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A Modest Proposal
Alan H. Schoenfeld

This essay is about mathematical sense-making.
From kindergarten through college, precious little
of it is found in our mathematics classrooms. We—
by which I mean the community of professional
mathematicians and society at large—would all
benefit from dramatic change.

I begin with some horror stories. These are
documented in the literature, and I’m sure Notices
readers have their own to match. The stories
confirm that we are teaching our students not
to think or analyze and that we are in fact
encouraging them to forego common sense. At a
recent conference,1 for example, Lieven Verschaffel
reported that upper elementary school students,
trained by their years of school experience, ignore
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the “real world” constraints in the following
problem:

How many two-foot boards can be
cut from two five-foot boards?

Failing to note that one of the resulting “two-foot
boards” actually consists of two one-foot pieces,
they simply divide 10 (the combined length of the
two boards) by two. We might laugh at the silliness
here, but the example is hardly unique and it points
to more serious issues. For example, Reusser [2]
asked ninety-seven first- and second-grade students
the following question:

There are 26 sheep and 10 goats
on a ship. How old is the captain?

More than 3/4 of the students “solved” the problem,
obtaining their answers by combining the integers
26 and 10. Reusser taped students working on the
following problem:

There are 125 sheep and 5 dogs in
a flock. How old is the shepherd?

A typical “solution” was

125+ 5 = 130, this is too big…and
125− 5 = 120, this is still too big…while
125/5 = 25.
That works.
I think the shepherd is 25 years old.

He also gave 101 fourth and fifth graders the
following nonsense problem:

Yesterday 33 boats sailed into port
and 54 boats left it. Yesterday at
noon there were 40 boats still in
the port. How many boats were still
in the port yesterday evening?

One hundred of the 101 students produced a
numerical answer to the problem, and only five
of the students indicated they thought the task
statement was in any way unusual or problematic.

February 2012 Notices of the AMS 317



Kilpatrick [1, p. 140] reports similar phenomena:

Recently, some [German] children
from kindergarten to grade 6 were
confronted with “problems” in
which no question was posed:

Mr. Lorenz and 3
colleagues started at
Bielefeld at 9 AM and
drove the 360 km to
Frankfurt, with a rest stop
of 30 minutes.

These stories were inserted into a
set of ordinary word problems. The
higher the grade level, the more
likely the children were to attempt
a calculation to solve the problems.

Plainly, students are learning to tolerate nonsensical
problems as they go through school! (I assume
you’ve heard the ritual chant, “Ours is not to reason
why; just invert and multiply!”)

This trend needs to be undone, and we have
the tools and experience to fix the problem. The
above stories contrast dramatically, for example,
with my own experiences as a mathematician and,
occasionally, as a student. The wonderful thing
about mathematics is that it coheres: when you
understand a mathematical idea, everything fits in
place beautifully. That beauty is a large part of my
attraction to mathematics.

An experience I had as an undergraduate crys-
tallized this understanding for me. In a probability
course, the professor was about to write the state-
ment of the binomial theorem up on the board.
She paused and said,

You can get confused if you try to
write the statement of the theorem
from memory. But you don’t have to
memorize it, because the theorem is
so easy to derive. Let the statement
come at the end.

Consider the product of n terms of
the form (x+ y). It will, ultimately,
be a collection of terms of the
form xkyn−k, since each term in
the product contains either an x
or a y from each of the n (x+ y)
terms. So, how many xkyn−k terms
are there? It’s the number of ways
you can choose k x’s out of the

n (x+y)’s, or

(
n
k

)
. Thus, (x+y)n =

k=n∑
k=0

(
n
k

)
xkyn−k.

Having derived the result, she wrote the statement
of the theorem in its “proper place” at the beginning
of the theorem.

That example has stayed with me for more than
forty years, because it captures what I believe about

the nature of mathematics. Things may, when one
first encounters them, seen strange—when you first
look at the formula, it’s not immediately apparent

why

(
n
k

)
is there at all or why it should be the

coefficient of xkyn−k. But, ultimately, there is a good
reason—and once one sees it, then what may have
seemed arbitrary now seems natural and inevitable.
That is, all of elementary mathematics really does
make sense. The rules for adding fractions, solving
equations, or any other topic our students are likely
to encounter in school are, once one understands
them, natural and inevitable. But if they are not
understood as such, then they appear as arbitrary
rules to be memorized and applied mechanically.
The results of exposure to such mathematics are
the stories that started this essay.

From my perspective, then, the first moral
imperative of mathematics instruction is that
mathematics must be seen, and taught, as an
act of sense-making. Students must be led to
see that mathematics is not arbitrary but natural
and inevitable—and that they can, with the right
experiences, come to grips with it in ways that
provide powerful tools for thinking. Whether it is
in pure mathematics, where one is rewarded with
elegance such as that of the binomial theorem, or
in applications and modeling, where the real world
phenomena that one models can and should be
reflected in the symbols used to represent them,
mathematics is and should be experienced in ways
that cohere naturally.

Here’s a case in point. Many years ago, when I
first took a position at the University of Rochester,
I had the standard “what are you going to teach”
conversation with my department chair. He was
happy to have me teach my problem-solving course,
but he said I’d have to pay for the privilege: since I
got to teach a course of my own design and choosing,
I’d have to teach another course that he picked.
The course he chose was pre-calculus, because it
was universally despised—nobody (including TA’s!)
wanted to teach such a low-level course, to students
who’d obviously had problematic mathematical
histories.

The following story is typical of how things
went during the course. It was time for us to study
the arc length formula s = rθ. I asked the students
to read the text overnight and to try to do the
homework. The next day I asked how many of
them had read the text. All the hands went up. I
asked how many had understood it. All the hands
went down. So, I said, let’s look at some examples.
Suppose I had a circle of radius 1. What’s the length
of the part of the circumference cut off (a.k.a.
“subtended”) by a central angle of 90◦? No problem,
they said: that’s 1/4 of the way around the circle,
or 1/4 of 2π . How about an angle of 180◦? Easy.
60◦? No problem: it’s 1/6 of the way around. What
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if we measured in radians? Same thing, you’re just
saying [(π/3)/(2π)] of the way around, instead
of (60/360) of the way around. What if the angle
was θ radians? Again, no problem: it’s (θ/2π) of
the way around the circle.

So, I said, we can do circles of radius 1. What if
the radius of the circle was 7? Once again, what
about a right angle? Same thing, they said: it’s 1/4
of the circumference, which is 14π . A subset of the
same sequence of examples led to (θ/2π)(14π)
for a central angle of θ radians. After that it was a
small step to go from radii of 1 and 7 to a radius of
r and the formula s = rθ. What had been mystical
now made sense. Moreover, my students began
to believe that math can (and should) make sense
and that they were capable of doing that kind of
sense-making. My problem-solving courses are an
advanced version of the same principle.

I truly believe that all of the mathematics in the
K–16 curriculum—or at least all of the mathematics
that should be in the K–16 curriculum!—can be
seen as a set of sensible answers to a set of
reasonable questions. My immodest proposal is
that we revise the entire curriculum so that all
students experience it as such, so that they come to
see mathematics as a domain that not only makes
sense, but as one that they can make sense of. On a
more truly modest scale, I propose that we all, each
time we teach, stop to think about how and why
the mathematics fits together the way it does and
how we can help our students to see it that way. We
owe our students no less. Approaching instruction
this way will make mathematics easier to learn and
will make more accessible to students some of the
pleasures of the discipline that we find so appealing.
Indeed, if we emphasize sense-making, I predict
that more students will take to mathematics and
that the rest will have a much better appreciation
of its power and uses.
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