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For mathematicians, modern philosophy of math-
ematics may seem somewhat puzzling. In the
late nineteenth and early twentieth centuries,
the borders between philosophy and mathemat-

ics were porous. Influential mathematicians like
Poincaré, Brouwer, Ramsey, and Hilbert wrote
extensively on philosophical topics, and philoso-
phers like Russell, Wittgenstein, and Quine made
serious philosophical use of contemporaneous
mathematics. More importantly, the issues that
concerned philosophers of mathematics were

often continuous with developments in mathe-
matics proper—e.g., the rigorization of analysis in
the nineteenth century, the discovery of the set-
theoretic paradoxes and Gödel’s incompleteness
theorems, or Bourbaki’s project of systematizing
mathematics as a whole.

In recent years, mathematics and the philoso-

phy of mathematics have become somewhat more
distant. The topics that most exercise philoso-
phers of mathematics—realism and anti-realism,
the metaphysics of structuralism, or arguments
concerning the indispensability of mathematics to
natural science—don’t connect very well with the
day-to-day concerns of practicing mathematicians.

This is not to say that philosophy of mathemat-
ics has become insular and unmotivated. It’s just
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that its connections tend to be to other areas of

philosophy—to metaphysics, epistemology, and

the philosophy of language in particular—and its

motivating problems tend to be purely philosophi-

cal. Further, the mathematics one needs to address

these problems is often quite rudimentary—in

many cases, reflection on elementary arithmetic

and geometry is enough to make philosophical

progress. For philosophers, therefore, there’s of-

ten little motivation to engage with the parts

of mathematics which are of most interest to

practicing mathematicians.1

Of course, some philosophers have worked

on mainstream mathematical topics, and in

some cases—Imre Lakatos and Philip Kitcher,

in particular—their work has been well received

by the larger philosophical community. But, in

all too many cases, philosophers pursuing this

kind of work have seemed more focused on

discussing cutting-edge mathematical topics than

on generating genuine philosophical results from

those topics. This work has been less well re-

ceived. Like mathematicians, philosophers can be

pragmatists: it’s not enough to talk about exciting

mathematics; you have to show that there’s a

properly philosophical payoff to the discussion.

1This point needs to be emphasized. I’ve occasionally

heard mathematicians suggest that certain questions in

the philosophy of mathematics are ill-motivated (or even

pointless!) simply because they lack immediate relevance

to the day-to-day concerns of working mathematicians. In

my view, this is a mistake. It’s the equivalent of dismiss-

ing work in the philosophy of language on the grounds

that such work often lacks immediate relevance to work-

ing novelists. More pointedly, I think it’s the equivalent

of dismissing work in more abstract branches of math-

ematics on the grounds that this work lacks immediate

applications to, say, aerospace engineering.
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This brings us to Paolo Mancosu’s new collec-
tion, The Philosophy of Mathematical Practice. The
authors of the papers in this collection share a
vision of the philosophy of mathematics that is
at once attentive to the history and practice of
working mathematicians and to the necessity of
making this history and practice philosophically
relevant. Their papers have several distinctive
features. First, they address a collection of philo-
sophical issues that have been underdiscussed in
the recent philosophical literature—e.g., the role
of visualization in mathematical reasoning, the
idea that some proofs are more “explanatory”
than others, or the relevance of category theory to
philosophical structuralism. Second, they treat a
broader range of mathematical history and prac-
tice than has been customary in philosophical
contexts: not just logic and arithmetic, but cate-
gory theory, complex analysis, algebraic geometry,

and number theory as well.2 Finally, they insist
on the relevance of this mathematics, not only to
the new topics this volume aims to introduce, but
also to classic topics in traditional philosophy of
mathematics.

The collection begins with a brief introduction
in which Mancosu situates the project against
some other recent attempts at developing a
more mathematically sophisticated philosophy

of mathematics.3 For mathematicians, this in-
troduction will provide a useful guide to some
of the most interesting work in recent philoso-
phy of mathematics along with a picture of the
larger philosophical milieu in which that work
(and this volume) are embedded. Following the
introduction, the book divides into eight sections,
each of which contains a general introduction to a
topic followed by a more focused research paper
that develops one aspect of that topic in more
depth. For reasons of space, I will group these

2These last two points should not be misconstrued. Nei-

ther the philosophical nor the mathematical topics dis-

cussed in this book are entirely original. Most of them

have been discussed before (and often by these very au-

thors!). Instead, the book is an attempt to highlight this

kind of work by collecting some of its best practitioners

together in one volume.
3Mancosu focuses, in particular, on recent work by

Lakatos, Kitcher, Corfield, and Maddy. Most mathemati-

cians will, I suspect, be familiar with Lakatos. Kitcher

emphasizes the importance of historical studies of the

growth of mathematical knowledge and of the changes

in mathematical methodology and practice over time.

Corfield argues that philosophers should pay more at-

tention to “real mathematics”—to the mathematics that

leading mathematicians are most interested in and to

the ways that the mathematical community structures

and conceptualizes its most central research programs.

Maddy highlights the significance of informal aspects

of mathematical justification—e.g., the sophisticated

but nonrigorous arguments that set theorists give for

accepting and/or rejecting new set-theoretic axioms.

sections under three general headings, and I will

say more about the research papers than about

the introductions.

What We See

The first two sections concern the use of diagrams

andvisualization inmathematics. Inpractice, these
are things we use all the time: we draw pictures

on the blackboard for our students, we include

diagrams in our papers, and we make sketches for
ourselves when trying to think through a proof.

Since the nineteenth century, however, both math-

ematicians and philosophers have questioned
whether such practices should play any formal

role in mathematics. After all, geometric diagrams

can be both imperfect and atypical, and the use
of such diagrams seems to have led traditional

geometers to overlook important axioms—e.g.,
axioms of completeness. As even Roger Nelson,

the author of Proofs without Words, has insisted:

“of course, ‘proofs without words’ are not really
proofs.”

The first two papers, by Marcus Giaquinto (Uni-

versity College London), concern visual reasoning
in mathematics. Giaquinto’s introductory paper

highlights some of the (many) ways we use visual-

ization: to help us prove theorems, to discover and
motivate new results, and to deepen our under-

standing of particular pieces of mathematics. In
the end, he argues that visual reasoning can play a

legitimate—and an important—role in grounding

both proof and understanding. His research paper
explores the more specific role that visualization

plays in grasping particular mathematical struc-

tures. Using some recent work in cognitive science,
Giaquinto claims that we can, in fact, use visualiza-

tion to gain knowledge of small finite structures,

and he argues that this process can be extended
to get a grasp on the structure of the whole set

of natural numbers. He then explores how far this
kind of visual thinking can take us—probably to

the ordinal ω2, less probably to the ordinal ωω,

but almost certainly not to the whole set of real
numbers.

Ken Manders (Pittsburgh) focuses on classical

Euclidean geometry. In his introductory paper, he
notes that whatever worries we now have about

diagrammatic reasoning, diagram-based geometry
was an extraordinarily successful mathematical

practice for over 2,000 years. The success of this

practice—the fact that it didn’t run aground on
the problems we have now become aware of—

is something that philosophers need to explain.

Manders’s research paper explores the kinds of
“diagram discipline” that enabled traditional ge-

ometers to avoid fallacies and to legitimately draw

inferences from their diagrams. So, for instance,
Manders distinguishes between exact features of

diagrams—features, like the straightness of a line
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or the equality of two angles, that are unstable

under even slight perturbations of the diagram—

and coexact features—features, like the inclusion

of one region in another or the intersection of

two lines, that remain stable under appropriate

(small) perturbations. He notes that, in practice,

traditional geometers inferred only coexact at-

tributes from a diagram and that the restriction

to co-exact inferences explains the reliability of

classical geometric reasoning. He also provides

an illuminating discussion of indirect reasoning

in geometry—reasoning in which the diagrams

are by design inaccurate since they are supposed

to represent geometric situations that cannot be

instantiated. This paper is a modern classic that

has circulated informally since the mid-1990s and

that is published here for the first time; it is rich

and deep and will repay careful, repeated reading.

What We Care About

Many philosophers have a simple picture of mathe-

matics that focuses almost entirely on the issues of

truth and proof: we start with simple, self-evident

axioms, and we then ask whether various theorems

can be proved from those axioms. For this picture,

the only interesting questions involve the security

of our axioms, the reliability of our proofs, and

the ultimate truth of our theorems. Of course, this

story misses much of the texture of day-to-day

mathematical practice: theorems can be deep or

shallow, definitions can be natural or unnatural,

results can be constructive or conceptual, proofs

can be more or less explanatory, etc. The next

three sections of Mancosu’s book look at some of

these less formal—but no less important—ways

that mathematicians evaluate their work.

The first two papers, by Mancosu himself and

by Mancosu and Johannes Hafner (Berkeley and

NC State, respectively), look at the notion of

mathematical explanation, both in the sense of

using mathematics to explain results in other

disciplines—e.g., physics or economics—and in

the sense of explanation within mathematics it-

self. Mancosu’s introductory paper provides a

short, but very clear, survey of some of the best

recent philosophical work on these topics. As with

his introduction to the volume as a whole, this

paper will be particularly useful as a guide to

those mathematicians who would like to read fur-

ther in contemporary philosophy of mathematics.

Mancosu and Hafner’s research paper focuses on

a model of “explanation as unification” that was

developed by Philip Kitcher (and was explicitly

intended to be applicable to mathematics). Using

a test case from real algebraic geometry, they

argue that Kitcher’s model fails to capture many

of the judgments about explanation that math-

ematicians actually make.4 They conclude that,
even if Kitcher’s model is on roughly the right
track, it will need substantial revision, guided by
far more detailed analyses of a far wider range of
mathematical test cases, before it can provide an
adequate account of mathematical explanation.

The next two papers, by Mic Detlefsen (Notre
Dame) and Michael Hallett (McGill), involve an
issue that has come to be known as “purity of
method”—roughly, the desire that mathematicians
sometimes express to prove results in a particu-
lar branch of mathematics using only techniques
proper to that branch of mathematics. By way of
example, consider mid-twentieth-century number
theorists’ interest in obtaining a purely number-
theoretic proof of the prime number theorem—i.e.,
a proof that does not use complex analysis. Or,
consider the desire of group theorists to ob-
tain a group-theoretic proof of Burnside’s paqb

theorem—a proof that does not appeal to rep-
resentation theory. Finally, and most famously,
consider nineteenth-century concern over the ca-
sus irreducibilis—the fact thatwhenwe use radicals
to extract real roots of a cubic polynomial with ra-
tional coefficients, we often have to detour through
the complex plane (even in cases where all of the
roots of our polynomial turn out to be real).

Mic Detlefsen’s paper provides a nice history
of purity concerns in mathematics. He starts with
Greek attempts to eliminate mechanical reasoning
from geometric proofs, works forward through
nineteenth-century attempts to remove geomet-
ric reasoning from analysis, and ends with some
contemporary cases where mathematicians have
expressed an interest in purity (e.g., the prime
number theorem example from the last paragraph
or the search for an “elementary” proof of the
Erdös-Mordell theorem). Along the way, he dis-
cusses the different reasons mathematicians have
given for pursuing purity and the various for-
mal and epistemological virtues that pure proofs
might be thought to have. Michael Hallett’s paper
follows this discussion with a rich and detailed
study of the role purity played in Hilbert’s axio-
matization of geometry. Clearly, Hilbert had some
purity concerns here—e.g., he wanted to eliminate

4The case involves using the Tarski-Seidenberg decision

procedure and/or the Tarski-Seidenberg transfer princi-

ple to prove general theorems about real closed fields.

The transfer principle, for instance, allows us to use spe-

cial properties of the reals—say, the Bolzano-Weierstrass

property or the least upper bound property—to prove

theorems about the real field and to then “transfer” these

theorems to other real closed fields. This works even

when the other fields lack the special properties used in

the initial proofs. Many geometers feel that these kinds

of “transcendental” arguments are less explanatory than

purely algebraic arguments that work uniformly in all

real closed fields.
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certain kinds of intuitive and diagrammatic rea-
soning from geometry. Hallett highlights the subtle
and complicated interplay between these kinds of
purity concerns and Hilbert’s larger project of
incorporating metamathematical reasoning into
geometry.

Finally, Jamie Tappenden (Michigan) discusses
the significance of good definitions in mathemat-
ics. His first paper uses the introduction of the
Legendre symbol as a case study for exploring
the role that fruitful consequences play in expli-
cating the notion of a mathematically “natural”

definition.5 It also discusses the ways definitions
can change in response to deeper understanding
of a field—e.g., the realization by algebraic num-
ber theorists that the notion of primality is more
fundamentally captured by the property

n is prime iff n|ab ⇒ n|a or n|b

than by the traditional,

n is prime iff a|n⇒ a = 1 or a = n.

Tappenden’s research paper traces these kinds
of issues through the work of Riemann and
Dedekind, and it explores the relationship be-
tween natural definitions in mathematics and
some recent philosophical discussions of “nat-
ural properties”. (Along the way, he makes some
illuminating criticisms of “structuralist” accounts
of the natural numbers as given by, e.g., Benacerraf,
Shapiro, and Sider.) I should note that, although
these two papers’ focus is clearly philosophical,
some sections are likely to be more accessible to
mathematicians than to philosophers. Tappenden
clearly feels space constraints when summarizing
the mathematical evidence for his conclusions,
and those who already know the mathematical
context in detail will find these sections easier
going than those who don’t.

Who We Talk To

The final three sections of the book concern
questions arising from the interaction of mod-
ern mathematics with other academic disciplines:
computer science, philosophy, and physics. Of
course some such questions have been widely
discussed among philosophers—e.g., the applica-
bility of mathematics to physics or the relevance
of recursion theory to computer science—but the
particular questions examined here have been far
less commonly addressed.

Jeremy Avigad (Carnegie Mellon) focuses on
the growing interaction between mathematics and
computer science. The first half of his introduction

5At first blush, the definition of the Legendre symbol is

a paradigm of an unnatural and cobbled-together defi-

nition. It’s only after we do some mathematics with the

symbol—to understand its algebraic properties, its useful

consequences, and its various generalizations—that we

come to understand how natural the symbol really is.

explores the role computers increasingly play in

generating (informal) evidence for mathematical

assertions—e.g., in testing conjectures numeri-

cally or using computer verification to check a

long and complicated proof. The issue here is

not the traditional: “do computer proofs count as

full-fledged proofs?” Rather, it’s the more com-

plicated question of whether we can give any

philosophical account of the notions of mathe-

matical plausibility that are in play in these more

informal cases.6 The remainder of Avigad’s pa-

pers involve the relevance of computer science

to the study of mathematical understanding. The

research paper, in particular, provides a richly

detailed discussion of some of the difficulties that

arise when training computers to follow certain

families of mathematical proofs, proofs that most

human mathematicians can follow quite readily.

By focusing on such cases, Avigad hopes to provide

new insights into the ways human mathematicians

actually understand proofs and to thereby give a

deeper account of the nature of mathematical

knowledge.

Colin McLarty (Case Western) explores the

relationship between category theory and mathe-

matical structuralism. Very roughly, structuralism

is the claim that mathematics is concerned, not

with particular mathematical objects, but only

with general patterns or structures. Particular ob-

jects are defined in terms of their positions within

such structures—i.e., their relations to other ele-

ments of the structures—but they have no identity

conditions outside of those structures.7 McLarty

argues that the right way to develop structuralism

is through category theory. His paper provides

a whirlwind tour through some central episodes

in the history of mathematics, leading up to the

development of the notion of a scheme. He then

6To see the problem here, consider a simple Bayesian ap-

proach to the issue. Since Bayesian theories assign prob-

ability 1 to all logical tautologies, they can’t be used to

model plausible reasoning about whether a given state-

ment is, in fact, a tautology. Similarly, suppose that Gold-

bach’s conjecture is false. Then there is a proof of this

fact which uses only elementary arithmetic. So, Bayesian

theories would insist that we should reject Goldbach’s

conjecture with (at least) the same confidence as we ac-

cept elementary arithmetic. But, of course, we don’t yet

know that elementary arithmetic disproves Goldbach’s

conjecture (even though the relevant proof is out there

somewhere, we haven’t yet discovered it). So, this kind of

Bayesian analysis won’t capture the reasoning we actu-

ally use when we assess the plausibility of the conjecture.
7So, for instance, the number 2 is completely defined by

its position in the ordering of the natural numbers, and

there’s nothing to say about its nature or essence outside

of that pattern. While both {{∅}} and {∅, {∅}}may play

the role of 2 in some particular set-theoretic reduction of

arithmetic, it makes no sense to ask which of them really

is the number 2.
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draws some illuminating lessons for philosophi-

cal structuralists concerning, e.g., the distinction

between morphisms and functions, the signifi-

cance of the difference between isomorphism and

equivalence in category theory, and the role that

category theory can play in solving (or dissolving)

puzzles concerning mathematical ontology. As in

the case of Tappenden’s paper, I expect that the

mathematical prerequisites of McLarty’s paper will

make it (far) more accessible to mathematicians

than to philosophers.

The final two papers in this collection, both

by Alasdair Urquhart (Toronto), concern the rel-

evance of physics to mathematics. Urquhart’s

primary interest is in the ways physicists shame-

lessly abuse mathematics and yet, with some

regularity, manage to parlay their weird math-

ematics into strikingly good physics. The core

of Urquhart’s research paper consists of a se-

ries of case studies—involving infinitesimals, the

umbral calculus, and the Dirac delta function—

in which physicists developed new mathematical

techniques that mathematicians were only later—

and, in some cases, much later—able to put on any

kind of rigorous footing. Urquhart urges math-

ematicians and philosophers to take the lesson

of these studies to heart and to view physics as

an important source of new mathematical ideas

(even, or perhaps especially, when the physicists

themselves cannot explain the mathematical foun-

dations of what they are doing). He ends with a final

case study involving the Sherrington-Kirkpatrick

model of spin glasses, a case in which physicists

are currently making surprising progress by em-

ploying some extremely dodgy—and at this point

inexplicable—mathematics.

Concluding Remarks

This, then, gives us a picture of the details of Man-

cosu’s book. Let me close with two somewhat more

general comments. First, I want to emphasize just

how good this book really is. The papers are clear

and well written; the introductory surveys provide

nice introductions to the relevant philosophical

literature; the research papers address fresh top-

ics which have been unduly neglected in recent

philosophical discussion; and the mathematics in

the book is both more varied and more central

to mainstream mathematical practice than is typ-

ical in philosophical contexts. Taken as a whole,

the book provides an excellent introduction to

some of the most exciting and mathematically

well-informed work in recent philosophy of math-

ematics, and it lays out an attractive agenda for

future philosophical research.

Second, I want to issue a minor caution. In some

cases, the papers feel just a bit too programmatic.

Although they lay out interesting agendas for

future work and take some preliminary steps to-
wards fulfilling those agendas—asking important
questions, clarifying key notions, and working
through specific test cases—I often found my-
self wanting just a little more development and
a little more argument in order to be fully con-
vinced. Readerswho are looking for airtight theses,
completely detailed analyses, fully worked out ar-
guments, and rigorously proved claims (in the
philosopher’s, not the mathematician’s, sense of
“rigorously proved”!) may find some sections of
this book a bit frustrating.

That being said, this caution isn’t intended as a
genuine criticism. The purpose of this book is to lay
out a vision of what the philosophy of mathematics
could someday be—both by sketching the kinds
of topics philosophers might turn their minds to
and by making enough (local) progress on these
topics to convince us that our efforts are likely to
be rewarded. On these terms, the book succeeds
splendidly. My desire for a more developed version
of the project—say, a small bookshelf filled with
monograph-length expansions of these papers—is
merely a testament to this book’s overall success.
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