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Near sets are disjoint sets that resemble each
other. Resemblance is determined by consider-
ing set descriptions defined by feature vectors
(n-dimensional vectors of numerical features that
represent characteristics of objects such as digi-
tal image pixels). Near sets are useful in solving
problems based on human perception [44, 76, 49,
51, 56] that arise in areas such as image analy-
sis [52, 14, 41, 48, 17, 18], image processing [41],
face recognition [13], ethology [63], as well as
engineering and science problems [53, 63, 44, 19,
17, 18].

As an illustration of the degree of nearness
between two sets, consider an example of the
Henry color model for varying degrees of nearness
between sets [17, §4.3]. The two pairs of ovals
in Figures 1 and 2 contain colored segments.
Each segment in the figures corresponds to an
equivalence class where all pixels in the class have
matching descriptions, i.e., pixels with matching
colors. Thus, the ovals in Figure 1 are closer (more
near) to each other in terms of their descriptions
than the ovals in Figure 2. It is the purpose of
this article to give a bird’s-eye view of recent
developments in the study of the nearness of sets.

Brief History of Nearness
It has been observed that the simple concept of
nearness unifies various concepts of topological
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Figure 1. Descriptively, very near sets.

Figure 2. Descriptively, minimally near sets.

structures [21] inasmuch as the category Near of

all nearness spaces and nearness-preserving maps

contains categories Tops (symmetric topological

spaces and continuous maps [3]), Prox (proximity
spaces and δ-maps [8, 66]), Unif (uniform spaces

and uniformly continuous maps [75, 71]), and Cont

(contiguity spaces and contiguity maps [23]) as
embedded full subcategories [21, 57]. The notion

of nearness in mathematics and the more general

notion of resemblance can be traced back to
J. H. Poincaré, who introduced sets of similar

sensations (nascent tolerance classes) to represent

the results of G. T. Fechner’s sensation sensitivity
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experiments [9] and a framework for the study of

resemblance in representative spaces as models

of what he termed physical continua [61, 58, 59].

The elements of a physical continuum (pc) are

sets of sensations. The notion of a pc and var-
ious representative spaces (tactile, visual, motor

spaces) were introduced by Poincaré in an 1894

article on the mathematical continuum [61], an

1895 article on space and geometry [58], and a
compendious 1902 book on science and hypoth-

esis [59] followed by a number of elaborations,

e.g., [60]. The 1893 and 1895 articles on continua

(Pt. 1, ch. II) as well as representative spaces and

geometry (Pt. 2, ch. IV) are included as chapters
in [59]. Later, F. Riesz introduced the concept of

proximity or nearness of pairs of sets at the ICM

in Rome in 1908 (ICM 1908) [64].

During the 1960s E. C. Zeeman introduced tol-
erance spaces in modeling visual perception [78].

A. B. Sossinsky observed in 1986 [67] that the main

idea underlying tolerance space theory comes from

Poincaré, especially [58] (Poincaré was not men-

tioned by Zeeman). In 2002, Z. Pawlak and J. Peters
considered an informal approach to the percep-

tion of the nearness of physical objects, such

as snowflakes, that was not limited to spatial

nearness [42]. In 2006, a formal approach to the
descriptive nearness of objects was considered by

J. Peters, A. Skowron, and J. Stepaniuk [54, 55] in

the context of proximity spaces [40, 35, 38, 22]. In

2007, descriptively near sets were introduced by

J. Peters [46, 45], followed by the introduction of
tolerance near sets [43, 47].

Nearness of Sets
The adjective near in the context of near sets

is used to denote the fact that observed feature
value differences of distinct objects are small

enough to be considered indistinguishable, i.e.,

within some tolerance. The exact idea of closeness

or “resemblance” or of “being within tolerance”

is universal enough to appear, quite naturally, in
almost any mathematical setting (see, e.g., [65]). It

is especially natural in mathematical applications:

practical problems, more often than not, deal with

approximate input data and only require viable
results with a tolerable level of error [67].

Frigyes Riesz,
1880–1956

The words near and far

are used in daily life and it

was an incisive suggestion

of F. Riesz [64] to make
these intuitive concepts rig-

orous. He introduced the

concept of nearness of

pairs of sets at the ICM

1908. This concept is use-
ful in simplifying teaching

calculus and advanced cal-

culus. For example, the

passage from an intuitive definition of conti-
nuity of a function at a point to its rigorous
epsilon-delta definition is sometimes difficult for
teachers to explain and for students to under-
stand. Intuitively, continuity can be explained
using nearness language, i.e., a function f : R→ R

is continuous at a point c, provided points {x} near
c go into points {f (x)} near f (c). Using Riesz’s
idea, this definition can be made more precise
and its contrapositive is the familiar epsilon-delta
definition.

Bringing near into the discussion of continuity
makes the transition simpler from the intuitive
level of continuity to the rigorous level of continu-
ity.Thisapproachhasbeensuccessfullyused in the
classroom (see, e.g., [6, 22, 38]). This approach can
also be used in teaching general topology [35, 39],
function spaces, hyperspaces, lattices of closed
sets, point-free geometries [22, 5], analysis and
topology [38, 35, 5]. Point-free topology focuses
on open sets rather than points of a space and deals
with lattices of open sets called frames and their
homomorphisms [57, p. 234ff]. Riesz’s idea was to
establish a natural framework for defining accu-
mulation points that are derived from enchained
sets. To formulate the notion of an accumulation
point, Riesz proposed an axiomatization of the
closeness between sets called enchainment, which
is proximity ante litteram [5, §I]. Riesz chose en-
chainment as a vehicle for topology. In doing so,
he shifted the focus from the closeness of points
and sets (as in F. Hausdorff [15, 16] and K. Kura-
towski [27, 28, 29]) to closeness between sets (as
in [72, 38]).

Since 1908 a number of mathematicians, such
as Efremovic̆, Smirnov, Leader, C̆ech, and others,
have developed the theory of proximity spaces
(see, e.g., [8, 66, 30, 72, 40, 69, 10, 21, 12], nicely
summarized in [5]). As per the dictum of A. Ein-
stein, “the significant problems we face cannot be
solved by the same level of thinking that created
them”, problems in topology and analysis can be
solved and generalized by the use of proximity
that is at a higher level than topology [38]. Here
are two examples.
(1) Proximal Wallman compactification. Using

ultrafilters, one gets Wallman compactifica-
tion [73], which is usually given as an exercise
in topology texts. H. Wallman uses the family
wX of all closed ultrafilters of X and assigns a
topology on wX (known as Wallman topology)
that makes wX compact. X is embedded in
wX via the map that takes a point x ∈ X
to the closed ultrafilter Lx containing {x}
(for details, see [73, Theorem 2, p. 120] and
[24, §5.R]). Thus, Wallman gets just one T1

compactification of any T1 space. By replacing
intersection with near and using the resulting
bunches and clusters of S. Leader, we get
infinitely many compactifications, including
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all Hausdorff compactifications. For details,

see [38, §3.1, p. 39ff] and [39, §9.6].
(2) Taimanov extension of continuous func-

tions. A. D. Taimanov [68] gave necessary
and sufficient conditions for the existence
of extensions of continuous functions from

dense subspaces of topological spaces when
the range is compact Hausdorff. That led to
various generalizations using special tech-
niques (see, e.g., [11, 36]). The generalized
Taimanov theorem obtained via a proximity

(nearness) relation includes as special cases all
results on this topic. For the details, see [38,
§1.3, p. 16ff] and [39, §1.16].

Using Mozzochi’s results on symmetric gener-
alized uniformity, Gagrat and Naimpally char-

acterized developable spaces as those which
have compatible upper semi-continuous semi-
metrics [10]. This result was used by Domiaty
and Laback in a study of semi-metric spaces in
general relativity [7]. This puts S. Hawking’s ap-
proach to general relativity on a more general

mathematical foundation (see [38, §15, p. 163ff]
and [35]).

Various Near Sets
From a spatial point of view, nearness (aka
proximity) is considered a generalization of set in-

tersection. For disjoint sets, a form of nearness set
intersection is defined in terms of a set of objects
(extracted from disjoint sets) that have similar
features within some tolerance (see, e.g., [74, §3]).
For example, the ovals in Figure 1 are considered

near each other, since these ovals contain pairs
of classes that display matching (visually indistin-
guishable) colors. Next, we give some examples to
motivate the theory.

Metric Proximity

In a metric space with a metric d, the metric
proximity (denoted δ) is defined as follows. Two
sets A and B are near (i.e., A δ B) if and only
if d(A, B) = inf {d(a,b) : a ∈ A,b ∈ B} = 0. This
form of metric proximity was introduced by E.

C̆ech [72, §18.A.2], which C̆ech writes in terms of a
proximity induced by d [72, §25.A.4] in a seminar

on topology given in Brno between May 1936
and November 1939. Metric proximity provides a
motivation for the axioms of a proximity space,
where there may not even be a metric.

Topological or Fine Proximity

Let clE denote the closure of A such that

x is in the closure of E⇔ {x} δ E.

Put another way, x lies in the closure of a set E,
provided that there are points of E as near as we

please to x [4, §1.6, p. 22]. In any topological space,
there is an associated fine proximity (denoted δ0).

Two sets A and B are finely near if and only if

their closures intersect, i.e.,

A δ0 B ⇔ clA∩ clB ≠∅.

It is easy to see that if δ is a metric proximity, then

A δ0 B⇔ clA∩ clB ≠∅⇒ clA δ clB ⇒ A δ B.

Proximity Space Axioms

Every proximity induces a unique topology that

arises from the nearness of points to sets. On the

other hand, a topology may have many associated

proximities. Metric proximity and fine proximity

in a topological space provide a motivation for the

following axioms satisfied by all proximity spaces:

(Prox. 1) A and B are near sets implies they are

not empty,

(Prox. 2) A is near B implies B is near A (symme-

try),

(Prox. 3) A and B intersect implies A and B are

near sets,

(Prox. 4) A is near (B ∪C) if and only if A is near

B or A is near C.

Most of the literature in topology uses an

additional axiom that is a vestigial form of the

triangle inequality [34, 40]:

(Prox. 5) If A is far from B, there is an E ⊂ X such

that A is far from E and B is far from

X − E.

Quasi-Proximity

Dropping (Prox. 2) (symmetry) gives rise to a

quasi-proximity relation [26, §2.5, p. 262ff] and

(Prox. 4) becomes

(qProx. 4) (B ∪ C) near A if and only if B is near

A or C is near A and A is near (B ∪ C)

implies A is near B or A is near C.

It has been observed by H.-P. Künzi [26] that the

topology τ(δ) induced by the quasi-proximity δ

on X arises from the closure clτ(δ) defined by

x ∈ clτ(δ)A⇔ x δ A.

Alexandroff Spaces and Quasi-Proximity

An Alexandroff space is a topological space such

that every point has a minimal neighborhood or,

equivalently, an Alexandroff space has a unique

minimal base [2]. A topological space is Alexan-

droff if and only if the intersection of every family

of open sets is open. These spaces were intro-

duced by P. Alexandroff in 1937 [1]. Let X be a

topological space, and let A,B ∈ P(X). In terms of

quasi-proximity δ, F. G. Arenas obtained the fol-

lowing result. A δ B if and only if A∩ cl(B) ≠∅ is

a quasi-proximity compatible with the topology [2,

Theorem 4.3]. Also observe that every finite topo-

logical space is Alexandroff. Starting in the 1990s,

Alexandroff spaces were found to be important in

the study of digital topology (see, e.g., [20, 25]).
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For Alexandroff spaces considered in the context
of near sets, see [76, 77].

Adding Proximity Space Axioms

In the study or use of a proximity space in a
problem, an additional appropriate axiom is added
relative to the application. For example, in studying
the nearness of digital images, one can view an
image X as a set of points with distinguishing
features such as entropy or color or gray level
intensity and introduce some form of tolerance
relation that determines image tolerance classes.
Let X,Y denote a pair of images and let φ : X → ℜ

be a real-valued function representing an image
feature such as an average gray level of subimages.
Put ε ∈ [0,∞), and let x ∈ X,y ∈ Y denote
subimages. Then introduce the description-based
tolerance relation ≃φ,ε , i.e.,

≃φ,ε= {(x, y) ∈ X × Y :
∣

∣φ(x)−φ(y)
∣

∣ < ε}.

This leads to

(Prox. 6) A and B are near sets ⇐⇒ there are x ∈
A,y ∈ B, such that x ≃φ,ε y .

If a pair of nonempty sets A, B satisfy (Prox. 6),
then A and B are termed tolerance near sets. Such
sets provide a basis for a quantitative approach
to evaluating the similarity of objects without
requiring object descriptions to be exact (see,
e.g., [17]).

Nearness of Pictures
The concept of nearness enters as soon as one
starts studying digital images (see, e.g., [62, 37, 52,
41, 47]). The digital image of a photograph should
resemble, as accurately as possible, the original
subject, i.e., an image should be globally close
to its source. Since proximity deals with global
properties, it is appropriate for this study. The
quality of a digital image depends on proximity
and this proximity is more general than the one
obtained from a metric.

We note here that a digital image of a landscape
is made up of a very limited number of points
(depending on the sensory array of a camera),
whereas the original landscape in a visual field
contains many more points than its correspond-
ing digital image. However, from the point of view
of perception, they are near, depending on the
tolerance we choose rather crudely in comparing
visual field segments of a real scene with digital
image patches (sets of scattered pixels). To make
such comparisons work, the requirement that the
image should appear as precise as possible as the
original is relaxed. And the precise-match require-
ment is replaced by a similarity requirement so
that a digital image should only remind us (within
some tolerance) of the original scene.

Then, for example, a cartoon in a newspaper
of a person may be considered near, if parts of a

Figure 3. Chain Reaction, Punch, 1869.

cartoon are similar or if it resembles an original

scene. For instance, in Figure 3, if the feature

we consider is behavior (e.g., braiding hair), the

mother is perceptually near the daughter, since

both are braiding hair. And, in Figure 3, the drawing

of the mother braiding her daughter’s hair is near

a familiar scene where a mother is caring for her

daughter’s hair. This suggests that whether two

objects are near or not depends on what is needed.

Sufficient Nearness of Sets
The notion of sufficiently near appears in N. Bour-

baki [4, §2, p. 19] in defining an open set, i.e., a set

A is open if and only if for each x ∈ A, all points

sufficiently near x belong to A.

X

F3

F2

F1
·

x

Figure 4. Near open
sets.

Moreover, a property holds

for all points sufficiently near

x ∈ A, provided the prop-

erty holds for all points in

the neighborhood of x. Set F1

in Figure 4 is an example of

an open set represented by

a dotted boundary. In fact,

sets F2, F3 are also exam-

ples of open sets (i.e., open

neighborhoods of the point

x). Bourbaki’s original view

of sufficiently near (denoted

δε) is now extended to a re-

laxed view of the nearness of nonempty sets. This

form of proximity relation is useful in considering,

for example, a relaxed form of metric proximity in

relation to ε-collars of sets [5, §2.2], especially in

approach space theory [31, 33, 32, 70, 51, 56], as

well as in considering the nearness of pictures.

Let ε ∈ (0,∞]. Nonempty sets A,B are con-

sidered sufficiently near each other if and only

if

A δε B⇔ inf {d(a,b) : a ∈ A,b ∈ B} < ε.
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Figure 5. A Bit Far, Punch, 1845.

Otherwise, sets A,B are remote (denoted δε), i.e.,

sufficiently apart or far from each other, provided

A δε B⇔ inf {d(a, b) : a ∈ A,b ∈ B} ≥ ε.

In keeping with the proximity space approach, an
axiom is added to cover sufficient nearness. This

leads to axiom (Prox. 7).
(Prox. 7) A and B are sufficiently near sets ⇐⇒

inf {d(a, b) : a ∈ A,b ∈ B} < ε.
In a more general setting, nearness and apartness

are considered relative to the gap between col-
lections A,B ∈ P2(X) in an approach space [50,

51, 56]. The choice of a particular value of ε is
application dependent and is typically determined

by a domain expert.

Far Apart and Near Pictures
Apart from the fact that the knight is far from

his horse1 in Figure 5 and the picture of the
hairdressers in Figure 3 can be viewed as either

near (if we consider the gray-level intensities of
the pixels in the two pictures) or far apart (if

we consider the behaviors represented by the two
pictures).Description-based nearnessor apartness

between sets depends on the features we select
for comparison.

Let φ : X → R be a probe function that ex-
tracts a feature value from a picture element.
Let Ai , i ∈ {1,2,3,4,5} denote sets of picture

elements in A1 (Figure 1 (ovals)), A2 (Figure 2
(ovals)), A3 (Figure 3 (hairdressers)), A4 (Figure

4 (concentric neighborhoods of point x)), and
A5 (Figure 5 (knight)), respectively, define the

1The picture of the knight being lowered onto his horse

appears in vol. IX, 1845, Punch.

description-based sufficient nearness relation δε,φ
by

A δε,φ B⇔ inf {d(φ(a),φ(b)) : a ∈ A,b ∈ B} < ε,

where d(φ(a),φ(b)) is the standard distance

between feature values φ(a),φ(b). For Examples

1 and 2 below assume φ(x) returns the gray level

intensity of picture element x and assume ε = 25

(almost black, i.e., almost zero light intensity on a

scale from 0 (black) to 255 (white)). It is easy to

verify the following examples of near and far sets.

(Ex. 1) A1 δε,φ A2, i.e., A1 is near A2, since the

greatest lower bound of the differences will

be close to zero because the intensities of

the darker oval pixels are almost equal.

(Ex. 2) F1 δε,φ F2, i.e., neighborhood F1 is near

neighborhood F2 in A4, since the pixels in

F1 are common to both neighborhoods.

(Ex. 3) For this example, let X = A3 ∪A5, ε = 0.5

and define

φ(x) =















1, if x ∈ X portrays a hairdressing

behavior,

0, otherwise.

A3 δε,φ A5, i.e., A3 (hairdressers) is far

from A5 (knight), since the behaviors rep-

resented by the two pictures are differ-

ent. If we assume A = A3, B = A5, then

inf {d(φ(a),φ(b)) : a ∈ A,b ∈ B} = 1.
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