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Charles Darwin’s 1859 work On the Origin of
Species contained no equations. But that does
not mean mathematics has no role to play in the
science of life; in fact, the field of biomathematics
is burgeoning and has been for several decades.
Ian Stewart’s new book does an admirable job of
unfolding the mathematics undergirding so much
of the research being carried out today in the many
fields that comprise the subject of biology. Stewart
sets the context by noting five great revolutions
that have changed the way scientists think about
life. These five revolutions are: (i) the microscope;
(ii) classification; (iii) evolution; (iv) genetics, and
(v) the structure of DNA. The sixth, Stewart says,
is well on its way. It is mathematics.

I’m ashamed to admit it, but I did not pass my
high school biology exam (in the UK it was called
the “Ordinary Level” exam, or “O” Level). Reading
Chapter 2 of the book (“Creatures Small and
Smaller”) brought back a lot of horrible memories
about, well, memorization, particularly the names
of all the components of a cell. Stewart does a
good job of describing material I should have
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known then but never did, and much more. By my

standards at the very least, he knows and writes
about a great deal of biology. Some years ago I
was invited to give a talk about the philosophy

and methodology of mathematical modeling at a
conference on the topic of cancer biology. Most
of the talks following mine were about maps of

protein networks and pathways of gene expression
for various types of cancer; the subject seemed
(and is) incredibly intricate and complicated. I left
the meeting feeling quite discouraged about the

apparent mismatch between the kind of modeling
I had presented and the sheer complexity of
molecular pathways. So can mathematics bring

some structure to this complexity? Indeed it can.
The application of serious mathematics to biol-

ogy began perhaps with the foundational work of

Sir Ronald Fisher, Sewell G. Wright (an American
geneticist), and John B. S. Haldane on theoretical
population genetics. Fisher’s seminal 1937 paper

[3], entitled “The wave of advance of advanta-
geous genes”, laid the groundwork for much of
the interest in reaction-diffusion equations in later
decades. It is well worth reading for both historical

and mathematical reasons. Haldane, incidentally,
wrote the popular article about the problem of
scale, “On being the right size”. More recently,

William D. Hamilton, John Maynard Smith, and
others continued this line of investigation. Hamil-
ton was a theoretical evolutionary biologist whose

work in the mid-1960s on the genetic evolution
of social behavior is widely referenced. He is
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considered to be one of the forerunners of so-

ciobiology, popularized by the American biologist

E. O. Wilson in 1975. Smith wrote many articles

and a book on the role of game theory in animal

evolution. Curiously, Stewart doesn’t refer much

to this early work (though he does mention the

game-theoretic contributions of Maynard Smith to

evolutionary biology) but concentrates on more

recent developments in the subject.

This is a review of Stewart’s book, but rather

than summarizing the material it contains or

commenting on the writing style (which is up to

his usual high standard, by the way), I shall take

some liberties with several topics in the book

by pursuing them in more detail. I shall do this

primarily by taking excursions into the literature

cited by Stewart in the extensive chapter notes at

the conclusion of the book but also by assembling

some of his comments about what modeling can

do and what it does not do. These are scattered

thoughout the book, but together they comprise

a unified account of the nature of a model and

would in my view be valuable for any biologist

wishing to work in the field of mathematical (as

opposed to statistical) modeling. I make the latter

point because at one time I gave a “grand rounds”

talk about modeling at a nearby medical school

(yes, it was pretty much the same talk as the

above-mentioned one). The audience apparently

stayed awake and was very polite, so much so that

I thought I had made something of a breakthrough

in their appreciation of the topic, until an MD

researcher came up to me and suggested that I

could help him analyze statistically all the data he

had recently acquired….

The starting point for my first foray into the

recently known is Chapter 4 (“Florally Finding

Fibonacci”). To foreshadow the collection of com-

ments about modeling, I note that in this chapter

Stewart makes an important distinction between

descriptive and explanatory models in connec-

tion with “the strange numerology of the plant

kingdom”, namely phyllotaxis—the arrangement

of plant organs such as leaves, petals, branches,

bracts, scales, and florets [5], [6], [12]. Collec-

tively these are called primordia in their infancy

stage. The connection of such patterns with the

golden ratio, the golden angle, and the Fibonacci

sequence is probably the best-known occurrence

of a mathematical pattern in nature (at least, in

my experience). Scattered throughout the book

are references to this important distinction, in-

cluding many examples of such models and our

reasonable expectations arising from them. Thus,

in connection with mathematical biology in early

Victorian times, such as it was, he points out that

the numerical patterns in plants were described in

considerable detail—but that was as far as it went.

Explanations (or at least explanatory models) for

This diagram from [2] shows the steady divergences
φφφ (φ > 0)(φ > 0)(φ > 0) obtained as a function of GGG for two energy

profiles 1/d31/d31/d3 (triangles) and exp(−d/l)(−d/l)(−d/l) with l = 0.1l = 0.1l = 0.1
(squares). The solid line shows a diagram obtained
using the geometrical condition. Inset: Detail of a
transition. (Figure reprinted with permission from S.
Douady and Y. Couder, “Phyllotaxis as a physical
self-organized growth process”, Phys. Rev. Lett. Copyright
1992 by the American Physical Society. Readers may view,
browse, and/or download material for temporary copying
purposes only, provided that these uses are for
noncommercial personal purposes. Except as provided by
law, this material may not be further reproduced,
distributed, transmitted, modified, adapted, performed,
displayed, published, or sold in whole or part, without prior
written permission from the Amer. Phys. Soc.)

these patterns would have to wait many decades,

as we shall see.

In the simplest case, primordia are formed near

the apex of the plant—the tip of the growing

center—and move outward. The spiral resulting

from connecting chronologically successive pri-

mordia is called the genetic (or generative) spiral,

but this is not noticed when looking at a sun-

flower head, for example. There appear instead

two conspicuous sets of intersecting spirals called

parastichies (sounding rather like it should be the

name of a Scottish pub). One set runs clockwise

and the other counterclockwise, and the number

of spirals in each set are, in the vast majority

of cases, consecutive terms in the Fibonacci se-

quence. Thus a fairly large sunflower head might

have fifty-five clockwise spirals and thirty-four

counterclockwise; a smaller head might contain

thirty-four and twenty-one, respectively. But all is

not lost for the genetic spiral, despite its illusory

ostentatious cousins: the so-called divergence an-

gles (relative to the apex) between two successive

primordia on this spiral are close to the golden

angle of 2π/(1+Φ) radians, or ≈ 137.5◦. Indeed,

the sequence 2π/(1 + nΦ), n = 1,2,3, generates

the divergence angles for what is sometimes called

first, second, and third phyllotaxis [13]. The lat-

ter two are approximately 99.502◦ and 77.955◦ ,
respectively.
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In 1992 a fascinating paper was published in

the Physical Review Letters [2], and its findings

significantly invigorated, even galvanized, the
phyllotaxis research community. The authors,

Stéphane Douady and Yves Couder, were able

to obtain phyllotactic patterns, previously

only observed in botany, in both a physics
laboratory experiment and a numerical simula-

tion. They showed, in effect, that the patterns arise

from self-organization in an iterative process;
they were studying a dynamical system.

The experimental arrangement was as follows.

Identical mutually repelling drops of a magnetic
fluid (a “ferrofluid”) were dropped periodically

(with adjustable period T ) at a given radius R0

from the center of a plane surface. By means of a
radial gradient of the imposed vertical magnetic

field, the drops were radially advected away from

the center with speed V0. The results were char-

acterized by a single dimensionless parameter,
G = V0T/R0. The speed was adjusted by varying

the magnetic field gradient. As drop after drop fell,

spiral patterns developed under the combined in-
fluence of radial advection and mutual repulsion.

This became particularly evident as the drops fell

more frequently (i.e., as G decreased). The nu-
merical simulations were designed to mimic the

experimental setup, and this time the repulsive

forces between particles were varied. The “repul-
sive energy” laws used were, as stated in the paper,

1/d, 1/d3, and exp (−d/l), where d was the inter-

particle distance; the results were all qualitatively

the same.
Both the experiment and the simulation yielded

similar results. They found that as G was de-

creased, the spiralpatternunderwent transitions—
symmetry-breaking bifurcations—from parastichy

numbers (i, j) to (j, i + j). For each pair of initial

conditions, the simulation produced curves α(G)
that converged for G = 0 toward the correspond-

ing divergence angle (note that I am using α where

Douady-Couder used φ). The primary curve cor-
responded to the golden angle of 137.508◦ , but

another converged to the Lucas angle 99.502◦, one

to 77.955◦ , and some to angles not mentioned

above. The ordering is interpreted as the system’s
tendency to avoid rational organization, leading

to a convergence toward (primarily) the golden

number and hence the toward the golden angle.
Jean [5] makes the following interesting comment:

This experiment shows that a

hypothesis for the physiological

process of the interaction of the
primordia is not necessary, and

that the various patterns do not

seem to be directly encoded in
genes. The existence of the pat-

terns seems …to transcend the

degrees of botany…This is also

the conclusion to which Levitov
(1991b) [8] arrives. His study of
the “phyllotaxis” of flux lattices in
layered semiconductors concerns
a physical system quite unrelated
to botany, yet it gives rise to
structures very similar to those
known in phyllotaxis.

The literature that exists on the topic of phyl-
lotaxis is immense, and while the vast majority
(perhaps as much as 98%) of known occurrences
in nature involve rational approximations to the
golden angle [5], there are exceptions. (In his book
Introduction to Geometry, H. S. M. Coxeter referred
to these occurrences as a “fascinatingly preva-
lent tendency”.) A divergence angle of ≈ 99.5◦ is
not extremely rare, as the above percentage indi-
cates; this is associated with the Lucas sequence
1,3,4,7,11,18,…, satisfying the same difference
equation as the Fibonacci sequence. Indeed, one
can define the generalized Fibonacci numbers as

Gp,q (n) = Gp,q(n− 1)+Gp,q(n− 2),

Gp,q(1) = p; Gp,q(2) = q.
The Binet solution for this difference equation is
[9]

Gp,q (n) =
1√
5{[

Φn −
(
−φ

)n]
p +

[
Φn−1 −

(
−φ

)n−1
]
(q − p)

}
,

where Φ =
(
1+

√
5
)
/2 ≈ 1.618 and −φ =(

1−
√

5
)
/2 ≈ −0.618 are the roots of the qua-

dratic equation x2 − x − 1 = 0. It is readily seen
that

Gp,q (n) = pFn−2 + qFn−1.

There is a fascinating connection with Farey
numbers here. (The Farey series of orderN,F (N) ,
is the ascending series of irreducible fractions in
(0,1) whose denominators do not exceed N.) In
[9] Sy-Sang Liaw proved the following theorem and
used it to determine the divergence angle of any
pattern with a parastichy pair:
Ga,a+b(n−1)/Gp,q (n) andGa,a+b(n)/Gp,q (n+ 1)

are two consecutive Farey numbers in F (N) for
Gp,q(n + 1) ≤ N ≤ Gp,q(n + 2) if and only if p/q
and b/a are consecutive in F (M) for max (q, a) ≤
M ≤ q + a.

He then established for parastichy pair [p, q]
that the divergence angle is

α = lim
n→∞

Ga,a+b(n)

Gp,q (n+ 1)

= lim
n→∞

aFn−2 + (a+ b) Fn−1

pFn−1 + qFn
= a + bφ
q + pφ.

The proof of the theorem requires that |pa − qb| =
1. Since p and q are usually small integers, a and b
(and henceα) are readily found. Thus for [1,1] and
[1,2] , α ≈ 137.508◦ ; for [1,3] ,α ≈ 99.502◦ ; for
[1,4] , α ≈ 77.955◦ ; and for [2,5] , α ≈ 151.136◦.
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Liaw was also able to reproduce the patterns of
spiral phyllotaxis via a numerical simulation (for
other aspects of the research inspired by the
Douady/Couder paper, see [4], [7], [8], [13]). A
very comprehensive site for all things Fibonacci is
that developed by Ron Knott at the University of
Surrey, UK: http://www.maths.surrey.ac.uk/
hosted-sites/R.Knott/Fibonacci/.

In the above models, primordia are represented
experimentally as floating droplets and numeri-
cally as discrete point-like objects. By contrast a
“continuum” model enables mechanical forces to
be distributed in a continuous manner over a sur-
face. The subject of elasticity theory then becomes
of prime importance in answering the question,
How do surfaces deform under spatially and tem-
porally varying forces? In 2004 two University
of Arizona mathematicians, Patrick Shipman and
Alan Newell [15], sought to use elasticity theory
to see if they could reproduce phyllotaxis as sur-
face deformations arising from a minimum of the
strain energy buckling pattern on a compressed
shell (thus mimicking the plant’s growing tip).
They showed that the strain energy is minimized
by the superimposition of certain triads of wave
patterns. They write, “We reproduce a wide spec-
trum of plant patterns, all with the divergence
angles observed in nature, and show how the
occurrences of Fibonacci-like sequences and the
golden angle are natural consequences.”

Thus there was indeed a pitchfork bifurcation
of sorts from the nineteenth-century descriptive
models to explanations based on dynamical sys-
tems and mechanochemical models. As Stewart
points out, “there is a complex set of feed-
back loops between biochemistry and mechan-
ics, mechanics and geometry, and geometry and
biochemistry…undreamt of in Victorian times.”

My next foray into the book commences with
Stewart’s fourteenth chapter (“Lizard Games”).
Like most of the others, it contains much fascinat-
ing discussion. In particular, he highlights some
important work on models of speciation. To set
the scene, note that as early as 1952, the sem-
inal paper on pattern formation by Alan Turing
[17] demonstrated that the dynamics of so-called
reaction-diffusion systems can be very sensitive to
spatial inhomogeneities. The importance of spa-
tial inhomogeneities has also become increasingly
apparent in theoretical ecology; in particular, what
are the effects of crowding on pattern formation?
In a paper published in the Brazilian Journal of
Physics [1] (see also [14]), a research group ana-
lyzed this question with a view to understanding
the role of competition in the process of demes
formation (and ultimately more about genetic di-
versity and speciation). In biology, a deme is a
term for a local population of organisms of one
species that actively interbreed with one another
and share a distinct gene pool. When demes are
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isolated for a very long time, it is thought that

they can become distinct subspecies or species.

Crowding was modeled by decreasing the birth
rate at large population densities with three differ-

ent types of “crowding functions”, and they also

investigated how the sharpness of the boundaries
of the local territories for competition and mating

affected the resulting patterns. The choices of (per

capita) crowding functions were logistic, exponen-
tial, and Gaussian. For computational convenience

they considered space to be discrete, with the pop-

ulation located in a square lattice with periodic

boundary conditions and iteratively solved for the
local population on each site at time t +1 in terms

of its population at time t. The stability of spa-

tially independent solutions was first investigated,
followed by the stability of small spatial perturba-

tions. The subsequent analysis is very interesting;

in particular, the polylogarithm function

Lis (z) =
∞∑

k=1

zk

ks

(a generalization of the Riemann zeta function)
with s = 2 makes several appearances. But tempt-

ing as it is, it would take us too far afield to go

there. The authors concluded that of the three
crowding functions chosen, the logistic leads to

the most rapid deme formation and is also the

most robust against changes in the smoothness of
territory boundaries. Nevertheless, if the boundary

becomes too “fuzzy”, then even this choice cannot

guarantee that such spatially isolated groups will
spontaneously form.

There is much to note in this chapter, including a

fascinating discussion of speciation as an example
of symmetry breaking and the onset of instabil-

ity. Indeed, Stewart notes that symmetry breaking

“provides a very general mechanism for the forma-
tion of nature’s patterns. Those patterns are the

explicit realizations, in specific physical systems,

of the abstract symmetries that are implicit in
the laws that describe those systems.” But I love

the “kicker”: “Multiple solutions open the door to

symmetry breaking. What shoves the mathematics
through that door is instability” (p. 205).

As a further aside to this chapter, I was intrigued

by Figure 59, which shows a Stewart-generated
scatterplot for beak size versus wingspan in a

group of birds. The figure shows two clusters and

an outlier; Stewart uses this to introduce us to
cluster analysis. Years ago I encountered a similar

situation in connection with a pattern-recognition

algorithm. The question that arose was, Given
such a scatterplot, is there a preferred direction

along which the data sets will be best separated?

In principle, at least, the higher the dimension of

the space, the more opportunity there will be for
selective directional viewing. A major problem of

medical diagnosis is that of pattern recognition

and subsequent classification; at the simplest level,
that of distinguishing between two pattern sets.
More than two decades ago, oncologist William H.
Wolberg and mathematician Olvi L. Mangasarian
published a paper on the application of a multi-
surface method (MSM ) of pattern recognition to
breast cancer diagnosis [10], [11], [18]. Fundamen-
tal to MSM is the role of linear programming as the
key algorithm for generating data-separating (hy-
per) planes. The authors used these hyperplanes
iteratively to construct a piecewise linear surface
that separated benign B from malignant M cases
(the “training set”) in a breast cancer study. The
surface thus constructed classified points into (in
this instance) two subspaces denoted by B and M .
In general, the convex hulls of the sets B andM in-
tersect, so the idea is to construct a pair of parallel
planes that are as “close” to each other as possible,
such that only the region between them contains
points from both subspaces. The “outer” regions
are eliminated from the method, and the process
is repeated on the remaining interior points with a
new set of parallel hyperplanes. In this way an or-
dered finite set of parallel hyperplanes eventually
separates the two data sets. This set then consti-
tutes a piecewise linear discriminant function that
completely separates the given training set. That
function is then used to predict whether or not a
new data point is benign or malignant, depending
on which side of the ordered half-space it is found
on. Given the success of the technique described
in [10], [11], it appeared that this technique could
be a valuable tool in cancer diagnosis.

Chapter 15 is called “Networking Opportuni-
ties”. Efficient transport networks are crucial (and
hence ubiquitous) in social and biological systems.
In modern society, it is deemed imperative to
have a multidimensional infrastructure designed
to move people, resources, and information while
optimizing efficiency and cost in some measur-
able way. And if one does not have a Facebook
account, one is often considered to be “beyond
the pale”, especially by students. (The answer may
be to have an account with no friends specified.)
However, the large but single-celled slime mold or-
ganism Physarum polycephalum makes LinkedIn
and Facebook look like amateurs in the game
of networking, social or otherwise. It forages for
patchily distributed food sources by means of a
tubular network (behind a “foraging” boundary)
linking the discovered food sources. By so doing,
it can find the shortest distance through a maze
and connect different arrays of food sources effi-
ciently, yet with low total length and short average
distance between pairs of food sources. According
to an article in the journal Science [16], it does
all this with a high degree of “fault tolerance”
to accidental disconnection. One is tempted to
respond to this impressive résumé by shouting
“It’s a bird, it’s a plane, it’s P. polycephalum!”
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The team of Japanese researchers studied how

P. polycephalum would “behave” when confronted

with a laboratory arrangement that placed food

sources at spots representing the geographical

distribution of cities in the Greater Tokyo area

and compared the results with the actual rail net-

work in that region of Japan. What occurred was

quite remarkable. They found that the Physarum

network exhibited a structure similar to that of

the rail network (in terms of the above-mentioned

characteristics), but it accomplished it through

self-organization without a “control center” (or,

indeed, explicit global information). It did this

by selective reinforcement of preferred routes and

removal of redundant connections. On the basis of

these results the authors developed a mathemat-

ical model to reproduce the observed behavior.

They used the theory of Hagen-Poiseuille fluid

flow to model the flux of protoplasm through the

tubes. They suggest that such biologically inspired

models can produce solutions with properties at

least as good as many existing infrastructure

networks (including remote sensor arrays and

wireless networks).

Here is a compilation of some statements

Stewart makes about mathematical models and

modeling. This list is probably not exhaustive,

and they are scattered throughout the book, so it

seemed sensible to gather them all into an item-

ized list here. I have annotated them with some

reflections of my own; I hope the author won’t

mind.

(i) “Mathematical models will apply within some

range of validity, but it’s not sensible to expect them

to apply everywhere” (p. 55).

(ii) “Mathematical models [asopposedto the lim-

itations of verbal descriptions] …clarify the con-

cepts, the assumptions and the relations between

them. That is what models are for” (p. 234). A

model that tries to explain everything about a

phenomenon would be as complicated as the phe-

nomenon itself and would, as René Thom has said,

explain nothing.

(iii) “Science is seldom about direct observation:

it is nearly always about indirect inference” (p.

221). If a murder is committed when no one apart

from the victim and the murderer are present,

relatively few people doubt the conclusion of the

inferential process if it is carried out properly (ex-

cept possibly the family and friends of the above

parties.) The all-too-common and somewhat spe-

cious argument that “we weren’t there, how can

we possibly know what happened?”, when applied

to subjects such as evolutionary biology, paleon-

tology, and cosmology, represents a remarkably

low and narrow view of the nature of science. In

connection with models of the 2001 outbreak of

foot-and-mouth disease on British farms, Stewart

again reminds us that:

(iv) “Even in the physical sciences, models mimic
reality, they never represent it exactly…. It is point-
less to expect a model of a biological system to do
better” (p. 273). In essence he is saying that dif-
ferent models of a phenomenon, each focusing
on a different aspect of the problem, when com-
bined, can provide complementary levels of both
description and explanation.

(v) “What counts is what the model predicts, not
what it leaves out” (p. 318). In other words, the
value of any given model is not how consistent
it is with existing data (important though that is)
but its predictive capability.

There are also sections in the book that have
both philosophical and logical implications for
some of the more extreme “intelligent design”
hypotheses (including the confusion of “necessity”
with “sufficiency”), but finding these is left as an
exercise for the interested reader!

I enjoyed the opportunity to read this book.
I did find Chapters 7 and 8 to be a little dry,
but that is not a reflection on the author’s gen-
erally easy-going style; it is more a commentary
about my genetic predisposition to struggle with
genetics and taxonomy (though my high school
experience with biology didn’t help). I was also
disappointed that there was nothing about model-
ing tumor growth and wound healing in the book.
The nearest Stewart comes to this, in a mathe-
matical sense at least, is in Chapter 13 (“Spots
and Stripes”), though some of the researchers
who have made significant contributions to these
areas are also mentioned in Chapter 15 (in con-
nection with certain patterns observed in insects,
nematode worms, chickens, and frogs). There is
obviously much in the book that I have not even
touched upon. It would make a wonderful topic
for a graduate discussion group. Thankfully, the
role of mathematics in biology is becoming more
and more appreciated (though I know of some
holdouts). Almost a decade ago a colleague in bi-
ology and I team-taught a course in mathematical
ecology (using Elements of Mathematical Ecology
by Mark Kot). It was open to mathematics students
for undergraduate credit and to graduate biology
students for graduate credit. The class consisted
of fourteen mathematics and zero biology stu-
dents! Those days are long gone (I hope). I would
suggest that anyone pressed for time would do
well to read Chapter 1 of the book (“Mathematics
and Biology”), especially pages 9–12. And then
read the rest of it.

I’ll end with a final quote from the author: “The
complexity of biological systems, often presented
as an insuperable obstacle to any mathematical
analysis, actually represents a major opportunity”
(p. 274). For whom? For biology, mathematics,
biologists, and mathematicians. This is Stewart’s
sixth revolution.
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Sageev, Technion – Israel Institute of Technology; and Karen 
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Graduate Summer School Lecturers: Mladen Bestvina, 
University of Utah; Emmanuel Breuillard, Université Paris-Sud; 
Pierre-Emmanuel Caprace, Université Catholique de Louvain; 
Tsachik Gelander, Hebrew University of Jerusalem; Vincent 
Guirardel, Université de Rennes; Michael Kapovich, University of 
California Davis; Dave Morris, University of Lethbridge; Michah 
Sageev, Technion – Israel Institute of Technology; and Amie 
Wilkinson, Northwestern University 
Clay Senior Scholars in Residence: Alex Lubotzky, Hebrew 
University of Jerusalem; William Thurston, Cornell University
Other Organizers: Undergraduate Summer School and 
Undergraduate Faculty Program: Aaron Bertram, University of 
Utah. Secondary School Teachers Program: Gail Burrill, Michigan 
State University; Carol Hattan, Skyview High School, Vancouver, 
WA; and James King, University of Washington 

Applications: pcmi.ias.edu 
Deadline:  January 31, 2012

IAS/Park City Mathematics Institute 
Institute for Advanced Study, Princeton, NJ  08540 

Financial Support Available

Founded in 1911, The University of Hong Kong is committed to the highest international standards 
of excellence in teaching and research, and has been at the international forefront of academic 
scholarship for many years.  The University has a comprehensive range of study programmes 
and research disciplines spread across 10 faculties and about 100 sub-divisions of studies and 
learning.  There are over 23,400 undergraduate and postgraduate students coming from 50 
countries, and more than 1,200 members of academic and academic-related staff.

Tenure-Track Associate Professor/Assistant Professor in 
the Department of Statistics and Actuarial Science and the 

Department of Mathematics 
(Ref.: 201100811)

Applications are invited for appointment as Associate Professor/Assistant Professor in the 
Department of Statistics and Actuarial Science and the Department of Mathematics, from January 
1, 2012 or as soon as possible thereafter.  The post will initially be made on a three-year term.  
Appointment with tenure will be considered during the second three-year contract. This is a 
joint appointment of the above two Departments.
Applicants should possess a Ph.D. degree or equivalent. Those whose research lies in the 
broad area of theoretical/applied probability, stochastic analysis, or mathematical fi nance will be 
considered.  For enquiries on the existing research activities and the specifi c job requirements, 
please write to Professor W.K. Li, Head of the Department of Statistics and Actuarial Sciences 
(e-mail: hrntlwk@hku.hk).
Applicants should indicate clearly the reference number and which level they wish to be 
considered for. 
A globally competitive remuneration package commensurate with the appointee’s qualifi cations 
and experience will be offered.  At current rates, salaries tax does not exceed 15% of gross 
income.  The appointment will attract a contract-end gratuity and University contribution to a 
retirement benefi ts scheme, totalling up to 15% of basic salary, as well as leave, and medical/
dental benefi ts.  Housing benefi ts will be provided as applicable.

Applicants are requested to apply on-line at https://jobs.hku.hk. Please also upload a C.V. with 
a detailed publication list, a research plan, and a statement on teaching philosophy via the 
on-line application system. Review of applications will start from January 31, 2012 and will 
continue until the post is fi lled.  Candidates who are not contacted within 3 months of the 
closing date may consider their applications unsuccessful.
The University is an equal opportunity employer and is committed to a No-Smoking Policy
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