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a Resplendent
Structure?

Roman Kossak

Resplendent structures were introduced by Jon
Barwise and John Schlipf in [1]. The reader may
want to consult a dictionary for the meaning of
the word “resplendent”, but checking a thesaurus
is even more informative. The long list of syn-
onyms starts with “splendid, brilliant, dazzling,
. . . ” and ends with “majestic”. The last section
of [1] is devoted to historical remarks, but the
authors do not mention why this particular name
was chosen. Before we can explain what makes re-
splendent structures resplendent, we need a short
introduction to model theory.

Graphs, groups, fields, Lie algebras, and many
other mathematical structures consist of a set (the
universe of the structure) with a set of functions
and relations on it. Such objects are called first-
order structures. In the discussion below we will
just call them structures. Since every function can
be interpreted as a relation by considering itsgraph
instead, to simplify the discussion we will consider
only relational structures, i.e., structures with no
functions. In general there are no restrictions on
the number of relations on a structure, but to
avoid some technicalities, in this article we will
assume that structures have only finitely many
relations.

The real number field (R,+,×) consists of a
universe R and two ternary relations + and ×.
A reduct of a structure is obtained by forgetting
some of its relations. For example, the group (R,+)
is a reduct of (R,+,×). An expansion is obtained
by adding relations. For example, (R,+,×, <) and
(R,+,×, exp) are both expansions of (R,+,×).
There is an important difference between these
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two expansions. The relation x < y is defined in

(R,+,×) by the formula (x 6= y)∧∃z(y = x+z×z);

hence any property of the real numbers expressed

in terms of +, ×, and < can be expressed in terms

of + and × only. The status of exponentiation

is different. It follows from the Tarski-Seidenberg

elimination of quantifiers for real closed fields that

the relation y = exp(x) cannot be defined in terms

of + and ×, so the latter expansion is an essen-

tial one. Here by definability we mean definability

in first-order logic. Each structure determines its

language, which consists of names of all of its rela-

tions and all properly formed formulas that can be

written using those names, variables, parentheses,

the equality symbol =, Boolean connectives, and

quantifiers. Such formulas are called first order. If

M is a structure with a universe M , then an n-ary

relation R ⊆ Mn is definable if there is a formula

ϕ(x̄, ȳ) of the language of M and somem-tuple b̄

from M such that R is the set of those n-tuples ā

for which ϕ(ā, b̄) is true in M.

A theory is a set of sentences in a given first-

order language. If T is a theory and all sentences

of T are true in a structure M, then we say that

M is a model of T .

Suppose that M and N are structures such

that the universe of M is a subset of the universe

of N and the relations of M are restrictions to

the universe of M of the relations of N . Then we

say that N is an elementary extension of M if for

each first-order sentence ϕ(ā) involving a finite

string of parameters ā fromM, ϕ(ā) is true in M

if and only if it is true inN . IfN is an elementary

extension of M, then we also say that M is an

elementary substructure of N . One can show that

(R, <) is an elementary extension of (Q, <), but

(R,×) is not an elementary extension of (Q,×),
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since, for example, the sentence ∃x [x2 = 2] is
true in the former structure but not in the latter.

Let M be a structure, and let R be a relation
symbol not in the language of M. Let ϕ(R) be
a statement in the language of M with this new
symbol. Is there a relationRM on the universe ofM
such that ϕ(R) is true in the expanded structure
(M, RM)whenR is interpreted asRM? For example,
if (G,+) is a group, is there a ternary relation ×G
onG such that (G,+,×G) is a field? In other words,
if ϕ(×) is the conjunction of the field axioms in
the language with + and × as ternary relations,
is there an expansion of (G,+) satisfying ϕ(×)?
There may be some obvious obstacles. Suppose
(G,+) is a six-element group. There are no six-
element fields, soG cannot be a universe of a field.
The fact that a universe of a structure has exactly
six elements can be expressed by a first-order
sentence ψ. The sentence ψ is true in (G,+), and
it is inconsistent with ϕ(×) in the sense that there
is no structure in which both ϕ(×) and ψ would
be true. For an infinite example, let us consider
(Z,+). The sentence [1+ 1 = 0∨∃x(x+ x = 1)] is
true in every field but is false in (Z,+); hence no
expansion of (Z,+) is a field. But what happens if
there are no such inconsistencies?

Let ā be a tuple of elements from the universe
of a structure M. By Th(M, ā) we denote the
set of all sentences ϕ(ā) in the language of M
that are true in M. Suppose that ϕ(R, ā) is a
sentence in the language of M with new relation
symbol R and with parameters ā such that the set
of sentences Th(M, ā) ∪ {ϕ(R, ā)} is consistent,
meaning that there is a structure in which all
those sentences are true. Then—and this is an
exercise in model theory—M has an elementary
extension N such that for some relation RN
on the universe of N the sentence ϕ(R, ā) is
true in the expanded structure (N , RN). In other
words, a relation satisfying a consistent first-order
property ϕ(R, ā) always exists on the universe of
some elementary extension ofM. We are interested
in the situation in which a relation like that can be
already found on M. This leads to the following
definition.

Let M be a first-order structure. We say that
M is resplendent if for any first-order sentence
ϕ(R, ā)with a new relation symbol and a tuple ā of
parameters fromM such that the set of sentences
Th(M, ā)∪{ϕ(R, ā)} is consistent,ϕ(R, ā) is true
in (M, RM) for some relation RM on the universe of
M. In other words, if there is a relation satisfying
some first-order requirement in an elementary
extension of M, then there is also such a relation
on M.

Technically, any finite structure is resplendent.
This is an interesting exercise in model theory
but is otherwise an uninteresting fact. More in-
teresting examples are not hard to find, but one
has to use some model theory. The crucial fact

is that every structure has a resplendent ele-

mentary extension of the same cardinality. The

result itself is not difficult to prove, but it has

many important consequences. Let us see how it

implies that the structure (Q, <) is resplendent.

Let (D,<) be a resplendent countable elemen-

tary extension of (Q, <). By elementarity of the

extension, (D,<) is a dense linear ordering with-

out endpoints. Since, up to isomorphism, there is

only one countable dense linear ordering without

endpoints, (D,<) ≅ (Q, <). Hence (Q, <) is re-

splendent. This argument works in a more general

setting. Let κ be a cardinal number. A theory T

in a first-order language is κ-categorical if, up to

isomorphism, there is exactly one model of T of

cardinality κ. Arguing as above, one can show that

if T is κ-categorical and M is a model of T of

cardinality κ, then M is resplendent. It follows

that, among others, the countable random graph,

any uncountable algebraically closed field, and

any infinite-dimensional vector space over a finite

field are all resplendent.

For an example of a structure that is not

resplendent let us consider the ring (Z,+,×) and

the sentence ϕ(I) in the language of rings with

additional unary relation symbol I:

∃x I(x)∧ ∃x¬I(x)

∧∀x, y[x+ 1 = y → (I(x)↔ I(y))].

The sentence is saying that I is a proper nonempty

subset of the universe that is closed under succes-

sors and predecessors. Clearly, there are no such

subsets of Z. If (K,+,×) is a proper elementary

extension, then Z is a proper convex subset of K;

hence ϕ(I) is true in (K,+,×,Z). It follows that

(Z,+,×) is not resplendent. A similar argument

shows that the field (R,+,×) is not resplendent

(but recall that the field of complex numbers is).

So how resplendent are resplendent structures?

Each infinite resplendent structure has nontrivial

automorphisms, and each countable resplendent

structure has continuum many. Moreover, each

infinite resplendent structure is isomorphic to a

proper elementary substructure of itself. There is

no room here for a full discussion, but let us just

make one comment about proofs of such results.

In the whole spectrum of models of a given theory

T , resplendent models typically form a smaller

class, often with a well-defined complete set of

isomorphism invariants. Often, to show that a

resplendent model M has some property P , one

constructs a resplendent elementary extension

N of M that has property P and has the same

isomorphism invariants as M. It follows that N

is isomorphic to M; hence M has property P .

Countable resplendent structures are even more

than resplendent; they are chronically resplendent.

The definition is the same as that of resplendency,

June/July 2011 Notices of the AMS 813



except that we also require that the expan-
sion (M, RM) is also resplendent. This feature
is particularly useful in applications.

Let M be a countable structure and suppose
that A is a relation on the universe ofM such that
the expanded structure (M, A) is resplendent and
A is not definable in M. Then A has continuum
many automorphic images in M. Here is a natural
example. Let (K,+K ,×K) be a proper countable
elementary extension of (Z,+,×). It can be shown
that for all such extensions (K,+K) is resplendent.
We know that× (as a relation on Z) is not definable
in (Z,+).1 Since the extension is elementary, ×K
is not definable from +K in K. We conclude that
×K has continuum many automorphic images in
(K,+K); hence there are continuum many different
multiplications ◦ on K such that (K,+K ,◦) has all
the first-order properties of (Z,+,×).

Resplendent models have many applications
in model theory, but here is an application of a
more algebraic nature. Let R = (R,+,×) be an
ordered field. A set I ⊆ R is an integer part of R
if I is a discretely ordered subring such that 1
is the least positive element and for each x ∈ R
there is some i ∈ I such that i ≤ x < i + 1. By
a result of Mourgues and Ressayre [3], every real
closed field has an integer part. Of course, the
real field (R,+,×) has the unique integer part
(Z,+,×), but other fields can have many. By the
already-mentioned Tarski-Seidenberg elimination
of quantifiers, every definable subset of a real
closed field is a finite union of intervals. Hence,
no integer part of a real closed field can be
first-order definable. It follows that if R is a
resplendent countable real closed field, thenR has
continuum many integer parts. In a recent paper
[2], D’Aquino, Knight, and Starchenko proved that
a countable real closed field has an integer part
that is a nonstandard model of Peano Axioms
(PA) if and only if the field is resplendent. One
direction is straightforward once we note that
in the definition of resplendency the first-order
propertyϕ(R, ā) can be replaced by any effectively
presented (computable) listof suchproperties (still
with a fixed tuple of parameters ā). An example
would be a list of sentencesΦ(I) = {ϕn(I) : n < ω}
expressing that I is an integer part that satisfies
the Peano Axioms (which can be effectively listed).
Clearly, all sentences in Φ(I) are true in the
structure (R,+,×,Z). The axioms of real closed
fields are complete, which implies that for each
real closed fieldR, Th(R) = Th(R,+,×). It follows
that Φ is consistent with Th(R); hence every
resplendent real closed field has an expansion
satisfying Φ(I), and, by the results mentioned
before, any countable resplendent real closed
field has continuum many such expansions. It is

1It follows, for example, from the fact that (Z,+) is a

decidable structure and (Z,+,×) is not.

interesting that a similar argument shows that
every resplendent real closed field has integer
parts satisfying countably many different theories
(all contradicting the Peano Axioms). This follows
from a theorem of Shepherdson [4] according to
which any discretely ordered ring satisfying the
axioms of Peano Arithmetic restricted to formulas
without quantifiers is an integer part of a real
closed field.
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