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The authors’ thesis—once controversial, but
now a commonplace—is that computers can
be a useful, even essential, aid to mathematical
research.

—Jeff Shallit

J
eff Shallit wrote this in his recent review
(MR2427663) of [10]. As we hope to make
clear, Shallit was entirely right in that many,
if not most, research mathematicians now
use the computer in a variety of ways to

draw pictures, inspect numerical data, manipulate
expressions symbolically, and run simulations.
However, it seems to us that there has not yet been
substantial and intellectually rigorous progress
in the way mathematics is presented in research
papers, textbooks, and classroom instruction or
in how the mathematical discovery process is
organized.

Mathematicians Are Humans

We share with George Pólya (1887–1985) the view
[25, vol. 2, p. 128] that, while learned,

intuition comes to us much earlier and
with much less outside influence than
formal arguments.
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Pólya went on to reaffirm, nonetheless, that proof
should certainly be taught in school.

We turn to observations, many of which have
been fleshed out in coauthored books such as
Mathematics by Experiment [10] and Experimental
Mathematics in Action [3], in which we have noted
the changing nature of mathematical knowledge
and in consequence ask questions such as “How do
we teach what and why to students?”, “How do we
come to believe and trust pieces of mathematics?”,
and “Why do we wish to prove things?” An answer
to the last question is “That depends.” Sometimes
we wish insight and sometimes, especially with
subsidiary results, we are more than happy with a
certificate. The computer has significant capacities
to assist with both.

Smail [27, p. 113] writes:
the large human brain evolved over the
past 1.7 million years to allow individuals
to negotiate the growing complexities
posed by human social living.

As a result, humans find various modes of argument
more palatable than others and are more prone to
make certain kinds of errors than others. Likewise,
the well-known evolutionary psychologist Steve
Pinker observes that language [24, p. 83] is founded
on

the ethereal notions of space, time, cau-
sation, possession, and goals that appear
to make up a language of thought.

This remains so within mathematics. The
computer offers scaffolding both to enhance
mathematical reasoning, as with the recent
computation connected to the Lie group E8 (see
http://www.aimath.org/E8/computerdetails.
html), and to restrain mathematical error.

Experimental Mathodology

Justice Potter Stewart’s famous 1964 comment, “I
know it when I see it,” is the quote with which
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The Computer as Crucible [13] starts. A bit less
informally, by experimental mathematics we intend
[10]:

(a) gaining insight and intuition;
(b) visualizing math principles;
(c) discovering new relationships;
(d) testing and especially falsifying conjectures;
(e) exploring a possible result to see if it merits

formal proof;
(f) suggesting approaches for formal proof;
(g) computing replacing lengthy hand deriva-

tions;
(h) confirming analytically derived results.

Of these items, (a) through (e) play a central role,
and (f) also plays a significant role for us but
connotes computer-assisted or computer-directed
proof and thus is quite distinct from formal proof
as the topic of a special issue of the Notices in
December 2008; see, e.g., [20].

Digital Integrity: I. For us, (g) has become ubiq-
uitous, and we have found (h) to be particularly
effective in ensuring the integrity of published
mathematics. For example, we frequently check
and correct identities in mathematical manuscripts
by computing particular values on the LHS and
RHS to high precision and comparing results—and
then if necessary use software to repair defects.

As a first example, in a current study of
“character sums” we wished to use the following
result derived in [14]:

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(1)

?= 4 Li4

(
1
2

)
− 51

2880
π4 − 1

6
π2 log2(2)

+ 1
6

log4(2)+ 7
2

log(2)ζ(3).

Here Li4(1/2) is a polylogarithmic value. How-
ever, a subsequent computation to check re-
sults disclosed that, whereas the LHS evalu-
ates to −0.872929289 . . ., the RHS evaluates
to 2.509330815 . . .. Puzzled, we computed the
sum, as well as each of the terms on the RHS
(sans their coefficients), to 500-digit precision, then
applied the “PSLQ” algorithm, which searches for
integer relations among a set of constants [16].
PSLQ quickly found the following:

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(2)

= 4 Li4

(
1
2

)
− 151

2880
π4 − 1

6
π2 log2(2)

+ 1
6

log4(2)+ 7
2

log(2)ζ(3).

In other words, in the process of transcribing (1)
into the original manuscript, “151” had become
“51”. It is quite possible that this error would have
gone undetected and uncorrected had we not been

able to computationally check and correct such
results. This may not always matter, but it can be
crucial.

With a current research assistant, Alex Kaiser
at Berkeley, we have started to design software
to refine and automate this process and to run
it before submission of any equation-rich paper.
This semiautomated integrity checking becomes
pressing when verifiable output from a symbolic
manipulation might be the length of a Salinger novel.
For instance, recently while studying expected radii
of points in a hypercube [12], it was necessary to
show the existence of a “closed form” for

J(t) :=
∫
[0,1]2

log(t + x2 + y2)
(1+ x2)(1+ y2)

dxdy.(3)

The computer verification of [12, Thm. 5.1] quickly
returned a 100,000-character “answer” that could
be numerically validated very rapidly to hundreds
of places. A highly interactive process stunningly
reduced a basic instance of this expression to the
concise formula

J(2) = π
2

8
log 2− 7

48
ζ(3)+ 11

24
π Cl2

(
π
6

)
(4)

− 29
24
π Cl2

(
5π
6

)
,

where Cl2 is the Clausen function Cl2(θ) :=∑
n≥1 sin(nθ)/n2 (Cl2 is the simplest nonelemen-

tary Fourier series). Automating such reductions
will require a sophisticated simplification scheme
with a very large and extensible knowledge base.

Discovering a Truth

Giaquinto’s [18, p. 50] attractive encapsulation—
“In short, discovering a truth is coming to believe
it in an independent, reliable, and rational way”—
has the satisfactory consequence that a student
can legitimately discover things already “known”
to the teacher. Nor is it necessary to demand
that each dissertation be absolutely original—
only that it be independently discovered. For
instance, a differential equation thesis is no less
meritorious if the main results are subsequently
found to have been accepted, unbeknownst to the
student, in a control theory journal a month earlier—
provided they were independently discovered. Near-
simultaneous independent discovery has occurred
frequently in science, and such instances are likely
to occur more and more frequently as the earth’s
“new nervous system” (Hillary Clinton’s term in
a recent policy address) continues to pervade
research.

Despite the conventional identification of math-
ematics with deductive reasoning, Kurt Gödel
(1906–1978) in his 1951 Gibbs lecture said:

If mathematics describes an objective
world just like physics, there is no rea-
son why inductive methods should not
be applied in mathematics just the same
as in physics.
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He held this view until the end of his life despite—
or perhaps because of—the epochal deductive
achievement of his incompleteness results.

Also, we emphasize that many great math-
ematicians from Archimedes and Galileo—who
reputedly said “All truths are easy to understand
once they are discovered; the point is to discover
them”—to Gauss, Poincaré, and Carleson have em-
phasized how much it helps to “know” the answer
beforehand. Two millennia ago, Archimedes wrote,
in the introduction to his long-lost and recently
reconstituted Method manuscript:

For it is easier to supply the proof
when we have previously acquired, by
the method, some knowledge of the
questions than it is to find it without
any previous knowledge.

Archimedes’ Method can be thought of as an uber-
precursor to today’s interactive geometry software,
with the caveat that, for example, the software
package Cinderella actually does provide proof
certificates for much of Euclidean geometry.

As 2006 Abel Prize Laureate Lennart Carleson
describes in his 1966 ICM speech on his positive res-
olution of Luzin’s 1913 conjecture (that the Fourier
series of square-summable functions converge
pointwise a.e. to the function), after many years of
seeking a counterexample, he finally decided none
could exist. He expressed the importance of this
confidence as follows:

The most important aspect in solving a
mathematical problem is the conviction
of what is the true result. Then it took 2
or 3 years using the techniques that had
been developed during the past 20 years
or so.

Digital Assistance

By digital assistance, we mean the use of:

(a) integrated mathematical software such as
Maple and Mathematica, or indeed Matlab
and their open-source variants.

(b) specialized packages such as CPLEX, PARI,
SnapPea, Cinderella, and MAGMA.

(c) general-purpose programming languages
such as C, C++, and Fortran-2000.

(d) Internet-based applications such as Sloane’s
Encyclopedia of Integer Sequences, the In-
verse Symbolic Calculator,1 Fractal Explorer,

1Most of the functionality of the ISC, which is now housed
at http://isc.carma.newcastle.edu.au/, is now
built into the “identify” function of Maple starting
with version 9.5. For example, the Maple command
identify(4.45033263602792) returns

√
3 + e, mean-

ing that the decimal value given is simply approximated
by
√

3+ e.

Jeff Weeks’s Topological Games, or Euclid
in Java.2

(e) Internet databases and facilities, including
Google, MathSciNet, arXiv, Wikipedia, Math-
World, MacTutor, Amazon, Amazon Kindle,
and many more that are not always so
viewed.

All entail data mining in various forms. The
capacity to consult the Oxford dictionary and
Wikipedia instantly within Kindle dramatically
changes the nature of the reading process. Franklin
[17] argues that Steinle’s “exploratory experimen-
tation” facilitated by “widening technology” and
“wide instrumentation”, as routinely done in fields
such as pharmacology, astrophysics, medicine, and
biotechnology, is leading to a reassessment of what
legitimates experiment, in that a “local model” is
not now a prerequisite. Thus a pharmaceutical
company can rapidly examine and discard tens of
thousands of potentially active agents and then
focus resources on the ones that survive, rather
than needing to determine in advance which are
likely to work well. Similarly, aeronautical engineers
can, by means of computer simulations, discard
thousands of potential designs and submit only
the best prospects to full-fledged development and
testing.

Hendrik Sørenson [28] concisely asserts that
experimental mathematics—as defined above—is
following similar tracks with software such as
Mathematica, Maple, and Matlab playing the role
of wide instrumentation:

These aspects of exploratory experimen-
tation and wide instrumentation origi-
nate from the philosophy of (natural) sci-
ence and have not been much developed
in the context of experimental mathe-
matics. However, I claim that, e.g., the
importance of wide instrumentation for
an exploratory approach to experiments
that includes concept formation also per-
tains to mathematics.

In consequence, boundaries between mathematics
and the natural sciences and between inductive
and deductive reasoning are blurred and becoming
more so. (See also [2].) This convergence also
promises some relief from the frustration many
mathematicians experience when attempting to
describe their proposed methodology on grant
applications to the satisfaction of traditional hard
scientists. We leave unanswered the philosophically
vexing if mathematically minor question as to
whether genuine mathematical experiments (as
discussed in [10]) truly exist, even if one embraces
a fully idealist notion of mathematical existence. It
surely seems to us that they do.

2A cross-section of Internet-based mathematical resources
is available at http://carma.newcastle.edu.au/
portal/ and http://www.experimentalmath.info.
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Figure 1. Plots of a 25 x 25 Hilbert matrix (L)
and a matrix with 50% sparsity and random
[0,1] entries (R).

Pi, Partitions, and Primes
The present authors cannot now imagine doing
mathematics without a computer nearby. For
example, characteristic and minimal polynomials,
which were entirely abstract for us as students,
now are members of a rapidly growing box of
concrete symbolic tools. One’s eyes may glaze over
trying to determine structure in an infinite family
of matrices, including

M4 =


2 −21 63 −105

1 −12 36 −55

1 −8 20 −25

1 −5 9 −8



M6 =



2 −33 165 −495 990 −1386

1 −20 100 −285 540 −714

1 −16 72 −177 288 −336

1 −13 53 −112 148 −140

1 −10 36 −66 70 −49

1 −7 20 −30 25 −12


,

but a command-line instruction in a computer
algebra system will reveal that bothM3

4−3M4−2I =
0 and M3

6 − 3M6 − 2I = 0. Likewise, more and
more matrix manipulations are profitably, even
necessarily, viewed graphically. As is now well
known in numerical linear algebra, graphical tools
are essential when trying to discern qualitative
information such as the block structure of very
large matrices. See, for instance, Figure 1.

Equally accessible are many matrix decomposi-
tions, the use of Groebner bases, Risch’s decision
algorithm (to decide when an elementary function
has an elementary indefinite integral), graph and
group catalogues, and others. Many algorithmic
components of a computer algebra system are
today extraordinarily effective compared with two
decades ago, when they were more like toys. This
is equally true of extreme-precision calculation—a
prerequisite for much of our own work [8, 11, 9].
As we will illustrate, during the three decades that
we have seriously tried to integrate computational
experiments into research, we have experienced at

least twelve Moore’s law doublings of computer
power and memory capacity [10, 13], which, when
combined with the utilization of highly parallel
clusters (with thousands of processing cores) and
fiber-optic networking, has resulted in six to seven
orders of magnitude speedup for many operations.

The Partition Function

Consider the number of additive partitions, p(n),
of a natural number, where we ignore order and
zeroes. For instance, 5 = 4+1 = 3+2 = 3+1+1 =
2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1, so
p(5) = 7. The ordinary generating function (5)
discovered by Euler is

∞∑
n=0

p(n)qn =
∞∏
k=1

(
1− qk

)−1
.(5)

(This can be proven by using the geometric formula
for 1/(1− qk) to expand each term and observing
how powers of qn occur.)

The famous computation by MacMahon of
p(200) = 3972999029388 at the beginning of the
twentieth century, done symbolically and entirely
naively from (5) on a reasonable laptop, took 20
minutes in 1991 but only 0.17 seconds today, while
the many times more demanding computation
p(2000)
= 4720819175619413888601432406799959512200344166

took just two minutes in 2009. Moreover, in De-
cember 2008, Crandall was able to calculate p(109)
in three seconds on his laptop, using the Hardy-
Ramanujan-Rademacher “finite” series for p(n)
along with FFT methods. Using these techniques,
Crandall was also able to calculate the probable
primes p(1000046356) and p(1000007396), each
of which has roughly 35,000 decimal digits.

Such results make one wonder when easy access
to computation discourages innovation: Would
Hardy and Ramanujan have still discovered their
marvelous formula for p(n) if they had powerful
computers at hand?

Quartic Algorithm for π
Likewise, the record for computation of π has
gone from 29.37 million decimal digits in 1986 to
over 5 trillion digits in 2010. Since the algorithm
below was used as part of each computation, it is
interesting to compare the performance in each
case: Set a0 := 6 − 4

√
2 and y0 :=

√
2 − 1, then

iterate

yk+1 =
1− (1− y4

k )1/4

1+ (1− y4
k )1/4

,

ak+1 = ak(1+ yk+1)4 − 22k+3yk+1(1+ yk+1 + y2
k+1).(6)

Then ak converges quartically to 1/π—each it-
eration approximately quadruples the number
of correct digits. Twenty-one full-precision iter-
ations of (6), which were discovered on a 16K
Radio Shack portable in 1983, produce an al-
gebraic number that coincides with π to well
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Figure 2. Plot of πππ calculations, in digits (dots),
compared with the long-term slope of Moore’s

law (line).

more than 6 trillion places. This scheme and
the 1976 Salamin-Brent scheme [10, Ch. 3] have
been employed frequently over the past quarter
century. Here is a highly abbreviated chronol-
ogy (based on http://en.wikipedia.org/wiki/
Chronology_of_computation_of_pi) :

• 1986: Computing 29.4 million digits re-
quired 28 hours on one CPU of the new
Cray-2 at NASA Ames Research Center,
using (6). Confirmation using another al-
gorithm took 40 hours. This computation
uncovered hardware and software errors
on the Cray-2. Success required developing
faster FFTs [10, Ch. 3].

• January 2009: Computing 1.649 trillion
digits using (6 ) required 73.5 hours on
1024 cores (and 6.348 Tbyte memory) of a
Appro Xtreme-X3 system. This was checked
with a computation via the Salamin-Brent
scheme that took 64.2 hours and 6.732 Tbyte
of main memory. The two computations
differed only in the last 139 places.

• April 2009: Takahashi increased his record
to an amazing 2.576 trillion digits.

• December 2009: Bellard computed nearly
2.7 trillion decimal digits of π (first in
binary), using the Chudnovsky series given
below. This took 131 days, but he later used
only a single four-core workstation with
lots of disk storage and even more human
intelligence!

• August 2010: Kondo and Yee computed
5 trillion decimal digits using the same
formula (14) due to the Chudnovskys. This
was first done in binary, then converted to
decimal. The binary digits were confirmed
by computing 32 hexadecimal digits of
π ending with position 4,152,410,118,610,
using BBP-type formulas forπ due to Bellard

and Plouffe. Additional details are given
at http://www.numberworld.org/misc_
runs/pi-5t/announce_en.html. See also
[6]. These digits appear to be “very normal”.

Daniel Shanks, who in 1961 computed π to
over 100,000 digits, once told Phil Davis that
a billion-digit computation would be “forever
impossible”. But both Kanada and the Chudnovskys
achieved that in 1989. Similarly, the intuitionists
Brouwer and Heyting asserted the “impossibility”
of ever knowing whether the sequence 0123456789
appears in the decimal expansion of π , yet it was
found in 1997 by Kanada, beginning at position
17387594880. As late as 1989, Roger Penrose
ventured in the first edition of his book The
Emperor’s New Mind that we likely will never
know if a string of ten consecutive sevens occurs
in the decimal expansion of π . This string was
found in 1997 by Kanada, beginning at position
22869046249.

Figure 2 shows the progress of π calculations
since 1970, superimposed with a line that charts
the long-term trend of Moore’s law. It is worth
noting that whereas progress in computing π
exceeded Moore’s law in the 1990s, it has lagged
behind Moore’s law in the past decade. This
may be due in part to the fact that π programs
can no longer employ system-wide fast Fourier
transforms for multiplication (since most state-of-
the-art supercomputers have insufficient network
bandwidth), and so less efficient hybrid schemes
must be used instead.

Digital Integrity: II. There are many possible
sources of errors in these and other large-scale
computations:

• The underlying formulas used might con-
ceivably be in error.

• Computer programs implementing these
algorithms, which employ sophisticated
algorithms such as fast Fourier transforms
to accelerate multiplication, are prone to
human programming errors.

• These computations usually are performed
on highly parallel computer systems,
which require error-prone programming
constructs to control parallel processing.

• Hardware errors may occur. This was a
factor in the 1986 computation of π , as
noted above.

So why would anyone believe the results of such
calculations? The answer is that such calculations
are always double-checked with an independent
calculation done using some other algorithm,
sometimes in more than one way. For instance,
Kanada’s 2002 computation of π to 1.3 trillion
decimal digits involved first computing slightly
over one trillion hexadecimal (base-16) digits. He
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found that the 20 hex digits of π beginning at
position 1012 + 1 are B4466E8D21 5388C4E014.

Kanada then calculated these hex digits using
the “BBP” algorithm [7]. The BBP algorithm for π is
based on the formula

(7) π=
∞∑
i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
,

which was discovered using the “PSLQ” integer
relation algorithm [16]. Integer relation methods
find or exclude potential rational relations between
vectors of real numbers. At the start of this
millennium, they were named one of the top ten
algorithms of the twentieth century by Computing
in Science and Engineering. The most effective is
Helaman Ferguson’s PSLQ algorithm [10, 3].

Eventually PSLQ produced the formula

(8) π = 4 2F1

(
1, 1

4
5
4

∣∣∣∣− 1
4

)
+2 tan−1

(
1
2

)
− log 5,

where 2F1

(
1, 1

4
5
4

∣∣∣∣− 1
4

)
= 0.955933837 . . . is a

Gaussian hypergeometric function.
From (8), the series (7) almost immediately

follows. The BBP algorithm, which is based on (7),
permits one to calculate binary or hexadecimal
digits of π beginning at an arbitrary starting point,
without needing to calculate any of the preceding
digits, by means of a simple scheme that does not
require very high precision arithmetic.

The result of the BBP calculation was
B4466E8D21 5388C4E014. Needless to say,
in spite of the many potential sources of error in
both computations, the final results dramatically
agree, thus confirming (in a convincing but
heuristic sense) that both results are almost
certainly correct. Although one cannot rigorously
assign a “probability” to this event, note that the
chances that two random strings of 20 hex digits
perfectly agree is one in 1620 ≈ 1.2089× 1024.

This raises the following question: What is more
securely established, the assertion that the hex
digits of π in positions 1012 + 1 through 1012 + 20
are B4466E8D21 5388C4E014, or the final result
of some very difficult work of mathematics that
required hundreds or thousands of pages, that
relied on many results quoted from other sources,
and that (as is frequently the case) only a relative
handful of mathematicians besides the author can
or have carefully read in detail?

In the most recent computation using the BBP
formula, Tse-Wo Zse of Yahoo! Cloud Computing
calculated 256 binary digits ofπ starting at the two
quadrillionth bit [30]. He then checked his result
using the following variant of the BBP formula due

to Bellard:

π = 1
64

∞∑
k=0

(−1)k

1024k

(
256

10k+ 1
+ 1

10k+ 1
− 64

10k+ 3

(9)

− 4
10k+ 5

− 4
10k+ 7

− 32
4k+ 1

− 1
4k+ 3

)
.

In this case, both computations verified that
the 24 hex digits beginning immediately after
the 500 trillionth hex digit (i.e., after the two
quadrillionth binary bit) are: E6C1294A ED40403F
56D2D764. More recent related computations are
also described in [6].

Euler’s Totient Function φ
As another measure of what changes over time and
what does not, consider two conjectures regarding
φ(n), which counts the number of positive numbers
less than and relatively prime to n:

Giuga’s Conjecture (1950). An integer n > 1 is
a prime if and only if Gn :=

∑n−1
k=1 kn−1 ≡ n− 1

mod n.
Counterexamples are necessarily Carmichael

numbers—rare birds only proven infinite in 1994—
and much more. In [11, p. 227] we exploited the
fact that if a number n = p1 · · ·pm with m > 1
prime factors pi is a counterexample to Giuga’s
conjecture (that is, satisfies sn ≡ n−1 mod n), then
for i ≠ j we have pi ≠ pj ,

m∑
i=1

1
pi

> 1,

and the pi form a normal sequence: pi 6≡ 1 mod pj
for i 6= j . Thus the presence of 3 excludes
7,13,19,31,37, . . . , and of 5 excludes 11,31,41, . . ..

This theorem yielded enough structure, using
some predictive experimentally discovered heuris-
tics, to build an efficient algorithm to show—over
several months in 1995—that any counterexample
had at least 3459 prime factors and so exceeded
1013886, extended a few years later to 1014164, in
a five-day desktop computation. The heuristic is
self-validating every time that the program runs
successfully. But this method necessarily fails after
8135 primes; someday we hope to exhaust its use.

While writing this piece, one of us was able to
obtain almost as good a bound of 3050 primes in
under 110 minutes on a laptop computer and a
bound of 3486 primes and 14000 digits in less than
fourteen hours; this was extended to 3678 primes
and 17168 digits in ninety-three CPU-hours on a
Macintosh Pro, using Maple rather than C++, which
is often orders of magnitude faster but requires
much more arduous coding.

An equally hard related conjecture for which
much less progress can be recorded is:
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Lehmer’s Conjecture (1932).φ(n)
∣∣(n−1) if and

only if n is prime. He called this “as hard as the
existence of odd perfect numbers.”

Again, prime factors of counterexamples form
a normal sequence, but now there is little extra
structure. In a 1997 Simon Fraser M.Sc. thesis, Erick
Wong verified the conjecture for fourteen primes,
using normality and a mix of PARI, C++, and Maple
to press the bounds of the “curse of exponentiality”.
This very clever computation subsumed the entire
scattered literature in one computation but could
extend the prior bound only from thirteen primes
to fourteen.

For Lehmer’s related 1932 question when does
φ(n) | (n + 1)?, Wong showed that there are
eight solutions with no more than seven factors
(six-factor solutions are due to Lehmer). Let

Lm :=
m−1∏
k=0

Fk

with Fn := 22n +1 denoting the Fermat primes. The
solutions are

2,L1,L2, . . . ,L5,

and the rogue pair 4919055 and 6992962672132095,
but analyzing just eight factors seems out of sight.
Thus in seventy years the computer allowed the
exclusion bound to grow by only one prime.

Lehmer could not factor 6992962672132097
in 1932. If it had been prime, a ninth solution
would exist: since φ(n)|(n + 1) with n + 2 prime
implies that N := n(n+ 2) satisfies φ(N)|(N + 1).
We say could not because the number is divisible by
73, which Lehmer—a father of much factorization
literature—could certainly have discovered had he
anticipated a small factor. Today discovering that

6992962672132097 = 73 · 95794009207289

is nearly instantaneous, while fully resolving
Lehmer’s original question remains as hard as
ever.

Inverse Computation and Apéry-like Series

Three intriguing formulae for the Riemann zeta
function are

(a) ζ(2)=3
∞∑
k=1

1

k2
(

2k
k

) , (b) ζ(3)= 5
2

∞∑
k=1

(−1)k+1

k3
(

2k
k

) ,
(10)

(c) ζ(4)= 36
17

∞∑
k=1

1

k4
(

2k
k

) .
Binomial identity (10)(a) has been known for two
centuries, whereas (b)—exploited by Apéry in
his 1978 proof of the irrationality of ζ(3)—was
discovered as early as 1890 by Markov, and (c) was
noted by Comtet [3].

Using integer relation algorithms, bootstrapping,
and the “Pade” function (Mathematica and Maple

both produce rational approximations well), in
1996 David Bradley and one of us [3, 11] found
the following unanticipated generating function
for ζ(4n+ 3):

∞∑
k=0

ζ(4k+ 3) x4k

(11)

= 5
2

∞∑
k=1

(−1)k+1

k3
(

2k
k

)
(1− x4/k4)

k−1∏
m=1

(
1+ 4x4/m4

1− x4/m4

)
.

Note that this formula permits one to read off an
infinity of formulas for ζ(4n+3), n > 0, beginning
with (10)(b), by comparing coefficients of x4k on
the LHS and the RHS.

A decade later, following a quite analogous but
much more deliberate experimental procedure, as
detailed in [3], we were able to discover a similar
general formula for ζ(2n + 2) that is pleasingly
parallel to (11):

∞∑
k=0

ζ(2k+ 2) x2k

(12)

= 3
∞∑
k=1

1

k2
(

2k
k

)
(1− x2/k2)

k−1∏
m=1

(
1− 4x2/m2

1− x2/m2

)
.

As with (11), one can now read off an infinity
of formulas, beginning with (10)(a). In 1996 the
authors could reduce (11) to a finite form that
they could not prove, but Almquist and Granville
did a year later. A decade later, the Wilf-Zeilberger
algorithm [29, 23]—for which the inventors were
awarded the Steele Prize—directly (as implemented
in Maple) certified (12) [10, 3]. In other words, (12)
was both discovered and proven by computer.

We found a comparable generating function for
ζ(2n+ 4), giving (10) (c) when x = 0, but one for
ζ(4n+ 1) still eludes us.

Reciprocal Series for π
Truly novel series for 1/π , based on elliptic
integrals, were discovered by Ramanujan around
1910 [3, 10, 31]. One is:

1
π

= 2
√

2
9801

∞∑
k=0

(4k)! (1103+ 26390k)
(k!)43964k .(13)

Each term of (13) adds eight correct digits. Gosper
used (13) for the computation of a then-record 17
million digits of π in 1985—thereby completing
the first proof of (13) [10, Ch. 3]. Shortly thereafter,
David and Gregory Chudnovsky found the following
variant, which lies in the quadratic number field
Q(
√
−163) rather than Q(

√
58):

(14)
1
π
=12

∞∑
k=0

(−1)k (6k)! (13591409+ 545140134k)
(3k)! (k!)3 6403203k+3/2 .
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Each term of (14) adds fourteen correct digits.
The brothers used this formula several times,
culminating in a 1994 calculation of π to over
four billion decimal digits. Their remarkable story
was told in a prizewinning New Yorker article [26].
Remarkably, as we already noted earlier, (14) was
used again in late 2009 for the current record
computation of π .

Wilf-Zeilberger at Work. A few years ago Jesús
Guillera found various Ramanujan-like identities
for π , using integer relation methods. The three
most basic—and entirely rational—identities are:

4
π2
=

∞∑
n=0

(−1)nr(n)5(13+180n+820n2)
(

1
32

)2n+1

(15)

2
π2
=

∞∑
n=0

(−1)nr(n)5(1+8n+20n2)
(

1
2

)2n+1

(16)

4
π3

?=
∞∑
n=0

r(n)7(1+14n+76n2+168n3)
(

1
8

)2n+1

,

(17)

where r(n) := (1/2 · 3/2 · · · · · (2n− 1)/2)/n! .
Guillera proved (15) and (16) in tandem, by very

ingeniously using the Wilf-Zeilberger algorithm
[29, 23] for formally proving hypergeometric-like
identities [10, 3, 19, 31]. No other proof is known,
and there seem to be no like formulae for 1/πN
with N ≥ 4. The third, (17), is almost certainly
true. Guillera ascribes (17) to Gourevich, who used
integer relation methods to find it.

We were able to “discover” (17) using thirty-digit
arithmetic, and we checked it to five hundred
digits in 10 seconds, to twelve hundred digits in
6.25 minutes, and to fifteen hundred digits in 25
minutes, all with naive command-line instructions
in Maple. But it has no proof, nor does anyone
have an inkling of how to prove it; especially, as
experiment suggests, since it has no “mate” in
analogy to (15) and (16) [3]. Our intuition is that
if a proof exists, it is more a verification than an
explication, and so we stopped looking. We are
happy just to “know” that the beautiful identity is
true (although it would be more remarkable were
it eventually to fail). It may be true for no good
reason—it might just have no proof and be a very
concrete Gödel-like statement.

In 2008 Guillera [19] produced another lovely
pair of third-millennium identities—discovered
with integer relation methods and proved with
creative telescoping—this time for π2 rather than
its reciprocal. They are
(18)
∞∑
n=0

1
22n

(
x+ 1

2

)3

n

(x+ 1)3n
(6(n+ x)+ 1) = 8x

∞∑
n=0

(
1
2

)2

n

(x+ 1)2n
,

and

∞∑
n=0

1
26n

(
x+ 1

2

)3

n

(x+ 1)3n
(42(n+ x)+ 5)(19)

= 32x
∞∑
n=0

(
x+ 1

2

)2

n

(2x+ 1)2n
.

Here (a)n = a(a + 1) · ·(a + n − 1) is the rising
factorial. Substituting x = 1/2 in (18) and (19), he
obtained, respectively, the formulae

∞∑
n=0

1
22n

(1)3n(
3
2

)3

n

(3n+ 2) = π
2

4
,

∞∑
n=0

1
26n

(1)3n(
3
2

)3

n

(21n+ 13) = 4
π2

3
.

Formal Verification of Proof
In 1611 Kepler described the stacking of equal-
sized spheres into the familiar arrangement we see
for oranges in the grocery store. He asserted that
this packing is the tightest possible. This assertion
is now known as the Kepler conjecture and has
persisted for centuries without rigorous proof.
Hilbert implicitly included the irregular case of the
Kepler conjecture in problem 18 of his famous list
of unsolved problems in 1900—whether there exist
nonregular space-filling polyhedra?—the regular
case having been disposed of by Gauss in 1831.

In 1994 Thomas Hales, now at the University
of Pittsburgh, proposed a five-step program that
would result in a proof: (a) treat maps that only
have triangular faces; (b) show that the face-
centered cubic and hexagonal-close packings are
local maxima in the strong sense that they have a
higher score than any Delaunay star with the same
graph; (c) treat maps that contain only triangular
and quadrilateral faces (except the pentagonal
prism); (d) treat maps that contain something other
than a triangular or quadrilateral face; and (e) treat
pentagonal prisms.

In 1998 Hales announced that the program
was now complete, with Samuel Ferguson (son
of mathematician-sculptor Helaman Ferguson)
completing the crucial fifth step. This project
involved extensive computation, using an in-
terval arithmetic package, a graph generator,
and Mathematica. The computer files contain-
ing the source code and computational results
occupy more than three Gbytes of disk space.
Additional details, including papers, are avail-
able at http://www.math.pitt.edu/~thales/
kepler98. For a mixture of reasons—some more
defensible than others—the Annals of Mathematics
initially decided to publish Hales’s paper with a
cautionary note, but this disclaimer was deleted
before final publication.
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Hales [20] has now embarked on a multiyear
program to certify the proof by means of computer-
based formal methods, a project he has named the
“Flyspeck” project. As these techniques become
better understood, we can envision a large number
of mathematical results eventually being confirmed
by computer, as instanced by other articles in the
same issue of the Notices as Hales’s article.

Limits of Computation
A remarkable example is the following:

∫∞
0

cos(2x)
∞∏
n=1

cos(x/n)dx

(20)

= 0.392699081698724154807830422909937860524645434187231595926...

The computation of this integral to high precision
can be performed using a scheme described in [5].
When we first did this computation, we thought
that the result was π/8, but upon careful checking
with the numerical value

0.392699081698724154807830422909937860524646174921888227621...,

it is clear that the two values disagree beginning
with the forty-third digit!

Richard Crandall [15, §7.3] later explained this
mystery. Via a physically motivated analysis of
running out of fuel random walks, he showed
that π/8 is given by the following very rapidly
convergent series expansion, of which formula (20)
above is merely the first term:

(21)
π
8
=

∞∑
m=0

∫∞
0

cos[2(2m+1)x]
∞∏
n=1

cos(x/n)dx.

Two terms of the series above suffice for 500-digit
agreement.

As a final sobering example, we offer the
following “sophomore’s dream” identity

σ29 :=
∞∑

n=−∞
sinc(n) sinc(n/3) sinc(n/5)(22)

· · · sinc(n/23) sinc(n/29)

=
∫∞
−∞

sinc(x) sinc(x/3) sinc(x/5)

· · · sinc(x/23) sinc(x/29) dx,
(23)

where the denominators range over the odd
primes, which was first discovered empirically.
More generally, consider

σp :=
∞∑

n=−∞
sinc(n) sinc(n/3) sinc(n/5) sinc(n/7)

(24)

· · · sinc(n/p)

?=
∫∞
−∞

sinc(x) sinc(x/3) sinc(x/5) sinc(x/7)

· · · sinc(x/p)dx.

Provably, the following is true: The “sum equals
integral” identity for σp remains valid at least
for p among the first 10176 primes but stops
holding after some larger prime, and thereafter
the “sum less the integral” is strictly positive, but
they always differ by much less than one part in
a googolplex = 10100. An even stronger estimate
is possible assuming the generalized Riemann
hypothesis (see [15, §7] and [8]).

Concluding Remarks
The central issues of how to view experimentally
discovered results have been discussed before. In
1993 Arthur Jaffe and Frank Quinn warned of the
proliferation of not-fully-rigorous mathematical re-
sults and proposed a framework for a “healthy and
positive” role for “speculative” mathematics [21].
Numerous well-known mathematicians responded
[1]. Morris Hirsch, for instance, countered that even
Gauss published incomplete proofs, and the fifteen
thousand combined pages of the proof of the
classification of finite groups raises questions as to
when we should certify a result. He suggested that
we attach a label to each proof—e.g., “computer-
aided”, “mass collaboration”, “constructive”, etc.
Saunders Mac Lane quipped that “we are not saved
by faith alone, but by faith and works,” meaning
that we need both intuitive work and precision.

At the same time, computational tools now
offer remarkable facilities to confirm analytically
established results, as in the tools in development
to check identities in equation-rich manuscripts,
and in Hales’s project to establish the Kepler
conjecture by formal methods.

The flood of information and tools in our
information-soaked world is unlikely to abate.
We have to learn and teach judgment when it
comes to using what is possible digitally. This
means mastering the sorts of techniques we have
illustrated and having some idea why a software
system does what it does. It requires knowing when
a computation is or can—in principle or practice—
be made into a rigorous proof and when it is
only compelling evidence or is entirely misleading.
For instance, even the best commercial linear
programming packages of the sort used by Hales
will not certify any solution, though the codes are
almost assuredly correct. It requires rearranging
hierarchies of what we view as hard and as easy.

It also requires developing a curricu-
lum that carefully teaches experimental
computer-assisted mathematics. Some ef-
forts along this line are already under way
by individuals including Marc Chamberland at Grin-
nell (http://www.math.grin.edu/~chamberl/
courses/MAT444/syllabus.html), Victor Moll at
Tulane, Jan de Gier in Melbourne, and Ole Warnaar
at the University of Queensland.
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Judith Grabiner has noted that a large impetus
for the development of modern rigor in mathe-
matics came with the Napoleonic introduction of
regular courses: lectures and textbooks force a
precision and a codification that apprenticeship
obviates. But it will never be the case that quasi-
inductive mathematics supplants proof. We need
to find a new equilibrium. That said, we are only
beginning to tap new ways to enrich mathematics.
As Jacques Hadamard said [25]:

The object of mathematical rigor is to

sanction and legitimize the conquests of

intuition, and there was never any other

object for it.

Never have we had such a cornucopia of ways
to generate intuition. The challenge is to learn
how to harness them, how to develop and how to
transmit the necessary theory and practice. The
Priority Research Centre for Computer Assisted Re-
search Mathematics and its Applications (CARMA),
http://carma.newcastle.edu.au/, which one
of us directs, hopes to play a lead role in this en-
deavor: an endeavor which in our view encompasses
an exciting mix of exploratory experimentation
and rigorous proof.
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