The Mathematical Work
of Daniel Spielman

Michel X. Goemans and Jonathan A. Kelner

The Notices solicited the following article describing the work of Daniel Spielman, recipient
of the 2010 Nevanlinna Prize. The International Mathematical Union also issued a news
release about the prize, which appeared in the December 2010 issue of the Notices.

The Rolf Nevanlinna Prize is awarded once every
four years at the International Congress of Mathe-
maticians by the International Mathematical Union
for outstanding contributions in mathematical as-
pects of information sciences. The 2010 recipient
was Daniel Spielman, who was cited for “smoothed
analysis of Linear Programming, algorithms for
graph-based codes, and applications of graph
theory to Numerical Computing”.

In this article, we summarize some of Spielman’s
seminal contributions in these areas. Unfortunately,
because of space constraints, we can barely scratch
the surface and have to leave out many of his
impressive results (and their interconnections)
over the last two decades.

Error-Correcting Codes
Several of Spielman’s important early contributions
were in the design of error-correcting codes.
Error-correcting codes are fundamental in our
increasingly digital lives, and they are important
mathematical tools in the theory of computing.
In a code of block length n and rate r < 1
over the alphabet {0,1}, a message in {0,1}" is
encoded into a codeword in {0, 1}". To be able to
correct errors in the transmission of a codeword,
one would like the minimum distance d between
two codewords to be large. A code is said to
be asymptotically good if both the rate r and
the relative distance d/n are bounded below by
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positive constants as n grows. The goal is to get
not only asymptotically good codes with the best
possible trade-off between the rate and the relative
minimum distance but also codes for which both
the encoding and the decoding can be done as
fast as possible, ideally in linear time. In his Ph.D.
work, Spielman and his advisor Michael Sipser
proposed the first asymptotically good codes that
allow linear-time decoding (for a survey, see [6] and
references therein). Their codes are low-density
parity check (LDPC) codes, introduced by Gallager
half a century ago, in which a sparse bipartite
graph links the bits of the codeword on one side
to parity checks on the other side that constrain
sets of bits to sum to 0 over GF(2); these are
linear codes. The Sipser and Spielman codes use
a bipartite expander graph as the parity check
graph. The expansion property not only implies
a good bound on the minimum distance but also
allows a simple decoding algorithm, in which one
repeatedly flips codeword bits with more than
half of their neighboring constraints violated. The
Sipser and Spielman codes require quadratic time
for encoding, as in any linear code. Subsequently,
Spielman (see also [6]) provided a more intricate
construction, still based on expanders, that yielded
the first asymptotically good codes with linear-time
encoding and decoding.

In later work, Spielman and collaborators de-
signed highly practical LDPC codes for the erasure
channel model, in which some of the bits are
simply lost. Their codes [4] approach the maximum
capacity possible according to Shannon’s theory,
and they can be encoded and decoded in linear time.
The decoding is based on belief propagation, which
sets a missing bit whenever it can be recovered
unambiguously. Despite the simplicity of these
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algorithms, the design and analysis of these codes
are mathematically quite involved. Some of this
work has had considerable practical impact.

Smoothed Analysis of Algorithms

One of Daniel Spielman’s most celebrated contri-
butions is his introduction of a new notion for
analyzing the efficiency of algorithms, the concept
of smoothed analysis, and its powerful and highly
technical illustration on the simplex algorithm for
linear programming. This was done in joint work
with Shang-Hua Teng, his longtime collaborator.

The traditional way to measure the efficiency
of an algorithm for a computational problem
(such as inverting a matrix, factoring a number,
or computing a shortest path in a graph) is to
measure its worst-case running time over all
possible instances of a given input size. Efficient
algorithms are considered to be those whose worst-
case running times grow polynomially with the
size of the input. But this worst-case, pessimistic
measure does not always reflect the behavior
of algorithms on typical instances that arise in
practice.

A compelling example of this is the case of linear
programming, in which one aims to maximize
a linear function subject to linear constraints:
max{{c,x) : Ax < b,x € R} with the inputs
ceRY Aec R™ and b € R™. This problem
has numerous industrial applications. In the late
1940s, George Dantzig proposed the simplex
algorithm for linear programming, which has been
cited as one of the “top ten algorithms of the
20th century” (Dongarra and Sullivan). In the
nondegenerate case, the simplex algorithm can be
viewed as starting from a vertex of the polyhedron
P = {x € RY: Ax < b} and repeatedly moving to
an adjacent vertex (connected by an edge, or face
of dimension 1) while improving the value (c, x).
However, no pivot rule (dictating which adjacent
vertex is chosen next) is known for which the
worst-case number of operations is polynomial in
the size of the input. Even worse, for almost every
known pivot rule, there exist instances for which
the number of steps grows exponentially. Whether
there exist polynomial-time algorithms for linear
programming was a long-standing open question
until the discovery of the ellipsoid algorithm
(by Nemirovski and Shor, and Khachian) in the
late 1970s and interior-point algorithms (first by
Karmarkar) in the mid-1980s. Still, the simplex
algorithm is the most often used algorithm for
linear programming, as it performs extremely
well on typical instances that arise in practice.
This almost paradoxical disparity between its
exponential worst-case behavior and its fast typical
behavior called for an explanation. In the 1980s,
researchers considered probabilistic analyses of
the simplex method under various probabilistic
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models, but results in one model do not necessarily
carry over to other probabilistic models and do
not necessarily shed any light on instances that
occur in practice.

Spielman and Teng [7] instead proposed
smoothed analysis, a blend of worst-case and
probabilistic analyses, which marvelously explains
the typical behavior of the simplex algorithm. In
smoothed analysis, one measures the maximum
over all instances of a certain size of the expected
running time of an algorithm under small random
perturbations of the input. In the setting of
the simplex algorithm for linear programming,
Spielman and Teng consider any linear program
given by ¢ € R4, A € R™4 and b € R™ and
randomly perturb A and b by independently
adding to each entry a Gaussian random variable of
variance o2 times the maximum entry of A and b.
Using an intricate technical argument, they prove
that the expected number of steps of the simplex
algorithm with the so-called shadow-vertex pivot
rule is polynomial in the dimensions of A and
1/0. The shadow-vertex pivot rule essentially
corresponds to walking along the projection
of the polyhedron onto a 2-dimensional linear
subspace containing c. One step of the proof is to
bound the expected number of vertices along a
random 2-dimensional projection by a polynomial
in n, d, and 1/0. For this purpose, they prove
that the angle at a vertex of the projection is
unlikely to be too flat, and this is formalized
and proved by showing that a random Gaussian
perturbation of any given matrix is sufficiently well
conditioned, a fundamental notion in numerical
linear algebra. Their work has motivated further
developments, including better estimates on the
condition number of randomly perturbed matrices,
other probabilistic models for the perturbations,
and smoothed analyses for other algorithms and
problems (see the Smoothed Analysis page in
[5]). Smoothed analysis also suggested the first
randomized polynomial-time simplex algorithm
for linear programming by Daniel Spielman and
the second author [3]. This could be a step toward
finding a strongly (not depending on the size of
the numbers involved) polynomial-time algorithm
for linear programming.

Fast Algorithms for Numerical Linear
Algebra and for Graph Problems

Inrecent years, Spielman and his collaborators have
ignited what appears to be an incipient revolution
in the theory of graph algorithms. By developing
and exploiting deep connections between graph
theory and computational linear algebra, they
have introduced a new set of tools that have the
potential to transform both fields. This work has
already resulted in faster algorithms for several
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fundamental problems in both linear algebra and
graph theory.

Fast Algorithms for Laplacian Linear Systems

With any graph G, one can associate a matrix Lg
known as the graph Laplacian. Much of Spielman’s
recent work has been in the realm of spectral graph
theory, which studies the rich interplay between
the combinatorial properties of G and the linear
algebraic properties of Lg.

Motivated by scientific computing, Spielman’s
work in this field began with the search for a
faster algorithm to solve linear systems of the
form Lsx = b. While the best known algorithms for
solving general n X n linear systems require time
O (n?378), Spielman and Teng showed that this
class of linear systems can be solved much more
quickly. In a technical tour de force, they gave an
algorithm [8] that approximately solves such linear
systems to any given accuracy in an amount of
time that is nearly linear in the number of edges
of G. This allows one to solve sparse diagonally
dominant linear systems, which are ubiquitous in
scientific computing.

However, its impact has extended far beyond
solving linear systems. Their algorithm works
by finding simpler graphs whose Laplacians are
algebraically similar to L; and using the solutions
to linear systems involving them to speed up an
iterative solver. To find these graphs, they introduce
two algorithmic tools that have found broader
applicability and led to substantial follow-up work:
spectral sparsification and local clustering.

Spectral Sparsification

The goal of sparsification is to approximate a dense
graph G by a sparser graph H. In a landmark
paper, Benczur and Karger showed that any graph
G can be approximated in nearly linear time by a
weighted graph H with O(nlogn/e?) so that the
weight of every cut in H is preserved up to a factor
of at most 1 + €. This allows one to approximately
solve any problem whose solution depends only
on the weights of cuts by operating on H instead
of G. Since H has many fewer edges when G is
dense, this is usually much faster.

For their solver, Spielman and Teng introduced
the notion of spectral sparsification, which requires

that L; and Ly be approximately the same as qua-

dratic forms. This is a strictly stronger requirement
that implies that H approximately preserves the
weights of cuts as well. They then showed how
to compute such sparsifiers with O (n logO“) nj/e?)
edges in nearly linear time [9].

In later work, Batson, Spielman, and Srivastava

[1] have shown that one can eliminate the polylog-

arithmic factors and compute spectral sparsifiers
with just O (n/€?) edges. This was not previously
known even for the weaker cut-based notion of
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sparsification. In addition to being a surprising
result in graph theory, their techniques have led to
a new simpler proof of an important theorem by
Bourgain and Tzafriri in functional analysis and
a new approach to the long-open Kadison-Singer
conjecture.

Local Clustering

A key part of Spielman and Teng’s construction
of sparsifiers was an algorithm for local clustering
[10]. The goal is to find a well-connected cluster
of vertices that contains a given vertex v in some
graph G so that the running time grows with the
size of the cluster and depends only very weakly
on the size of G. This can be a vast improvement
over global algorithms when one is looking for a
small cluster inside a huge ambient graph.
Assuming that v is sufficiently well contained in
a cluster, Spielman and Teng provide an algorithm
for finding this cluster using the connection
between graph conductance and random walks.
This has sparked an active area of research into
improving and applying these techniques.

Electrical Flows and Graph Algorithms

In constructing their solver, Spielman and Teng
use graph theory to speed up linear algebra. In
more recent work, Spielman and his collaborators
have shown how to exploit this connection in the
other direction, using the linear system solver to
obtain faster algorithms for several fundamental
graph problems, most notably for approximating
maximum flows in undirected graphs [2]. To do this,
they model the edges of a graph as resistors, and
they study the electrical currents and potentials
that result when one imposes voltages or injects
current into various parts of the graph. It turns out
that this can be computed by solving a Laplacian
linear system, so it can be done using the Spielman-
Teng solver in nearly linear time. Since electrical
flows encode complex global information about a
circuit, this provides a powerful new tool to probe
the structure of a graph.

Summary

We were able to give only a glimpse of Daniel
Spielman’s mathematical work in the theory of
computing, but we hope we were able to convey that
his numerous mathematical insights have led to
groundbreaking results in the design and analysis
of algorithms for error-correcting codes, linear
programming, graph algorithms, and numerical
linear algebra. We refer the interested reader to
his website [5] for additional results, pointers,
references, and mathematical gems.
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