u × v = −v × u,

〈u × v, u〉 = 0,

||u × v||2 = ||u ∧ v||2,

exactly like the cross product on R3 ≅ Im(H).

However, there is a difference. Unlike the cross

product in R3, the following expression is not zero:

u × (v ×w)+ 〈u, v〉w − 〈u,w〉v

but is instead a measure of the failure of the

associativity: (uv)w − u(vw) ≠ 0. We note that on

R7 we can define a 3-form (a totally skew-symmetric

trilinear form) using the cross product as follows:

ϕ(u, v,w) = 〈u × v,w〉. For reasons we will not

address here, this form is called the associative

3-form.
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A seven-dimensional smooth manifoldM is said

to admit a G2-structure if there is a reduction of the
structure group of its frame bundle from GL(7,R)

to the group G2, viewed naturally as a subgroup of
SO(7). This implies that a G2-structure determines

a Riemannian metric and an orientation. In fact,
on a manifold with G2-structure, there exists a

“nondegenerate” 3-form ϕ for which, at any point
p on M, there exist local coordinates near p such

that, at p, the form ϕ is exactly the associative

3-form on R7 discussed above. Moreover, there is
a way to canonically determine both a metric and

an orientation in a highly nonlinear way from the
3-form ϕ. Then one can define a cross product ×

by using the metric to “raise an index” on ϕ. In
summary, a manifold (M,ϕ) with G2-structure

comes equipped with a metric, cross product,
3-form, and orientation that satisfy

ϕ(u, v,w) = 〈u× v,w〉.

This is exactly analogous to the data of an almost
Hermitian manifold, which comes with a metric, an

almost complex structure J, a 2-form ω, and an
orientation that satisfy

ω(u, v) = 〈Ju, v〉.

Essentially, a manifold admits a G2-structure if we
can identify each of its tangent spaces with the

imaginary octonions Im(O) ≅ R
7 in a smoothly

varying way, just as an almost Hermitian manifold

is one in which we can identify each of its tangent
spaces with Cm (together with its Euclidean inner

product) in a smoothly varying way. Manifolds
with G2-structure also admit distinguished classes

of calibrated submanifolds similar to the pseudo-
holomorphic curves of almost Hermitian manifolds.

See [2] for more about calibrated submanifolds.
For a manifold to admit a G2-structure, necessary

and sufficient conditions are that it be orientable
and spin, equivalent to the vanishing of its first two

Stiefel-Whitney classes. Hence there are lots of such
seven-manifolds, just as there are lots of almost

Hermitian manifolds. But the story does not end
there.

Let (M,ϕ) be a manifold with G2-structure. Since
it determines a Riemannian metric gϕ, there is an

induced Levi-Civita covariant derivative ∇, and one
can ask if ∇ϕ = 0. If this is the case, (M,ϕ)

is called a G2-manifold, and one can show that
the Riemannian holonomy of gϕ is contained in

the group G2 ⊂ SO(7). Finding such “parallel” G2-
structures is very hard, because one must solve

a fully nonlinear partial differential equation for
the unknown 3-form ϕ. The G2-manifolds are in

some ways analogous to Kähler manifolds, which
are exactly those almost Hermitian manifolds that

satisfy ∇ω = 0. Kähler manifolds are much easier
to find, partly because the metric g and the almost

complex structure J on an almost Hermitian mani-
fold are essentially independent (they just have to

satisfy a mild condition of compatibility), whereas

in the G2 case, the metric and the cross product are
both determined nonlinearly fromϕ. However, the
analogy is not perfect, because one can show that
when ∇ϕ = 0, the Ricci curvature of gϕ necessar-
ily vanishes. So G2-manifolds are always Ricci-flat !
(This is one reason that physicists are interested
in such manifolds—they play a role as “compactifi-
cations” in eleven-dimensionalM-theory analogous
to the role of Calabi-Yau 3-folds in ten-dimensional
string theory. See [1] for a survey of the role of
G2-manifolds in physics.) Thus in some sense G2-
manifolds are more like Ricci-flat Kähler manifolds,
which are the Calabi-Yau manifolds.

In fact, if we allow the holonomy to be a
proper subgroup of G2, there are many exam-
ples of G2-manifolds. For example, the flat torus
T 7, or the product manifolds T 3×CY2 or S1 ×CY3,
where CYn is a Calabi-Yau n-fold, have holonomy
groups properly contained in G2. These are in some
sense “trivial” examples because they reduce to
lower-dimensional constructions. Manifolds with
full holonomy G2 are also called irreducible G2-
manifolds, and it is precisely these manifolds
that Bryant, Bryant–Salamon, Joyce, and Kovalev
constructed.

We are still lacking a “Calabi-Yau type” theorem
that would give necessary and sufficient condi-
tions for a compact seven-manifold that admits
G2-structures to admit a G2-structure that is par-
allel (∇ϕ = 0). Indeed, we don’t even know what
the conjecture should be. Some topological ob-
structions are known, but we are far from knowing
sufficient conditions. In fact, rather than comparing
this problem to the Calabi conjecture, we should
instead compare it to a different problem that
it resembles more closely, namely, the following.
SupposeM2n is a compact, smooth, 2n-dimensional
manifold that admits almost complex structures.
What are necessary and sufficient conditions for
M to admit Kähler metrics? We certainly know
many necessary topological conditions, but we are
nowhere near knowing sufficient conditions.

What makes the Calabi conjecture tractable (al-
though certainly difficult) is the fact that we already
start with a Kähler manifold (holonomy U(m) met-
ric) and try to reduce the holonomy by only one

dimension, to SU(m). Then the ∂∂̄-lemma in Kähler
geometry allows us to reduce the Calabi conjecture
to an (albeit fully nonlinear) elliptic PDE for a sin-
gle scalar function. Any analogous “conjecture” in
either the Kähler or the G2 cases would have to
involve a system of PDEs, which are much more
difficult to deal with.
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