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W
e start by referring to an experi-
ence many of us have had, namely,
being diagnosed in a hospital by a
computer tomograph. What is the
idea behind the computer tomo-

graph investigation? The machine is measuring
linewise (directionally) the density of the material,
and out of this information a global (joint) picture
of the material is created. This kind of principle,
“from the simple case to the complicated one”,
is often used, also for studying various problems
in mathematics, e.g., properties of functions in
one and many variables. Recall various notions
such as continuity, differentiability, harmonicity,
real analyticity, holomorphy, etc., which may be
defined for functions of one variable and also for
functions of many variables. So the problem arises
of whether the simpler one-dimensional property
along “many” test directions implies the global
property. Or, in our language, is joint regularity a
consequence of the directional one? Exactly this
kind of question will be studied in this article.

To be more precise, let f : D × G -→ C be
a function. We say that f is directionally (sep-

arately) regular (e.g., directionally (separately)
continuous) if for all pairs (a, b) ∈ D × G the
functions G ∋ w 7 -→ f (a,w) and D ∋ z 7 -→ f (z, b)

are regular (e.g., continuous) with respect to the
other variable. Notice that directionally continuous
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functions are sometimes called linearly continu-
ous. In the same spirit one says that a function
f : D1 × · · · × Dn -→ C is n-directionally regu-
lar if for all points (a1, . . . , an) ∈ D1 × · · · × Dn
and every j, 1 ≤ j ≤ n, the function Dj ∋ zj 7 -→
f (a1, . . . , aj−1, zj , aj+1, . . . , an) is regular. Instead of
speaking of directional regularity we sometimes
will also use the term separate regularity. We point
out that, when we speak of directional regularity,
even in Rn, then we always discuss regularity only
in directions parallel to the coordinate axes.

In the case in which directional regularity im-
plies joint regularity, one may even sharpen the
question in the following way: what are subsets
A ⊂ D, B ⊂ G such that whenever f (a, ·), a ∈ A,
and f (·, b), b ∈ B, are regular, then f is jointly
regular; i.e., we ask how thick the test sets A,B
have to be so that joint regularity follows.

On the other hand, if the answer to the problem
above is negative, then one should either study the
shape of singularities with respect to the joint reg-
ularity, exhibit additional conditions under which
the joint regularity follows, or find a weaker joint
regularity that all such functions share.

So far we have discussed the general idea of
the problems we are going to describe. Of course,
we expect that the answer will heavily depend on
the class of functions discussed, i.e., on the notion
of “regular”. Therefore, phenomena appearing in
different classes of regularity will be discussed in
“almost independent” subsections. The reader is
free to jump to those of particular interest.

Directional Continuity
In 1821, in his book Cours d’analyse, Augustin-
Louis Cauchy claimed that if a function f of two
real variables is directionally continuous, then it
is jointly continuous. As every student nowadays
knows, this statement is not correct. Nevertheless,
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it took time until people realized this mistake.Only
in 1870, in the book Abriss einer Theorie der com-
plexen Functionen und der Thetafunctionen einer
Veränderlichen by J. Thomae, could one find a
counterexample, which, according to Thomae, is
due to E. Heine. The example is the following
function defined on R2:

f (x, y) :=

{
sin(4 arctan x

y
), if y ≠ 0

0, if y = 0
.

If we approach the origin along the line y = tx
(t ≠ 0), then we get for x ≠ 0:

f (x, tx) = sin(4 arctan(1/t)).

From here it is obvious that f is not continuous at
(0,0) as a function of two variables, although it is
directionally continuous.

The example that is nowadays usually taught
in classes is the following one due to G. Peano:

(*) f (x, y) :=

{
xy

x2+y2 , if (x, y) ≠ (0,0)

0, if x = y = 0
.

Observe that f is even directionally real analytic
but not continuous at the origin. In other words,
the directional regularity of f is as good as possible,
but nevertheless its weakest joint regularity fails
to hold.

Using this example, it is an easy exercise to
construct a directionally continuous function f :
R × R -→ R that is discontinuous exactly at all
points with rational coordinates; in particular, the
set SC(f ) of all points at which f is not continuous
is dense. Moreover, there exists a directionally
continuous function f : [0,1] × [0,1] -→ R such
that SC(f ) is a full measure set (see G. Tolstov
(1949)), i.e., the set of singularities, although small
in the sense of topology, is large in the sense of
measure theory.

The first general formulation of a weaker joint
regularity (to be of Baire class 1) that all direc-
tionally continuous functions share was found by
R. Baire (1899) in his thesis Sur les fonctions de
variables réelles. Using modern notation we say
that a function f : A -→ R (A ⊂ Rn) is said to be
of first Baire class (or Baire class 1) if there is a
sequence of continuous functions fj : A -→ Rwith
fj -→ f pointwise. Then the result by Baire reads
as follows:

Theorem (Baire 1899). Any directionally continu-
ous function f : R × R -→ R is of first Baire class
and SC(f ) is of first Baire category. In particular,
each such function is Borel measurable.

Functions for which SC is of first Baire cate-
gory are also known as pointwise discontinuous
functions.

To comment on the last implication in the
former result we quote from W. Rudin’s paper
“Lebesgue’s first theorem” (1981): “Several years
ago I used to pose this question (i.e., is a separately

continuous function on R×R Borel measurable?)
to randomly selected analysts. The typical answer
was something like this: ‘Hmm—well—probably
not—why should it be?’ The only group that did a
little better were the probabilists. And there was
just one person who said: ‘Let’s see, yes, it is—and
it is of Baire class 1—and. . .’. He knew.”

So we propose this question for any math exam.
Moreover, Baire proved the following stronger

result.

Theorem (Baire 1899). If f : R × R -→ R is di-
rectionally continuous, then there exist sets of first
Baire category A,B ⊂ R such that SC(f ) ⊂ A× B.

This result may give a first idea of how small
S(f ) should be.

These results have been generalized by Baire
in a weak sense to the case of three-directional
continuity; in fact, he showed that any three-
directionally continuous function f : R×R×R -→ R

is jointly continuous on dense subsets of all two-
dimensional planes parallel to the coordinate axes.

In arbitrary dimensions it was proved by
H. Lebesgue (1905) in “Sur les fonctions
représentable analytiquement” that any n-
directionally continuous function f : R×· · ·×R -→
R is a Baire function of class n − 1 (i.e., f is a
pointwise limit of functions of Baire class n − 2;
continuous functions are functions of Baire class
0). An example in his paper shows that this
result is even sharp. Then, in 1919, H. Hahn
generalized the three-dimensional result of Baire
to n-directionally continuous functions. He proved
that, for any n-directionally continuous function
and any (n − 1)-dimensional plane H parallel to
the coordinate axes, there exists a dense set H′ of
points of H such that H′ ∩ SC(f ) = 0. Much later,
namely only in 1943, R. Kershner succeeded in
giving a general version of the Baire theorem for
n-directionally continuous functions. In fact, his
result is the following one:

Theorem (Kershner 1943). Let f be n-directionally
continuous on the unit cube I × · · · × I.

(a) Then SC(f ) is an Fσ -set, i.e., a set which is
a countable union of closed sets, and all projections
of SC(f ) on all coordinate hyperplanes, i.e., xj = 0,
are sets of first Baire category.

(b) For any subset S of the unit cube in Rn

which satisfies the above assumptions, there is an
n-directionally continuous function f on the cube
with SC(f ) = S.

Let us add a somewhat strange result by K. Bögel
(1926) for the two-dimensional case. Let f depend
on the variables x and y . Assume that f is con-
tinuous in the direction of x and differentiable in
the direction of y , in particular, continuous. Then
f is jointly continuous except on a nowhere dense
set. Observe that a set of the first category may be
strictly larger than a nowhere dense set, so this set
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of points of discontinuity is really very small. Simi-
lar results are also found in the paper by Kershner.
The last remark is due to R. L. Kruse and J. J. Deely
(1969): if f is n-directionally continuous on Rn

and monotone with respect to the variable xj for
all fixed (x1, . . . , xj−1, xj+1, . . . , xn), j = 1, . . . , n−1,
then f is jointly continuous everywhere.

But this is not the end of the story. Later, ques-
tions from above were discussed in more general
settings. The component spaces (initially R) were
substituted by more general topological spaces.
This kind of discussion is nowadays connected
with the so-called Namioka spaces. We will not go
into details here.

In any case, we are wondering why we have
never learned about these results in a standard
analysis course. We therefore suggest adding this
part of interesting mathematics to such courses
or, at least, discussing it in seminars following the
introductory course.

We would like to point out that we learned most
of the above results from the paper “The genesis of
separate versus joint continuity” by Z. Piotrowski
(1996).

Partial Differentiability
Recall that a partially differentiable function f in
R2 need not even be continuous (see (∗)). There
are also partially differentiable functions that are
continuous but that are not totally differentiable.
For example take f : R2 -→ R given as follows

(**) f (x, y) :=




x2y

x2+x2 , if (x, y) ≠ (0,0)

0, if x = y = 0
.

The reason for this phenomenon lies in the fact
that the graph of a jointly differentiable function
has to be almost equal (at least locally) with its
tangent hyperplane. Of course, this fact is much
stronger than to approximate the directional graph
by simple lines. In the case in which the partial
derivatives are assumed to be continuous at some
point, joint differentiability at that point follows
(as we are taught in standard analysis courses).

It was already known to Baire that a partially
differentiable function in R2 is differentiable at
all points of a dense subset. This result has
been sharpened by E. B. van Vleck (1907) in the
sense that he only assumed the existence of the
partial derivative with respect to the first variable
together with the continuity with respect to the
second variable.

Moreover, a result due to K. Bögel (1926) shows
that any partially differentiable function f in two
variables such that ∂f

∂x
is continuous with respect to

y and ∂f

∂y
is continuous with respect to x is jointly

differentiable except on a set of first category.
This may explain why all examples we present

during our analysis course look similar. In each of

them, the set of points at which f is not totally
differentiable is in some sense very small.

Nevertheless, for any ε ∈ (0,1) there exists a
function fε : [0,1]× [0,1] -→ R (due to G. Tolstov
(1949)) that has all partial derivatives at all points
of the square [0,1] × [0,1] but for which the
measure of SC(fε) is larger than ε. In particular,
the set in which fε is not jointly differentiable is a
set of positive measure.

Now let f : R × R -→ R be a partially differ-
entiable function which, in addition, has locally
bounded partial derivatives ∂f

∂x
, ∂f

∂y
. Then f is lo-

cally Lipschitz and therefore, using a result of
H. Rademacher (1919), almost everywhere jointly
differentiable. Nevertheless, (**) shows that there
may exist points at which such a function is not
differentiable.

Finally, let us also mention a result of J. Boman
(1967), who discusses the situation in which the
regularity information is known for a lot of test
curves, not only along lines parallel to the axes.

Theorem (Boman 1967). (a) Let f : Rn -→ R and

assume that f ◦ u ∈ Cp(Rn) for all u ∈ C∞(R,Rn),
where p ≥ 1. Then f ∈ Cp−1,1(Rn), i.e., f ∈
Cp−1(Rn) and all partial derivatives of f of order

p − 1 are locally Lipschitz.

(b) There is an f as in (a) such that f ∉ Cp(Rn).

We note that we have mentioned only a special
case of Boman’s result.

This discussion shows that, in comparison
with directional continuity, the situation does
not change dramatically. To obtain better re-
sults one has to discuss big varieties of test
curves. Nevertheless, one gets only a weaker joint
regularity.

Directionally Lipschitz
It is a simple observation that every uniformly
partially Lipschitz function is jointly Lipschitz.
We will discuss certain analogues (involving also
derivatives). For 0 < α ≤ 1 let Λα(Rk) denote the
space of all functions f : Rk -→ R that satisfy the
Hölder condition with exponent α. If α > 1, then

Λα(R
k) :=

{
f ∈ C1(Rk) :

∂f

∂x1
, . . . ,

∂f

∂xk
∈Λα−1(R

k)
}

is the α-order Lipschitz space. S. Bernstein (1912)
proved a first version of the following general
result.

Theorem. Let α > 0 and let f : Rn -→ R be par-

tially of class Λα(R) with

(†)
sup{‖f (x1, . . . , xj−1, ·, xj+1, . . . , xn)‖Λα(R) :x∈R

n,

j = 1, . . . , n} < +∞.

Then f ∈ Λα(Rn).
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Of course, the main point of the theorem is the
case α > 1. Note that (*) shows that the conclusion
may be false without (†).

Two different proofs are presented by
S. G. Krantz (1983).

As an immediate consequence we get: if a func-

tion f : R × R -→ R admits ∂2f

∂x2 and ∂2f

∂y2 and both

“pure” derivatives satisfy the uniform Lipschitz
condition, then the function is of class C2. The
question arose of what might happen if the pure
second derivatives are only assumed to be contin-
uous. An example (based on discussion of special
logarithmic potentials) was given by B. S. Mitjagin
(1959). Below we present a simpler explicit one
due to V. I. Judovič (which may be found in the
book of O. V. Besov, V. P. Il’in, S. M. Nikol’skǐı
(1978)).

Let B2 := {(x, y) ∈ R2 : x2 + y2 < 1},

f (x, y)

:=

{
xy log(− log(x2+y2)), if (x, y)∈B2\{(0,0)}

0, if x=y= 0
.

Then f ∈ C1(B2)∩ C∞(B2 \ {(0,0)}), f is partially

C2, and the partial derivatives ∂2f

∂x2 , ∂2f

∂y2 are con-

tinuous on B2, but ∂2f

∂x∂y
(0,0) does not exist, and

lim
(x,y)→(0,0)

∂2f

∂x∂y
(x, y) = +∞.

The above theorem may be extended to the case
of Sobolev spaces. A first attempt was made also
by S. Bernstein (see Collected Works, vol. I, 1952,
pp. 96–98 (in Russian)). Let W s(Rk) be the space
of all functions f : Rk -→ R whose derivatives of
order ≤ s are in L2(Rk).

Theorem. Let s > 0 and let f : Rn -→ R be partially

of class W s(R) with

sup{‖f (x1, . . . , xj−1, ·, xj+1, . . . , xn)‖W s(R) : x ∈ Rn,

j = 1, . . . , n} < +∞.

Then f ∈ W s(Rn).

Applying this result, it turns out that the mixed
second-order derivatives of Judovič’s example,
although they have a singularity at the origin, are
locally square integrable.

Notice that the assumption of uniform bound-
edness forces the function under discussion to
behave in a similar way along nearby test direc-
tions. This explains the joint regularity in the
above results.

Looking at the above three subsections, one
might get the impression that, working from the
point of view of real analysis, directional regularity
(without additional assumptions) never implies
joint regularity. But this is not the whole truth, as
we will see now.

Directional Holomorphy
For an open set Ω ⊂ Ck, let O(Ω) be the space of
all functions holomorphic on Ω.

Let D ⊂ Cp, G ⊂ Cq be domains. We say that a
function f : D×G -→ C is directionally (separately)
holomorphic (and we write f ∈ Os(D × G)), if
f (a, ·) ∈ O(G) for each a ∈ D and f (·, b) ∈ O(D)
for each b ∈ G.

Obviously, O(D × G) ⊂ Os(D × G). The prob-
lem is whether equality holds, i.e., whether every
directionally holomorphic function is jointly holo-
morphic. For f ∈ Os(D ×G), let SO(f ) denote the
set of all points (a, b) ∈ D ×G such that f is not
jointly holomorphic in any neighborhood of (a, b).

At the end of the nineteenth century, using
Cauchy integral representation, it was well known
that every continuous directionally holomorphic
function is jointly holomorphic, i.e., Os(D ×G) ∩
C(D×G) = O(D×G). Next, using classical methods
from that time, W. F. Osgood (1899, 1900) proved
that if f ∈ Os(D × G) is locally bounded, then
f is continuous and, consequently, Os(D × G) ∩
L∞loc(D × G) = O(D × G). He also proved that for
every f ∈ Os(D × G), the set SO(f ) is nowhere
dense. Moreover, he made an observation that in
order to prove that Os(D × G) = O(D × G) (for
arbitrary p, q,D,G) we only need to check (for
p = 1) the following lemma.

Lemma (Hartogs lemma (1906)). Let Cp × Cq ⊃

B(r)× B(s)
f
-→ C (B(a, r) stands for the Euclidean

ball centered at a with radius r , B(r) := B(0, r ))
be such that f (a, ·) ∈ O(B(s)) for every a ∈ B(r)
and f ∈ O(B(r)× B(δ)) for some 0 < δ < s. Then

f ∈ O(B(r)× B(s)).

In his proof Hartogs used for the first time
methods from potential theory in complex analy-
sis. But finally it turned out (see K. Koseki (1966))
that this lemma can also be verified with a pure
complex analysis argument. Hartogs also observed
that the lemma is not true without the assumption
that f ∈ O(B(r)× B(δ)) for some 0 < δ < s. Thus
we have the following fundamental result.

Theorem (Hartogs theorem (1906)). Os(D ×G) =
O(D ×G) (for arbitrary p, q,D,G).

A more general question is to allow nonlinear
fibers—a first step in this direction was done by
G. M. Chirka (2006 = 1906 + 100).

The Hartogs lemma suggests the followingprob-
lem, called the Hukuhara problem. We are given
two domains D ⊂ Cp, G ⊂ Cq , a nonempty set
B ⊂ G, and a function f : D × G -→ C that is
directionally holomorphic in the following sense:
f (a, ·) ∈ O(G) for every a ∈ D, f (·, b) ∈ O(D) for
every b ∈ B. We ask whether f ∈ O(D ×G).

In the situation above we write f ∈ Os(X) with
X := (D×G)∪(D×B). Notice that from the point of
view of set theory, the set X is nothing other than
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the Cartesian product D ×G, which is, of course,
independent of B. Writing X = (D ×G)∪ (D × B)
we point out the role played by the test set B.

Observe that the answer must be negative if B
is too “thin”. For example, if B := g−1(0), where
g ∈ O(G), g 6≡ 0, then for arbitrary function
ϕ : D -→ C, the function f (z,w) := ϕ(z)g(w),
(z,w) ∈ D ×G, belongs to Os(X).

M. Hukuhara (1942) proved an analogue of
Osgood’s result (with less “horizontal” test direc-
tions) showing that if B is an identity set at a
point b0 ∈ G (i.e., for any open connected neigh-
borhood U of b0 and f ∈ O(U), if f = 0 on
B ∩ U , then f ≡ 0), then every locally bounded
function f ∈ Os(X) is holomorphic on D ×G, i.e.,
Os(X)∩ L∞loc(D ×G) = O(D ×G).

It was T. Terada who finally answered the
question raised by Hukuhara, applying results of
pluripotential theory—a new tool at that time.

Theorem (Terada 1967, 1972). If B is not pluripo-
lar (i.e., B is not “thin” from the point of view of
the pluripotential theory), thenOs(X) = O(D×G).
Moreover, if D is bounded and B is a pluripolar set
of type Fσ , then Os(X) Ð O(D ×G).

Just a few words to get an intuitive meaning
of the notion “pluripolar”. Recall that a convex
function on R may be thought of as a sublinear
function, i.e., whenever this function is majorized
on the boundary of any subinterval by a linear
function, then the same remains true inside of
the interval. Note that linear functions are nothing
other than the solutions of the simple differential
equation u′′ = 0. Subharmonic functions in the
complex plane may be understood in the analo-
gous sense substituting u′′ = 0 by ∆u = 0, ∆ is the
Laplace operator. And finally, plurisubharmonic
functions are essentially functions that are sub-
harmonic in all complex directions. By PSH (Ω)
we denote all plurisubharmonic functions on an
open set Ω ⊂ Cn. A set B ⊂ Cn is called pluripolar
if there is a u ∈ PSH (Cn), u 6≡ −∞, such that
B ⊂ u−1(−∞).

Summarizing: The reader should be aware of
the essential difference between real and complex
differentiation—holomorphic functions are much
less flexible than differentiable ones. This is so
because of the identity principle, even along small
(nonpluripolar) sets.

Directionally Polynomial Functions
To understand better the general problem of
directional regularity, we first consider the case of
polynomials. For K = R (resp. K = C), let P(Kk)
be the space of all complex polynomials of k real
(resp. complex) variables.

Let 0 ≠ A ⊂ Cp, 0 ≠ B ⊂ Cq, X := (A × Cq) ∪
(Cp × B). We say that a function f : X -→ C is di-
rectionally polynomial on X , if f (a, ·) ∈ P(Cq) for
each a ∈ A and f (·, b) ∈ P(Cp) for each b ∈ B. Let

Ps(X) be the space of all functions directionally
polynomial on X . Clearly, P(Cp×Cq)|X ⊂ Ps(X).
The problem is to characterize those pairs of test
sets (A, B) for which Ps(X) = P(Cp × Cq)|X , i.e.,
every function that is directionally polynomial on
X extends to a polynomial of n := p + q complex
variables.

A set C ⊂ Ck is a determining set (for polyno-

mials) if for every f ∈ P(Ck) with f = 0 on C

vanishes identically. We say that a set C ⊂ Ck is
a strongly determining set (for polynomials) if for
every representation C =

⋃∞
s=1 Cs with Cs ⊂ Cs+1,

there exists an s0 such that Cs0 is a determin-
ing set. Observe that if C ⊂ Ck is nonpluripolar,
then C is strongly determining. A set C ⊂ C is
strongly determining iff C is uncountable. The set
C := {1/k : k ∈ N} ⊂ C is determining, but not
strongly determining.

With this notion at hand we have the fol-
lowing description of directionally polynomially
functions.

Theorem (Siciak 1995). The following conditions

are equivalent:

(i) A and B are determining, and at least one of

them is strongly determining;

(ii) for every f ∈ Ps(X) there exists exactly one

f̂ ∈ P(Cp × Cq) such that f̂ = f on X .

We mention that there is a similar result for
real-valued functions of two real variables due to
Z. Sasvári (1992). As a consequence of the Siciak
result (or the one of Sasvári in the case of R2) we
get the following result.

Corollary. Let f : Kp × Kq -→ C be directionally

polynomial, i.e., f (a, ·) ∈ P(Kq) for each a ∈ Kp

and f (·, b) ∈ P(Kp) for each b ∈ Kq . Then f ∈
P(Kp ×Kq).

Finally, we quote a result due to R. S. Palais
discussing a similar question over an arbitrary
field K.

Theorem (Palais 1978). If K is a field, then a nec-

essary and sufficient condition for every direction-

ally polynomial function f : K × K -→ K to be

a polynomial function is that K is either finite or

uncountable.

To summarize: to decide whether a function in
many variables is a polynomial (in these variables),
it suffices to prove its directionally polynomial
behavior. Hence in this simple class of functions
the directional regularity and the joint regularity
coincide. Even more is true. If a function f defined
on some cross-subset X ⊂ Cn is directionally
polynomial in many directions, then f is the
restriction of a uniquely defined joint polynomial.
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Directional Holomorphy—Crosses
Now we discuss the situation in which we only have
few “horizontal” and “vertical” test directions. We
are given two domains D ⊂ Cp, G ⊂ Cq and two
nonempty sets A ⊂ D, B ⊂ G. Define the cross

X := (A×G)∪ (D × B). A function f : X -→ C is
said to be directionally (separately) holomorphic on

X (f ∈ Os(X)), if f (a, ·) ∈ O(G) for every a ∈ A
and f (·, b) ∈ O(D) for everyb ∈ B. We ask whether
there exists an open neighborhood X̂ ⊂ D ×G of
X such that every function f ∈ Os(X) extends
holomorphically to X̂ .

Observe that the Hukuhara problem was just
the case in which A = D and X̂ = D × G. Notice
once again that different crosses may have the
same geometric image. In view of the Hartogs
theorem, if A and B are open, then Os(X) =
O((A ×G)∪ (D × B)).

To get an intuition of the situation we are
discussing, have a look at Figure 1.

Cp

Cq

︸ ︷︷ ︸
A

a

︸ ︷︷ ︸
D

B




b

G




X̂

Figure 1.

Investigations of this kind of question began
with S. Bernstein (1912) and have been continued
in papers by J. Siciak (1969), N. I. Akhiezer and
L. I. Ronkin (1973), V. P. Zahariuta (1976), J. Siciak
(1981), B. Shiffman (1989), Nguyen Thanh Van
and A. Zeriahi (1991, 1995), Nguyen Thanh Van
(1997), and O. Alehyane and A. Zeriahi (2001).
The problem has been completely solved. The
breakthrough method, the so-called double basis
method, was due to V. P. Zahariuta (1976). Recently,
a new method of proof was found by Viêt-Ahn
Nguyên that enables one to formulate the theorem
even for arbitrary complex manifolds.

Theorem (Cross theorem (1912–2001)). Assume

that A and B are locally pluriregular, i.e., A (re-

spectively, B) is “thick” from the point of view of

the pluripotential theory at every point a ∈ A (re-

spectively, b ∈ B). Then for every f ∈ Os(X), there

exists an f̂ ∈ O(X̂) such that f̂ = f on X and

sup
X̂
|f̂ | = supX |f |, where

X̂ := {(z,w) ∈ D ×G : h∗A,D(z)+ h
∗
B,G(w) < 1}

and h∗C,Ω is the upper regularization of the relative

extremal function

hC,Ω := sup{u ∈ PSH (Ω) : u ≤ 1, u|C ≤ 0}.

The result may reflect how holomorphic struc-
tures are rigid—a holomorphic function is in fact
completely determined by its values along very
small sets of test directions. Notice that in many
cases the envelope X̂ may be effectively calcu-
lated. To get a feeling of the power of this result,
we add a simple example:

Let A = B = ∂D (here D stands for the open
unit disc in the complex plane) and D = G = C. If
f ∈ Os((∂D×C)∪(C×∂D)), then f is automatically

the restriction of an entire function f̃ ∈ O(C2).
We point out that, in contrast to real analysis,

holomorphic functions are already globally deter-
mined by their values along small sets such as
X .

Directional Real Analyticity

For an open set Ω ⊂ Rk, let Cω(Ω) be the space of
all complex-valued real analytic functions on Ω.

Let D ⊂ Rp, G ⊂ Rq be domains. A function
f : D × G -→ C is said to be directionally real

analytic (f ∈ Cωs (D × G)) if f (a, ·) ∈ Cω(G) for
each a ∈ D and f (·, b) ∈ Cω(D) for each b ∈ G.

Obviously Cω(D × G) ⊂ Cωs (D × G). Observe
that the function f : R×R -→ R,

f (x, y) :=



xye

− 1
x2+y2 , (x, y) ≠ (0,0)

0, x = y = 0

is of the class Cωs (R× R)∩ C
∞(R × R) but is not

analytic near (0,0).
For f ∈ Cωs (D × G), let SCω(f ) be the set of

all (a,b) ∈ D × G such that f is not jointly real
analytic in any neighborhood of (a, b).

The central question is to characterize Cω(D ×
G) \ Cωs (D × G) and SCω(f ) for f ∈ Cωs (D × G).
The cross theorem may be applied to prove the
following sufficient criterion for a directionally
real analytic function to be jointly real analytic.

Theorem (Browder 1961, Lelong 1961). The space

Cω(D×G) consists of all f ∈ Cωs (D×G) such that

for every (a, b) ∈ D×G there exists an open neigh-

borhood U ⊂ Cp (resp. V ⊂ Cq) of a (resp. b) with

U ∩ Rp ⊂ D (resp. V ∩ Rq ⊂ G) such that for ev-

ery x ∈ U ∩ Rp (resp. y ∈ V ∩ Rq) the function

f (x, ·) (resp. f (·, y)) extends holomorphically to V

(resp. U ).
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Moreover, results due to J.-S. Raymond, J. Siciak,
and Z. Błocki describe precisely the singular sets
of directionally real analytic functions.

Theorem (S. Raymond 1989, 1990, Siciak 1990,
Błocki 1992). If f ∈ Cωs (D × G), then the projec-
tions prRp(SCω(f )), prRq(SCω(f )) are pluripolar as
subsets of Cp and Cq , respectively.

Conversely, for every relatively closed set S ⊂
D×G for which the projections prRp(S) and prRq(S)
are pluripolar, there exists an f ∈ Cωs (D ×G) such
that S = SCω(f ).

Thus singular sets of directional real analytic
functions are completely characterized.

Although real analytic functions seem to be very
similar to holomorphic ones, they are restrictions
of holomorphic functions; the above discussion
shows that their basic properties are different.

Directional Harmonicity
For an open set Ω ⊂ Rk, let H (Ω) be the space of
all harmonic functions on Ω.

Let D ⊂ Rp , G ⊂ Rq be domains. A function
h : D×G -→ R is said to be directionally harmonic
(h ∈Hs(D×G)), if h(a, ·) ∈H (G) for each a ∈ D
and h(·, b) ∈ H (D) for each b ∈ G.

It is clear that Hs(D × G) ∩ C2(D × G) ⊂
H (D×G). In the context of the previous theorem,
it is surprising that we have the following result
(which also may be obtained as a consequence of
the cross theorem).

Theorem (Browder 1961, Lelong 1961).
Hs(D ×G) ÐH (D ×G).

The Extension Theorem with Singularities
So far our directionally holomorphic functions
f : X -→ C had no singularities on X . The fun-
damental paper by E. M. Chirka and A. Sadullaev
(1988) and applications to mathematical tomog-
raphy (see O. Öktem (1998, 1999)) show that the
following is important.

Let A ⊂ D ⊂ Cp, B ⊂ G ⊂ Cq be as before, let
M ⊂ X := (A ×G) ∪ (D × B) be fiberwise closed,
and let

M(a,·) := {w ∈ G : (a,w) ∉ M}, a ∈ A,

M(·,b) := {z ∈ D : (z, b) ∉ M}, b ∈ B.

A function f : X \M -→ C is said to be directionally
(separately) holomorphic (f ∈ Os(X \M)) if f (a, ·)
is holomorphic in G \M(a,·) for every a ∈ A, f (·, b)
is holomorphic inD\M(·,b) for every b ∈ B. We ask

whether there exists a relatively closed set M̂ ⊂ X̂

such that every function f ∈ Os(X \M) extends
holomorphically to X̂ \ M̂ (see Figure 2).

Observe that the case in which M = 0 reduces
to the one we discussed before. A positive solution
has been found in a series of papers by O. Öktem
(1998, 1999), J. Siciak (2001), and M. Jarnicki
and P. Pflug (2001–2008). It turns out that if M

Cp

Cq

︸ ︷︷ ︸
A︸ ︷︷ ︸

D

B




G




X̂
M̂

M

•

Figure 2.

is fiberwise pluripolar (resp. analytic), then M̂

is pluripolar (resp. analytic). So we meet again
the well-known phenomenon in complex analysis
that the type of the singularity does not change
under holomorphic extensions. For example, take
D = G = C, A = B = R, M := {(x, x) : x ∈ R}. Then
X̂ = C2 and M̂ = {(z, z) : z ∈ C}, which is the set of
singularities of the function f (z1, z2) := 1/(z1−z2).

In particular, X̂ \ M̂ is the maximal extension
domain for Os(X \M).

We conclude with a simple example due to
T. Barth (1975). Let f : C× C -→ C be given by

f (z1, z2) :=




(z1+z2)
2

z1−z2
, if z1 ≠ z2

∞, if z1 = z2 ≠ 0

0, if z1 = z2 = 0.

Observe that now f is a directionally holomorphic
map, but, nevertheless, it is not continuous at
the origin. This example shows that our story is
definitely not finished for holomorphic mappings.

Final Remarks
The results presented here were obtained during
the last 100 years. They clearly show that real
analysis is very flexible and, therefore, that the
possibility to derive something from directional
information is very rare. Simultaneously, this leads
to a lot of interesting questions to be solved and
understood. On the other hand, complex analysis
is, in fact, governed by the identity theorem,
i.e., it is strongly rigid. That is the reason why
Hartogs’s result is true. Here the main point is
to extend objects as far as possible. Of course,
both disciplines have their beauty and challenging
problems. Although the rigidity of holomorphic
functions is fascinating for us as mathematicians
working in several complex variables, there are, of
course, other points of view.
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