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String Theory and the 
Geometry of the Universe’s 

Hidden Dimensions
Shing-Tung Yau and Steve Nadis

I
’d like to talk about how mathematics and 
physics can come together to the benefit 
of both fields, particularly in the case of 
Calabi-Yau spaces and string theory. This, not 
coincidentally, is the subject of the new book 

I have coauthored, The Shape of Inner Space. This 
book tells the story of those spaces. It also tells 
some of my own story and a bit of the history of 
geometry as well. In that spirit, I’m going to back 
up and talk about my personal introduction to 
geometry and the evolution of the ideas that are 
discussed in this book. 

I wanted to write this book to give people a 
sense of how mathematicians think and approach 
the world. I also want people to realize that math-
ematics does not have to be a wholly abstract dis-
cipline, disconnected from everyday phenomena, 
but is instead crucial to our understanding of the 
physical world. 

So we’re now going to step back a bit in time. 
Or perhaps I should say step back in spacetime…

Riemannian Geometry
When I arrived in Berkeley in 1969 for graduate 
study, I learned that the concept of geometry had 

gone through a radical 
change in the nineteenth 
century, thanks to the 
contributions of Gauss 
and Riemann. Riemann 
revolutionized our no-
tions of space, freeing 
up mathematics in the 
process. 

Objects no longer 
had to be confined to 
the flat, linear space of 
Euclidean geometry. Rie-
mann instead proposed 
a much more abstract 

conception of space—of any possible dimension—
in which we could describe distance and curvature. 
In fact, one can develop a form of calculus that is 
especially suited to such an abstract space. 

About fifty years later, Einstein realized that 
this kind of geometry, which involved curved 
spaces, was exactly what he needed to unify Newto-
nian gravity with special relativity. This insight cul-
minated in his famous theory of general relativity.

I learned about Riemannian geometry during my 
first year at Berkeley in 1969. It was different from 
the classical geometry that I studied in college in 
Hong Kong, where we focused on curves and sur-
faces in linear space. At Berkeley, I took courses 
from Spanier on algebraic topology, Lawson on 
Riemannian geometry, and Morrey on partial 
differential equations. I also audited courses on 
many other subjects, including general relativity, 
taking in as much information as I could possibly 
assimilate.

Algebraic topology was rather new to me. But, 
after a couple of months, I was able to understand 
what a fundamental group is, while also picking 
up some elementary facts about homotopy and 
homology theory.
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There were about five hundred graduate stu-
dents in the mathematics department at the time, 
and nobody had an office. We were in Campbell 
Hall, and instructors used the T building—the 
wood building in front of Evans Hall.

I spent all my free time in the mathematics li-
brary, which served as my unofficial office, where 
I constantly searched for interesting articles to 
pass the time. During the Christmas holiday of 
that year, when everybody else went home, I read 
John Milnor’s paper in the Journal of Differential 
Geometry1 on the relation of the fundamental 
group to the curvature of a manifold. I found that 
exciting because those were exactly the concepts 
that I had just studied. And Milnor was such a good 
writer that I understood everything in his paper. 
He referred to another paper by Preissman2 that 
sounded interesting to me.

From these papers, I learned that if the space 
has negative curvature, there is a strong constraint 
on the “fundamental group”—a concept from 
topology. Such a group consists of closed loops 
in that space, each of which has an initial point 
fixed. The elements of this group, which can be 
deformed to each other, are considered equivalent. 
Preissman’s theorem says that, in the fundamen-
tal group of manifolds with negative curvature, 
every two commuting elements can be written as 
a multiple of some other element in the group. 
This was intriguing, and I started to toy around 
with Preissman’s paper, trying to see what would 
happen if the space is allowed to have nonpositive 
curvature. This was the first time I got into state-
ments linking the curvature of a space—a precise 
description of the geometry—to a much cruder, 
more general way of characterizing shape, which 
we call topology.

Topology is a concept of a space that is unre-
lated to the way that we measure distance in that 
space. In that sense, topology describes a space 
much less precisely than geometry does. We need 
to know all the details of a space to measure the 
distance between any two points. The sum of all 
those details, which spell out the curvature at 
every point, is what we mean by geometry (Figures 
1, 2, 3).

A donut and a coffee mug, for example, have 
the same topology, but they have a different shape 
or geometry. A sphere and an ellipsoid, similarly, 
have the same topology, but they generally have a 
different shape. The sphere is a topological space 
with no fundamental group, as every closed loop 
can be shrunk to a point continuously. But there 

1J. Milnor, A note on curvature and fundamental group, 
J. Differential. Geometry 2 (1968), 1–7. 
2A. Preissman, Quelques propriétés globales des espaces 
de Riemann, Comment. Math. Helv. 15 (1942–1943), 
175–216.

Figure 1. In topology, a sphere, cube, square 
pyramid, and tetrahedron—among other 

shapes—are all considered equivalent. [Xianfeng 
(David) Gu and Xiaotian (Tim) Yin in The Shape of 

Inner Space.]

Figure 3. The donut has the same topology 
as this less familiar (and perhaps less tasty) 

object, but they have a different shape (or 
geometry). [Courtesy of Xiaotian (Tim) Yin.]

Figure 2. In topology, there are just two kinds of 
one-dimensional spaces that are fundamentally 

different from one another: a line and a circle. 
Two-dimensional (orientable) surfaces can 

be classified by their genus or number of 
holes. A sphere of genus 0, with no holes, is 

fundamentally distinct from a donut of genus 
1, which has one hole. [Xianfeng (David) Gu and 

Xiaotian (Tim) Yin in The Shape of Inner Space.]
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are closed curves on the surface of a torus that 
cannot be shrunk to a point continuously.

I wrote down my generalization of Preissman’s 
theorem, which links topology to geometry.3

While I was photocopying those notes in the 
Xerox room, I ran into Arthur Fisher, a mathemati-
cal physicist. He insisted on knowing what I had 
written. After reading through my notes, he told 
me that any principle that related curvature with 
topology would be useful in physics. His comments 
have stayed with me ever since.

General Relativity
We learned through special relativity that space 
and time should not be treated separately but 
should instead be merged together to form 
spacetime. Einstein struggled in his attempt to 
obtain a fundamental description of gravity. But he 
got some help from his friend Marcel Grossman, a 
mathematician, who told him of the work of other 
mathematicians, Riemann and Ricci.

Riemann provided the framework of abstract 
space, as well as the means for defining distance 
and curvature in such a space. Riemann thus sup-
plied the background space or setting in which 
gravity, as Einstein formulated it, plays out.

But Einstein also drew on the work of Ricci, 
who defined a special kind of curvature that could 
be used to describe the distribution of matter in 
spacetime. In fact, the Ricci curvature can be 
viewed as the trace of the curvature tensor. A 
remarkable feature of this curvature is that it 
satisfied the conservation law due to the identity 
of Bianchi. And it was exactly this conservation 
law that enabled Einstein to provide a geometric 
picture of gravity. Rather than considering gravity 
as an attractive force between massive objects, it 
could instead be thought of as the consequence of 
the curvature of spacetime due to the presence of 
massive objects. The precise way in which space-
time is curved tells us how matter is distributed.

To those readers interested in history, it is al-
ways instructive to find out what Einstein, himself, 
had to say on the subject. “Since the gravitational 
field is determined by the configuration of masses 
and changes with it, the geometric structure of 
this space is also dependent on physical factors,” 
he wrote. “Thus, according to this theory, space 
is—exactly as Riemann guessed—no longer abso-
lute; its structure depends on physical influences. 
[Physical] geometry is no longer an isolated, self-
contained science like the geometry of Euclid.”4

But it still took Einstein many years to formulate 
his famous field equations. First he developed the 

special theory of relativity, establishing the equiva-
lence of so-called inertial frames of reference, 
which he presented in 1905. A couple of years 
later, he realized that gravity could not be treated 
within special relativity, which was a linear theory, 
but instead needed to be treated in a separate, 
nonlinear theory. He then began to work on the 
latter theory, which came to be known as general 
relativity, admitting that “it took me a long time to 
see what coordinates at all meant in physics.” The 
notion of equivalence, which held that the laws of 
gravity should be true in any coordinate system, 
had been his guiding principle. By 1912, he started 
to realize that the gravitational potential should be 
described by a second-order symmetric tensor—a 
Riemannian metric with a Lorentzian signature.5

Two additional problems had to be solved as 
well, Einstein noted: 1. How can a field law, ex-
pressed in terms of the special theory of relativity, 
be transferred to the case of a Riemannian metric? 
2. What are the laws that determine the Rieman-
nian metric itself?6

He worked on these problems from 1912 to 
1914 with Grossman. Together they determined 
that the mathematical methods for solving the first 
problem could be found in the differential calculus 
of Ricci and Levi-Civita. They further discovered 
that the solution of the second problem depended 
on a mathematical construction (“differential 
invariants of the second order”) that had already 
been established by Riemann.

However, his collaboration with Grossman did 
not lead to the final form of the field equation of 
gravity, as the equation they found was not covari-
ant and did not satisfy the conservation law. In 
November 1915 he finally found the correct ver-
sion of his equation, which was around the same 
time that David Hilbert did so independently. But 
Einstein carried things an important step further, 
as he alone was able to link his theory with “the 
facts of astronomical experience”. 

Reflecting on his accomplishment, Einstein 
wrote, “In the light of the knowledge attained, 
the happy achievement seems almost a matter of 
course, and any intelligent student can grasp it 
without too much trouble. But the years of anxious 
searching in the dark, with their intense longing, 
their alternations of confidence and exhaustion, 
and the final emergence into the light—only those 
who have experienced it can understand that.”7 

Einstein’s struggle to understand gravity is re-
markable and his success in this area even more 

3Shing-Tung Yau, On the fundamental group of compact 
manifolds of non-positive curvature, Annals of Mathemat-
ics 93 (May 1971), pp. 579–585. 
4A. Einstein, The Problem of Space, Ether, and the Field 
in Physics, In Mein Weltbild, Querido Verlag, Amsterdam, 
1934.

5Abraham Pais, Subtle Is the Lord, Oxford University 
Press, New York, 1982.
6A. Einstein, Notes on the Origin of the General Theory 
of Relativity, In Mein Weltbild, Querido Verlag, Amster-
dam, 1934.
7A. Einstein and M. Grossman, Entwurf einer verallge-
meinerten Relativitätstheorie und einer Theorie der 
Gravitation, Teubner, Leipzig and Berlin, 1913. 
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so. One thing that is resoundingly apparent is the 
critical contribution of Riemannian geometry to 
that effort.

When I looked at the equations of Einstein more 
than a half century later, I was intrigued by the fact 
that matter controls only part of the curvature of 
spacetime. I wondered whether we could construct 
a spacetime that is a vacuum and thus has no 
matter, yet whose curvature is still pronounced, 
meaning that its gravity would be nonzero. Well, 
the famous Schwarzschild solution to Einstein’s 
equations is such an example. This solution ap-
plies to a non-spinning black hole—a vacuum 
that, curiously, has mass owing to its extreme 
gravity.8 But that solution admits a singular point, 
or singularity—a place where the laws of physics 
break down. [See Figure 4.]

I became interested in a different situation—a 
smooth space, without a singularity, that was com-
pact and closed, unlike the open, extended space 
of the Schwarzschild solution. The question was: 
Could there be a compact space that contained 
no matter—a closed vacuum universe, in other 
words—whose force of gravity was nontrivial? I 
was obsessed with this question and believed that 
such a space could not exist. If I could prove that, 
I was sure that it would be an elegant theorem in 
geometry.

Calabi Conjecture
When I started thinking about this in the early 

1970s, I did not realize that the geometer Eugenio 
Calabi had posed almost the exact same question. 

Calabi framed the problem in fairly complicated 
mathematical language—involving difficult con-
cepts such as Kähler manifolds, Ricci curvature, 
and Chern classes—that ostensibly had nothing to 
do with physics.9 Yet his abstract conjecture could 
also be framed in terms of Einstein’s theory of gen-
eral relativity. The additional information that he 
put in is that the space should admit some kind of 
internal symmetry called supersymmetry—a term 
coined by physicists. (Expressed in the language 
of geometry, this means an internal symmetry 
created by some constant spinors—constant in 
this case meaning spinors that are parallel. In 
the case of six-dimensional space, spaces with 
nontrivial constant spinors are Kähler manifolds 
unless the space is the Cartesian product of lower-
dimensional spaces.) In that context, Einstein’s 
question translated to: Can there be gravity, or the 
curving of space, in a closed vacuum—a compact 
supersymmetric space that has no matter?

For about three years, my friends and I tried to 
prove that the class of spaces proposed by Calabi 
could not exist. We, along with many others, con-
sidered them to be “too good to be true”. We were 
skeptical not only because the conjecture argued 
for the existence of a closed vacuum with gravity 
but also because it implied that there was a sys-
tematic way of constructing many such examples. 
Despite the reasons we had for finding Calabi’s 
argument dubious, try as we might, we could not 
prove that such spaces do not exist. (See Figure 5.)

In the spring of 1973, I was an assistant profes-
sor at Stony Brook. I had some correspondence 
with Robert Osserman on surface theory, and he 
seemed interested in my work on minimal sur-
faces. Since my girlfriend was in California at the 
time, I decided to ask whether I might be able to 
come to Stanford during the next year. To my sur-
prise, Osserman replied immediately and offered 
me a visiting position.

Figure 4. Twelve million light years away, a 
supermassive black hole, approximately 70 
million times more massive than the sun, is 
thought to reside in the center of the spiral 

Galaxy M81. (Image courtesy of NASA.)

Figure 5. Eugenio Calabi and Shing-Tung Yau at 
the Harvard University Science Center. [Image 

courtesy of S. T. Yau.]

8 K. Schwarzschild, Über das Gravitationsfeld eines Mas-
senpunktes nach der Einsteinschen Theorie, Sitzungs-
berichte der Deutschen Akademie der Wissenschaften 
zu Berlin, Klasse fur Mathematik, Physic, und Technik, 
1916, 189.

9E. Calabi, The Space of Kähler Metrics, Proc. Int. Congr. 
Math. Amsterdam (1954), no. 2, 206–207.
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did not advance my effort 
to disprove the Calabi con-
jecture. After many such 
abortive attempts, I con-
cluded that the conjecture 
must be correct after all. 
Once I made up my mind, I 
switched gears completely, 
putting all my energies into 
proving it right. I finally 
did so, several years later, 
in 1976.11

An additional bonus 
was that many of my failed 
counterexamples became 
important theorems of 
their own years later when 
I finally proved that the 
conjecture was correct.11, 12

I should say that at the 
same Stanford conference, 
the physicist Robert Geroch 
gave a talk on an important 
question in general relativ-
ity called the positive mass 
conjecture, which holds 
that the total mass or energy in any closed physi-
cal system must be positive. Schoen and I eventu-
ally proved this conjecture after some difficult 
calculations involving minimal surfaces and a lot 
of hard work. I still remember that the first hint 
of a possible solution hit us during a conversation 
we had while walking toward my apartment on the 
lawns of the west campus of Berkeley. 

The experience led us to think more about 
general relativity, and we eventually proved 
some theorems about black holes. My favorable 
interactions with general relativists also made me 
more open to collaborating with physicists in the 
development of string theory, although that didn’t 
come until several years later.

In my proof of the Calabi conjecture, I found 
a general mechanism to construct spaces satis-
fying Calabi’s equations, which are now called 
Calabi-Yau spaces. I had a strong sense that I had 
somehow stumbled onto a beautiful piece of math-
ematics. And as such, I felt it must be relevant to 
physics and to our deepest understanding of na-
ture. However, I did not know exactly where these 
ideas might fit in, as I didn’t know much physics 
at the time.

In late May of that year, I drove across the 
country with a graduate student. It was a long 
journey, and quite an experience, as both of us 
were relatively new to driving. Fortunately, I made 
it to Berkeley intact, with both the vehicle and my 
driving companion in one piece. There I met up 
with my friend S.-Y. Cheng, and together we went 
to Stanford to settle down. I worked hard on some 
papers that were to be presented at a huge three-
week conference at Stanford in August.

Osserman and my teacher S. S. Chern (Figure 
6) organized the conference. Perhaps my connec-
tions with them allowed me to present not one 
but two talks at this conference. But when I told 
some friends, while the meeting was under way, 
that I’d just found a counterexample to the Calabi 
conjecture, many geometers insisted that I give a 
separate presentation that evening. About thirty 
geometers gathered together on the third floor of 
the math building. The audience included Calabi, 
Chern, and other prominent mathematicians. I 
described my construction, and everybody seemed 
happy with it.

My argument incorporated the recent theorem 
of Cheeger-Gromoll called the splitting theorem in 
order to provide a structure theorem for manifolds 
with nonnegative first Chern class.10 If the Calabi 
conjecture were true, such a manifold would have 
Kähler metrics with nonnegative Ricci curvature. 
Hence I could apply the Cheeger-Gromoll theorem 
to find an algebraic surface whose first Chern 
class was numerically nonnegative, which does not 
satisfy the conclusion of the structure theorem. 
Such a result, contradicting the Calabi conjecture, 
would have doomed the conjecture if it could be 
proven true.

All the same, Calabi advanced an argument as 
to why this approach should work. At the end of 
the conference, Chern announced that this coun-
terexample was, arguably, the best outcome of 
the entire conference. I was astonished but happy.

However, about two months later, reality set in. 
Calabi wrote me a letter regarding some points in 
my argument that he could not understand. When I 
received his letter, I immediately realized that I had 
made a mistake: Although the algebraic surfaces 
upon which my argument rested could have a nu-
merically nonnegative first Chern class, it need not 
be nonnegative. And that’s where I’d gone astray.

I tried hard to come up with a new argument, 
working for two weeks straight with practically 
no sleep, pushing myself to the brink of collapse. 
Each time I found a possible counterexample, I 
soon found a subtle reason as to why it could 
not work. For example, I derived interesting 
Chern number inequalities for Kähler-Einstein 
manifolds, but, as with the previous cases, this 

Figure 6. Shiing-Shen Chern and 
Shing-Tung Yau at the Academia 
Sinica in Taipei, Taiwan, in 1992. 
[Image courtesy of S. T. Yau.] 

10J. Cheeger and Detlef Gromoll, The splitting theorem for 
manifolds of nonnegative Ricci curvature, J. Differential 
Geometry 6 (1971), 119–128.

11Shing-Tung Yau, Calabi’s conjecture and some new 
results in algebraic geometry, Proc. Natl. Acad. Sci. 74 
(1977), no. 5, 1798–1799.
12A. Beauville, Variétés Kählériennes dont la première 
classe de Chern est nulle, J. Differential Geometry 18 
(1983), 755–782.
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String Theory
In 1984 I received phone calls from two physicists, 
Gary Horowitz and Andy Strominger. They were 
excited about a model for describing the vacuum 
state of the universe, based on a new theory called 
string theory.

String theory is built on the assumption that 
particles, at their most basic level, are made of 
vibrating bits of strings—and exceedingly tiny 
strings at that. In order for the theory to be con-
sistent with quantum mechanics (at least in some 
versions of string theory), spacetime requires a cer-
tain symmetry built into it called supersymmetry. 
Spacetime is also assumed to be ten-dimensional. 

Horowitz and Strominger became interested 
in the multidimensional spaces whose existence I 
proved, mathematically, in my confirmation of the 
Calabi conjecture. They believed that these spaces 
might play an important role in string theory, as 
they seemed to be endowed with the right kind 
of supersymmetry—a property deemed essential 
to the theories they were working on. They asked 
me if their assessment of the situation was correct 
and, to their delight, I told them that it was. Or at 
least might be.

Then I got a phone call from Edward Witten, 
whom I’d met in Princeton the year before. Witten 
believed that this was one of the most exciting 
eras in theoretical physics, just like the time when 
quantum mechanics was being developed. He 
told me that everyone who made contributions to 
quantum mechanics in early days left their mark 
on the history of physics. He said that the impor-
tant discoveries of early string theorists, such as 
Michael Green and John Schwarz,13 could lead to 
the grand unification of all forces—the goal that 
Einstein had spent the last thirty years of his life 
working toward, although he did not succeed in 
the end.

Witten was now collaborating with Candelas, 
Horowitz, and Strominger, trying to figure out 
the shape, or geometry, of the six “extra” dimen-
sions of string theory. The physicists proposed 
that these six dimensions were curled up into a 
minuscule space, which they called Calabi-Yau 
space—part of the same family of spaces, which 
Calabi originally proposed and I later proved to 
exist.14 (See Figure 7.)

String theory, again, assumes that spacetime 
has ten dimensions overall. The three large spa-
tial dimensions that we’re familiar with, plus 
time, make up the four-dimensional spacetime of 
Einstein’s theory. But there are also six additional 

dimensions hidden away in Calabi-Yau space, and 
this invisible space exists at every point in “real 
space”, according to string theory, even though we 
can’t see it (Figure 8). 

The existence of this extradimensional space is 
fantastic on its own, but string theory goes much 
farther. It says that the exact shape, or geometry, 
of Calabi-Yau space dictates the properties of our 
universe and the kind of physics we see. The shape 
of Calabi-Yau space—or the “shape of inner space”, 
as we put it in our book—determines the kinds of 
particles that exist, their masses, the ways in which 

Figure 7. A two-dimensional “slice” of a Calabi-
Yau space. [Andrew J. Hanson/Indiana University.]

Figure 8. Our four-dimensional spacetime 
can be represented as a line that extends 

endlessly in both directions. Although a line, 
by definition, has no thickness, in this case we 

assume—as Kaluza and Klein did—that if we 
were to examine the line with a very powerful 
magnifying glass, we might discover that the 

line has some thickness after all. In string 
theory, it is assumed that this “line”, in fact, 

harbors six extra dimensions in the shape of 
a Calabi-Yau space. No matter where you slice 
the line, you will uncover a Calabi-Yau space, 

and all the spaces exposed in this way would be 
identical. [Xianfeng (David) Gu and Xiaotian (Tim) 

Yin in The Shape of Inner Space.]

13 M. Green and J. Schwarz, Anomaly cancellations in su-
persymmetric D=10 gauge theory and superstring theory, 
Physics Letters B 149 (1984), 117–122.
14 P. Candelas, G. Horowitz, A. Strominger, and E. Witten, 
Vacuum configurations for superstrings, Nuclear Physics 
B 258 (1985), 46–74.
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physicists thought there might only be a few 
examples—a few basic topologies—which made 
the goal of determining the “internal” shape of 
our universe seem a lot more manageable. But we 
soon realized there were many more examples of 
Calabi-Yau spaces—many more possible topolo-
gies—than were originally anticipated. In the early 
1980s, I guessed that there were tens of thousands 
of these spaces, and that number has grown con-
siderably since then.

The task of figuring out the shape of inner space 
suddenly seemed more daunting, and perhaps 
even hopeless if the number of possibilities turned 
out to be infinite. The latter question has yet to be 
settled, although I have always thought that the 
number of Calabi-Yau spaces of any dimension is 
finite. That number is certain to be big, but I believe 
it is bounded. One reason for thinking that stems 
from a theorem by Kollár, Miyaoka, and Mori,15 
which showed that, for each dimension, the num-
ber of compact manifolds (or spaces) with positive 
Ricci curvature is indeed finite. Calabi-Yau spaces 
are compact as well—meaning they cannot extend 
to infinity—but they have zero Ricci curvature, 
rather than positive Ricci curvature, so they should 
be considered a “borderline” case. Normally, when 
something is proven true for spaces of positive 
curvature, it is likely to be true for spaces of non-
negative curvature, which would thus include 
Calabi-Yau spaces. Moreover, after two-and-a-half 
decades of investigating these spaces, we’ve found 
no hint of any method that would enable us to con-
struct an infinite number of them. (See Figure 11.)

they interact, and maybe even the constants of 
nature (see Figure 9). 

In their attempts to derive the particles of 
nature, theoretical physicists rely on something 
called the Dirac operator. Analyzing the spectrum 
of this operator reveals the variety of particles that 
we might see. Based on the principle of separation 
of variables on this ten-dimensional spacetime, 
which is the product of the four-dimensional 
spacetime with the six-dimensional Calabi-Yau 
space, we know that part of the spectrum is con-
tributed by the Calabi-Yau space. Particles with 
nonzero spectrum will be extremely large if the 
diameter of the Calabi-Yau space is very small. We 
do not expect to observe any of these particles, as 
they would appear only at incredibly high energies. 

But particles with zero spectrum are potentially 
observable and can be calculated from the topol-
ogy of the Calabi-Yau space. This gives you an idea 
of why the topology of this tiny, six-dimensional 
realm could play an important role in physics.

While Einstein had said the phenomenon of 
gravity is really a manifestation of geometry, string 
theorists boldly proclaimed that the physics of 
our universe is a consequence of the geometry 
of Calabi-Yau space. That’s why string theorists 
were so anxious to figure out the precise shape of 
this six-dimensional space—a problem we’re still 
working on today. (See Figure 10.)

Witten was eager to learn more about Calabi-Yau 
spaces. He flew from Princeton to San Diego to 
talk with me about how to construct them. He also 
wanted to know how many Calabi-Yau spaces there 
were for physicists to choose among. Initially,

Figure 9. If string theory is correct, at any point 
in four-dimensional spacetime there’s a hidden, 
six-dimensional Calabi-Yau space. [Xianfeng 
(David) Gu and Xiaotian (Tim) Yin in The Shape of 
Inner Space. (Calabi-Yau images courtesy of Andrew 
J. Hanson, Indiana University).]

Figure 10. A two-dimensional cross-section of 
a six-dimensional Calabi-Yau space. [Andrew J. 
Hanson/Indiana University.]

15János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Ratio-
nal connectedness and boundedness of Fano manifolds, J. 
Differential Geometry 36 (1992), no. 3, 765–779.
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the other three-dimensional space, you’ll have the 
mirror manifold of the original Calabi-Yau space. 
This conjecture provides a geometrical picture of 
mirror symmetry though it has only been proven 
for special cases and has not yet been proven in a 
general sense. (See Figure 13.)

The connection between mirror manifolds, 
which was uncovered through physics, proved to 
be extremely powerful in the hands of mathemati-
cians. When they were stumped trying to solve a 
problem involving one Calabi-Yau space, they could 
try solving the same problem on its mirror pair. 
On many occasions, this approach was successful. 
As a result, mathematical problems of counting 
curves that had defied resolution, sometimes for 
as long as a century, were now being solved. (The 
German mathematician Hermann Schubert inves-
tigated many of these problems in the nineteenth

The excitement over Calabi-Yau spaces started 
in 1984, when physicists first began to see how 
these complex geometries might fit into their 
new theories. That enthusiasm kept up for a few 
years before waning. But interest in Calabi-Yau 
spaces picked up again in the late 1980s, when 
Brian Greene, Ronen Plesser,16 Philip Candelas,17 

and others began exploring the notion of “mirror 
symmetry”.

The basic idea here was that two different 
Calabi-Yau spaces, which had different topolo-
gies and seemed to have nothing in common, 
nevertheless gave rise to the same physics. This 
established a previously unknown kinship between 
so-called mirror pairs of Calabi-Yau spaces (Figure 
12). 

A conjecture proposed in 1995 by Strominger, 
Yau, and Zaslow offered insights into the substruc-
ture of a Calabi-Yau space.18

According to the so-called SYZ conjecture, a 
six-dimensional Calabi-Yau space can essentially 
be divided into two three-dimensional spaces. 
One of these spaces is a three-dimensional torus. 
First you take the torus and “invert” it, through an 
operation similar to switching its radius from r to 
1/r. When you combine the inverted torus with 

Figure 11. In string theory, the energy of empty 
space, also called the vacuum energy, can 

assume a vast number of possible values. The 
concept of the “landscape” of string theory 

was invented, in part, to illustrate the fact that 
the theory has many possible solutions—each 
corresponding to a different Calabi-Yau space, 

which gives rise to different physics. The 
notion of the string theory landscape is closely 

tied to the idea of a “multiverse”. [Xianfeng 
(David) Gu and Xiaotian (Tim) Yin in The Shape of 

Inner Space. (Calabi-Yau images courtesy of Andrew 
J. Hanson, Indiana University.)]

16B. R. Greene and M. R. Plesser, Duality in Calabi-Yau 
moduli space, Nuclear Physics B 338 (1990), 15–37.
17Philip Candelas, Xenia C. De La Ossa, Paul S. Green, 
and Linda Parkes, A pair of Calabi-Yau manifolds as an 
exactly soluble superconformal theory, Nuclear Physics 
B 359 (1991), 21–74.
18A. Strominger, S. T. Yau, and E. Zaslow, Mirror symme-
try is T duality, Nuclear Physics B 479 (1996), 243–259.

Figure 12. Physicists discovered that two 
Calabi-Yau spaces that look different and have 

distinct topologies can still lead to identical 
physics—a property they called “mirror 

symmetry”. [Andrew J. Hanson/Indiana University.]
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definitive test. So the jury is still out on the ques-
tion of whether string theory actually describes 
nature, which was, of course, the original intent. 
(See Figure 14.)

On the positive side of the ledger, some ex-
tremely intriguing, as well as powerful, mathemat-
ics has been inspired by string theory. Mathemati-
cal formulae developed through this connection 
have proved to be correct, and will always remain 
so, regardless of the scientific validity of string 
theory. Although it is empirically unproven, string 
theory now stands as the only consistent theory 
that unifies the different forces. And it is beautiful. 
Moreover, the effort to unify the different forces 
of nature has unexpectedly led to the unification 
of different areas of mathematics that at one time 
seemed unrelated.

We still don’t know what the final word will be. 
In the past two thousand years, the concept of ge-
ometry has evolved over several important stages 
to the current state of modern geometry. Each time 
geometry has been transformed in a major way, the 
new version has incorporated our improved under-
standing of nature arrived at through advances in 
theoretical physics. It seems likely that we shall 
witness another major development in the twenty-
first century, the advent of quantum geometry—a 
geometry that can incorporate quantum physics in 
the small and general relativity in the large.

The fact that abstract mathematics can reveal 
so much about nature is something I find both 
mysterious and fascinating. This is one of the ideas 
that my coauthor and I have tried to get across 
in our book, The Shape of Inner Space. We also 
hope that the book gives you a description of how

century.) And a branch of mathematics
called enumerative geometry was suddenly re-
juvenated. These advances gave mathematicians 
greater respect for physicists, as well as greater 
respect for string theory itself.

Mirror symmetry is an important example of 
what we call a duality. It sheds light on the deep 
geometry of Calabi-Yau space. It has also helped 
us solve some very difficult questions of counting 
rational curves of various degrees on the quintic 
with five variables, which is a kind of Calabi-Yau 
space. 

This problem, named after Schubert, dates 
back to the nineteenth century. Schubert showed 
that the number of degree-one rational curves on 
a quintic is 2,875. In 1986 Sheldon Katz found 
that there are 609,250 degree two curves.19 Then 
around 1989 two Norwegian mathematicians, 
Geir Ellingsrud and Stein Strømme, found that the 
number of degree three curves—based on algebraic 
geometry techniques—was 2,683,549,425. Relying 
on a string theory approach, a group of physicists, 
led by Candelas, arrived at a different number, 
317,206,375. The physicists, however, had used a 
formula that, up to then, had not been motivated 
by mathematical principles. As such, rigorous jus-
tification of that formula still awaited confirmation 
by mathematicians.

In January of 1990 I organized the first major 
meeting between string theorists and mathemati-
cians at the urging of Isadore Singer. The event 
took place at the Mathematical Sciences Research 
Institute (MSRI) in Berkeley. At this meeting there 
was a somewhat tense debate regarding who was 
right, Ellingsrud and Strømme or the Candelas 
team. The discrepancy between the two camps 
lasted a few months until the mathematicians 
discovered a mistake in their computer code. After 
they corrected that error, their number agreed 
perfectly with that put forth by the physicists. 
And, ever since then, mathematicians have begun 
to appreciate the depth of the insight provided by 
the string theorists. 

The episode also provided firm evidence that 
mirror symmetry had a mathematical basis. It took 
several years but, by the mid- to late 1990s, a rigor-
ous mathematical proof of mirror symmetry—and 
a validation of the Candelas et al. formula—was 
finally achieved independently by Givental20 and 
Lian-Liu-Yau.21

Conclusion
Before we get too carried away, we should bear 
in mind that string theory, as the name suggests, 
is just a theory. It has not been confirmed by 
physical experiments, nor have any experiments 
yet been designed that could put that theory to a 

Figure 13. The double tetrahedron, which has 
five vertices and six faces, and the triangular 
prism, which has six vertices and five faces, 
are simple examples of mirror symmetry. 
These polyhedra can be used to construct a 
Calabi-Yau space and its mirror pair, although 
the details of this procedure can get rather 
technical. [Xiangfeng (David) Gu and Xiaotian (Tim) 
Yin in The Shape of Inner Space.]

19S. Katz, On the finiteness of rational curves on quintic 
threefolds, Compositio Math. 60 (1986), 151–162.

20A. Givental, Equivariant Gromov-Witten invariants, Int. 
Math. Res. Notices 13 (1996), 613–663.
21 B. Lian, K. Liu, and S. T. Yau, Mirror principle. I, Asian 
J. Math. 1 (1997), 729–763.
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mathematicians work. They are not necessarily 
weird people, such as a janitor who solves centu-
ries-old math problems on the side while mopping 
and dusting floors, as described in the movie Good 
Will Hunting. Nor does a brilliant mathematician 
have to be mentally ill or exhibit otherwise bizarre 
behavior, as depicted in another popular movie 
and book.

Mathematicians are just scientists who look 
at nature from a different, more abstract point 
of view than the empiricists do. But the work 
mathematicians do is still based on the truth and 
beauty of nature, the same as it is in physics. Our 
book tries to convey the thrill of working at the 
interface between mathematics and physics, show-
ing how important ideas flow through different 
disciplines, with the result being the birth of new 
and important subjects.

In the case of string theory, geometry and phys-
ics have come together to produce some beautiful 
mathematics, as well as some very intriguing phys-
ics. The mathematics is so beautiful, in fact, and 
it has branched out into so many different areas, 
that it makes you wonder whether the physicists 
might be onto something after all.

The story is still unfolding, to be sure. I consider 
myself lucky to have been part of it and hope to 
stay involved in this effort for as long as I can 
contribute.

Figure 14. Experiments at the Large Hadron 
Collider at CERN in Geneva may reveal hints 

of extra dimensions or the existence of 
supersymmetric particles. Although such 
findings would be consistent with string 

theory, they would not prove that the theory is 
correct. {Courtesy of CERN.)
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