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Herbert Federer

Leslie Vaaler

Herbert Federer taught me about life, scholarship,

and the world of mathematics; he was my father.

When I was a little girl, my father and I would

go on walks and he would talk to me. As I re-

member this communication, he always respected

my ability to understand adult topics, so long

as they were presented with careful explanation.

He spoke deliberately, taking the time to choose

words he felt conveyed just what he was trying to

say. (Those who knew Herbert Federer will recog-

nize this precision with language.) On our walks,

my father was pleased to be asked questions and

encouraged further queries by treating them as

intelligent responses. In this manner, he gave me

the roots of intellectual self-confidence.
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My father wanted me to understand his world,

and so he talked to me about teaching, about

the Brown University mathematics department,

about mathematicians he admired, and about the

joys and frustration of being a mathematician.

I remember my father telling me about visiting

Princeton as a young mathematician and walking

with Steenrod on the golf course. He talked to me

about working on his thesis the summer before

he became a graduate student. He shared with

me thoughts about mathematicians being familiar

with areas of mathematics other than just their

own.

In a 1976 description of his mathematical career

to date, he wrote, “I have worked hard to transform

this subject from a collection of isolated results

into a cohesive body of knowledge. However, my

main effort has been directed towards a deeper

understanding of concepts significantly related to

some classical properties in other parts of math-

ematics. These interests also led me to write two

papers on group theory and homotopy theory.”

Thanks to my father, even before I understood

any significant mathematics, I understood that

mathematics was an art as well as a science.

My father liked to work at home. I was brought

up knowing that it was important not to disturb

him, but I also knew that should I knock on his

study door, he would always stop and talk with me.

One day, as I sat in his study, he explained to me

the importance of a mathematician having a “big

wastebasket” so that many paths could be tried

out, the majority of which would not turn out to be

useful. He placed a paper model of a surface in a

decorative animal clip I had given him, and when I

asked him about it, he talked of minimal surfaces.

Prior to the publication of Geometric Measure

Theory (in 1969 when I was eleven years old),

he talked to me about the importance of good

mathematical notation, making a bibliography,

and proof sheets. Years later, when I wrote a book,

these lessons were useful.
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My father shared with me his hopes for his

book Geometric Measure Theory. As stated in

the preface, he wished it to serve as a “com-

prehensive treatise” on the subject for “mature

mathematicians” as well as a textbook for very

“able students”. It was certainly his hope that the

book would bring more attention to the subject.

My father lamented that certain other areas of

mathematics were more fashionable than geomet-

ric measure theory and blamed himself for not

being a sufficiently good politician.

Herb and his children,

Andrew, Wayne, and Leslie.

At some point,

after the book

was published,

most likely when

I was an under-

graduate student

and took a

particular inter-

est in algebra,

my father took

pride in showing

me that Geomet-

ric Measure The-

ory began with

an explanation of

exterior algebras.

He once wrote

that his scientific

effort was “di-

rected to the development of geometric measure

theory, with its roots and applications in classical

geometry and analysis, yet in the functorial spirit

of modern topology and algebra.”

Professor Federer enjoyed teaching graduate

analysis using the second chapter of his book. He

was very pleased when he found a hardworking

student with talent to understand the material. He

always had high standards for himself and for his

family, and I am sure he was a demanding teacher.

My father was born on July 23, 1920, in Vienna,

Austria. He immigrated to the United States in

1938 and became a naturalized citizen in 1944.

He chose never to travel to Europe, and his

domestic travel was also quite limited.

Herbert Federer began his undergraduate ed-

ucation at Santa Barbara and then transfered to

Berkeley, receiving the degrees B.A. in mathemat-

ics and physics in 1942 and Ph.D. in mathematics

in 1944. During 1944 and 1945, he served in the

U.S. Army at the Ballistic Research Laboratory in

Aberdeen. Beginning in 1945, he was a member of

the mathematics department at Brown University.

He became a full professor in 1951, a Florence

Pirce Grant University Professor in 1966, and pro-

fessor emeritus in 1985. He supervised the Ph.D.

theses of ten students.

Herbert Federer and his daughter, Leslie, in

1984.

Herbert Federer joined the American Mathemat-

ical Society in 1943. He served on the invitations

committee for the 1958 summer institute, as as-

sociate secretary during 1967 and 1968, and as

Representative on the National Research Coun-

cil from 1966 to 1969. He delivered an invited

address (New York City, 1951) and was the col-

loquium lecturer at the August 1977 meeting in

Seattle. My father and Wendell Fleming received

the 1987 Steele Prize for their 1960 paper “Normal

and integral currents”.

Professor Federer was an Alfred P. Sloan Re-

search Fellow (1957–1960), a National Science

Foundation Senior Postdoctoral Fellow (1964–

1965), and a John Guggenheim Memorial Fellow

(1975–1976). He became a fellow of the Ameri-

can Academy of Arts and Sciences in 1962 and a

member of the National Academy of Sciences in

1975.

My father was a private man. Mathematics and

his family were Herbert’s two loves. I believe he

would not want me to share further personal

details of his life, but he would be pleased if this

memoir attracted mathematicians to learn more

about geometric measure theory, the subject he

loved so dearly.

Herbert Federer taught me about life, scholar-

ship, and the world of mathematics. He taught me

about love and responsibility. He was a wonderful

mathematician and father.

John Wermer

Herb Federer was a remarkable man. He was

passionately committed to mathematics and had

a very personal approach to all issues, including

notation.

John Wermer is emeritus professor of mathematics at

Brown University. His email address is wermer@math.

brown.edu.
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Herbert Federer, 1958.

When I came to

Brown University

as Herb’s junior

colleague in 1954,

it greatly im-

pressed me that

Herb had profes-

sional knowledge

of and gave grad-

uate courses in

and wrote up lec-

ture notes for

algebraic topol-

ogy, differential

geometry, alge-

braic geometry,

besides his cen-

tral fields of

interest in real analysis and geometric analy-

sis. When visitors came to speak at Brown, in

different areas, they were often eager to consult

with Herb on all kinds of mathematical questions.

I remember that when Iz Singer gave a collo-

quium at Brown on the Atiyah–Singer theorem in

its early stages, I understood little of the talk, but

Herb understood it very well and realized that

something important had happened.

Together with his coworker Wendell Fleming,

Herb developed a theory of currents which became

a powerful tool in modern geometric analysis, and

he wrote his monumental book Geometric Measure

Theory, which has been very influential.

When I came to Brown in 1954, Herb was very

friendly towards me, and I remember him fondly.

William Allard

When I first arrived at Brown University in the fall

of 1963, I wasn’t sure what to expect. Even though

I didn’t know much mathematics, I was pretty

sure I wanted to study it. I began my graduate

career by taking courses in real analysis, taught

by Bob Accola; algebra, taught by Than Ward; and

complex analysis taught by Herb Federer. These

courses, as I thought at the time and as I now

realize even more, were taught very well, for which

I am now very grateful.

On the first day of class Herb said that only

one in five of us would earn a degree; to this day

I do not know why he said that—perhaps it was

to remind us that graduate study in mathematics

was not a cakewalk. He also noticed some ashtrays

(yes, ashtrays; this was 1963) in the first or second

row of desks and proceeded to deposit them in

the wastebasket, making a remark or two as to the

William Allard is professor emeritus of mathe-

matics at Duke University. His email address is

wka@math.duke.edu.

low opinion he had of smokers, a group of people

which at the time included me.

Herb taught a splendid complex analysis course.

He used notes he had developed over the years.

Indeed, when Herb decided to learn a subject, he

started from the beginning and worked everything

out his own way, constantly and laboriously reor-

ganizing as he understood more. He did this, as far

as I know, with algebraic topology and algebraic

geometry as well as, needless to say, geometric

measure theory. It shortly became clear to me how

concisely and elegantly he presented the material.

More important than this perhaps was his superb

organization of the material.

In the class were some talented undergradu-

ates among whom were Blaine Lawson and Joel

Pasternack. Herb held office hours every Friday af-

ternoon, which Joel and I nearly always attended.

They were wonderful. In spite of the fact that Herb

was feared by many students, he was very wel-

coming to anyone who cared about mathematics

and who took the trouble to get to know him.

Among other things, I distinctly remember him

elaborating on the construction of the universal

covering space during one of these office hours;

this was something that was fantastic to me at the

time. Herb’s course lasted for one year. I still have

the notes and am contemplating writing them up;

I wouldn’t be surprised if some of the material,

particularly on Riemann surfaces, is not easily

accessible in the literature.

Now at this time Herb was fairly well along

in the writing of Geometric Measure Theory. It

turned out that he wanted someone to check it

very carefully. He asked me to do this during

my second year at Brown. What an opportunity!

Of course I agreed and proceeded to read his

beautifully handwritten notes for the next three

and a half years.

Over the years a number of people, many of

whom are excellent mathematicians, have com-

plained about the book being too difficult or not

having enough motivation or not being friendly to

the reader. This continues to puzzle me. I guess I

believe that anyone who wants to learn geometric

measure theory will have to suffer in doing so

because of the inherent technicality of the sub-

ject. But I believe Herb’s book affords the diligent

and patient reader a path to the goal of learning

large parts of the subject which minimizes the

pain. I must admit, however, that there were sev-

eral times when I would suggest that he ought

to say a bit more than he did in various proofs.

He never accepted my suggestions, saying words

like, “But don’t you see; I have said all that needs

to be said.” Oh, well. Then there is the famous

Theorem 4.5.9 which has thirty-one parts! I have

come to believe that there are many different ways
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to approach learning and inventing mathematics

and that, for some, Herb’s way won’t work. But I

remain convinced that his book is a remarkable

and extremely valuable part of the literature. It

represents the culmination of many years of work

by a talented craftsman absolutely dedicated to

his work.

It turns out that, during the last five years

or so, after having left the field around twenty

years ago to do other things, I have again been

working on geometric measure theory, so I have

had many occasions to revisit Geometric Measure

Theory and have been amazed by how clear and

efficient the presentation is.

I would now like to elaborate on some of the ma-

terial in Geometric Measure Theory. At this point

in time, the most important parts of the book are

Chapters Two, Three, and Four, entitled “General

measure theory”, “Rectifiability”, and “Homologi-

cal integration theory”, respectively. In Chapters

Two and Three we find a beautiful and efficient

development of, among other things, Hausdorff

measure and everything one might want to know

about the images and level sets of Lipschitz

functions on Euclidean space. Chapter Two ends

with the statement and proof of the famous

Besicovitch–Federer theorem on rectifiability and

nonrectifiability. One also finds a treatment of

Haar measure as well as the fine structure of

real analytic and semianalytic sets. I must also

mention the marvelous Morse–Sard–Federer theo-

rem on the regularity of the level sets of highly

differentiable functions.

In Chapter Four we find the theory of cur-

rents. (I must admit I have always found the

title “Homological integration theory” to be a bit

pretentious.) Of course currents were introduced

by de Rham many years earlier. But de Rham

did not treat the rectifiable currents; these form

natural spaces in which one finds the solution

of many variational problems like, most notably,

the Plateau problem of minimizing area with

a prescribed boundary. Rectifiable and integral

currents first appeared in the landmark 1960

paper “Normal and integral currents” by Federer

and Fleming. I have reread large parts of this

chapter recently and have been delighted by the

clarity and efficiency of the presentation. In my

opinion, this chapter remains the best reference

for this material today.

Chapter One is entitled “Grassmann algebra”.

Here we find a beautiful treatment of metric mul-

tilinear algebra including exterior algebra. Again,

I don’t believe there is a better treatment of this

subject.

Herbert Federer, 1979.

Finally, we come to

Chapter Five, “Applica-

tions to the calculus of

variations”. Here we find

a treatment of Almgren’s

regularity theory for ellip-

tic variational problems

which had been pub-

lished right before Federer

wrote this chapter. We

also find a treatment

of Simons’s work on

minimizing cones which

appeared in 1968 as well

as the De Giorgi–Federer

dimension reduction trick

for applying regularity

theory for the area inte-

grand in dimension n to

obtain regularity results in dimension n + 1. As

Federer himself predicted, the results and tech-

niques in this chapter have been superseded by

later work. Thus, perhaps a bit sadly, I have to say

that Chapter Five is not where one goes to study

regularity theory. This is not the place to give the

many relevant references for the state of the art

in this area.

The aforementioned Besicovitch–Federer recti-

fiability theory was used in “Normal and integral

currents” as well as in Chapter Four to obtain

the fundamental compactness results for integral

currents which in turn give existence results in the

calculus of variations. Owing to the work of many

people, most notably Almgren, this rectifiability

theory is no longer necessary to obtain compact-

ness theorems. Indeed, I find this later work more

appealing geometrically.

In closing, let me point out that in the last

twenty years or so there has been a flowering of

work in geometric measure theory not just in the

United States but also in Europe. Herb Federer,

perhaps as much as anyone, laid the foundations.

Robert Hardt

Since 1967 Herbert Federer was an inspiring

scholar and excellent mentor to me. His outstand-

ing works have had a crucial influence on the

development of geometric calculus of variations

and the study of rectifiable sets and geometric

measures. It was my great fortune to have had

him as a teacher and Ph.D. advisor at Brown Univer-

sity from 1967 to 1971. These were turbulent years

globally and locally with the Cold War, the Vietnam

War, the student protests, and the reforms at the

universities. Nevertheless, it was also a period of

Robert Hardt is professor of mathematics at Rice Univer-

sity. His email address is hardt@math.rice.edu.
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Herbert Federer,

mid-1970s.

great mathematics, and I

felt the excitement of the

coming-of-age of geometric

calculus of variations in

the beautiful works of En-

nio De Giorgi, E. R. “Peter"

Reifenberg, Herbert Federer,

and Wendell Fleming. Their

papers introduced various

natural higher-dimensional

generalizations of the classi-

cal two-dimensional Plateau

problem of finding a sur-

face (e.g., soap film) of

least area spanning a given

boundary curve. The objects

discovered in these papers

include various geometric

weak limits of manifolds and

polyhedra and have proven

to have wide applications. The work by Federer

and Fleming on normal and integral currents is

still wonderful reading, whether in the Steele Prize-

winning paper [FF60] or embedded in Federer’s

fundamental book [Fed69].

As another sample of Federer’s insights, I

want to call attention to the delightful 1965

paper [Fed65] which I believe has created link-

ages between Riemannian, complex, and algebraic

geometry. His proof of the mass minimality of ar-

bitrary complex subvarieties of Kähler manifolds

greatly facilitated the birth of the now widely stud-

ied subject of calibration theory, in which many

different special closed, possibly singular, forms

provide variational information on associated geo-

metric objects. In [Fed59], Federer introduced the

important co-area formula, which involves fiber

integration for changing variables with a Lips-

chitz map from one manifold to another one of

a smaller dimension. In [Fed65], Federer general-

ized this to rectifiable and normal currents, where

densities and orientations are involved. He recog-

nized that the consequent theory of slicing could

describe and be useful for numerous intersection

theory phenomena in algebraic topology and in

differential and algebraic geometry.

As is indicated in the paper [Fed65] and was a

part of the spirit of all of his publications, one of

the characteristics of Federer’s work was his love

of and his dedication to many kinds of mathemat-

ics. Certainly he was expert in all types of analysis,

old and new, but few analysts know about his 1946

and 1956 papers that treat free groups and spec-

tral sequences or about his string of outstanding

papers that solved numerous open problems in

the then-popular theory of Lebesgue area. When-

ever Federer became interested in a new subject

(e.g., algebraic topology or algebraic geometry),

he would go to the library and load up on large

stacks of classic and modern books and journals.

He’d then spend many weeks reading them, teach

a graduate course, and ultimately produce a large

collection of (unfortunately unpublished) notes.

The various lecture notes that I have seen were ex-

tensive, likely to the chagrin of some students. Yet

to most students he was an inspiration through his

hard work and the reach of his research. He had

one principle point of advice for students, and this

he indicated by the only sign on his door—a long,

vertically stacked series of small stickers that said

“Read, Read, Read, . . . .” In contrast to the narrow

reading habits of most mathematicians, Federer

once said, “I never read any mathematics that I

didn’t eventually use.” I believe that Federer was

well influenced by Hassler Whitney in having this

breadth of mathematical interests as well as in the

direction of his research. See Federer’s enthusias-

tic review [Fed58] of Whitney’s book and Federer’s

later paper [Fed75].

Herbert Federer had a strong sense of scholar-

ship, as is evident in all of his writings. He was

extremely careful and not too quick to publish. He

once advised that after completing a paper, one

should put it in the desk drawer for one month

and then bring it out and reread it to find mistakes

“as if you were the author’s worst enemy.” I re-

member when he pulled the paper [Fed70] out of

the drawer. This now well-known paper involved

estimating the dimension of the singular set of

solutions of the codimension-one oriented Plateau

problem. He had written it some time earlier but

waited to submit it until he was sure that the

singular set could in fact be nonempty. This was

established by Bombieri, De Giorgi, and Giusti. In

retrospect, this delay in publication was probably

not a good idea because the important technique

of this paper, now referred to as Federer induc-

tion, has proven to have wide applicability, not

only to other area-minimizing problems but also

to energy-minimizing harmonic maps and other

systems of elliptic PDE’s.

Federer was a real stickler for precision, or-

ganization, and referencing. His notation was

logical, even if it wasn’t always common. All

these characteristics are evident in his seminal

book Geometric Measure Theory. Its appearance

in 1969 was timely, as it brought together earlier

studies of geometric Hausdorff-type measures,

work on rectifiability of sets and measures of

general dimension, and the fast developing theory

of geometric higher-dimensional calculus of vari-

ations. All of the arguments in his text exhibited

exceptional completeness. That said, this book

is not for the casual reader because his writing

tends to be particularly concise. Forty years after

the book’s publication, the richness of its ideas
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continue to make it both a profound and indis-

pensable work. Federer once told me that, despite

more than a decade of his work, the book was

destined to become obsolete in the next twenty

years. He was wrong. This book was just like his

car, a Plymouth Fury wagon, purchased in the

early 1970s that he somehow managed to keep

going for almost the rest of his life. Today, the

book Geometric Measure Theory is still running

fine and continues to provide thrilling rides for

the youngest generation of geometric measure

theorists.

William P. Ziemer

I was both shocked and deeply saddened to learn

of the death of Herbert Federer. I was shocked

because to me Federer was a giant and giants are

supposed to go on forever. I was deeply saddened

because one of my primary sources of inspiration

was to be no more.

In fact, Federer was considered a giant by many

mathematicians because of his profound influence

in geometric analysis. Federer, one of the creators

of geometric measure theory (GMT), is perhaps

best known for his fundamental development of

the subject, which culminated in his publication

of a treatise in 1969, with the same name, [Fed69].

The book, nearly 700 pages, is written in a manner

which commands both admiration and respect

because of its virtually flawless presentation of

a wide range of mathematical subjects and is

written in a style that is unique to Federer. The

book, as well as all of his work, was carefully

prepared in handwritten notes and includes an ex-

tensive bibliography of approximately 230 items.

The manuscript is about ten inches thick and is

characterized by the degree to which it attains

perfection. This is an attribute that is shared with

all of his writings. I know of only one small errata

sheet.

I first met Federer in 1958 when I entered Brown

University as a graduate student. (Coincidentally,

this was the same time that Wendell Fleming, my

Ph.D. mentor, joined the faculty at Brown.) I was

impressed by how friendly and warm he was to my

wife, Suzanne, and me. In fact, shortly after our

first meeting, he insisted that I call him “Herb”,

something that I had difficulty in doing for a long

time.

Despite the fact that Herb is best known for

his work in geometric measure theory, this occu-

pied only the second half of his career. The first

half, from 1943–1960, was also a highly produc-

tive period with several of his papers laying the

William P. Ziemer is emeritus professor of mathe-

matics at Indiana University. His email address is

ziemer@indiana.edu.

groundwork for his subsequent work in GMT. In

fact, most of his papers in this period were de-

voted to area theory, a subject which has been lost

to most researchers today. Because of its intrinsic

beauty and because several of the fundamental

advances in GMT can be traced to his ideas in

area theory, I will focus on his achievements in

this field. His first published paper, in this period
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Herbert Federer,

circa 1948–1949.

and in his career, was the re-

sult of his asking A. P. Morse,

who later turned out to be his

Ph.D. mentor, for a problem to

test whether he was capable

of being a research mathe-

matician. The answer became

abundantly clear in the joint

paper with Morse that Federer

had the right stuff [FM43].

The problem of what should

constitute the area of a sur-

face confounded researchers

for many years. In 1914

Carathéodory defined a k-

dimensional measure in R
n

in which he proved that the

length of a rectifiable curve

coincides with its one-dimen-

sional measure. In 1919 Hausdorff, developing

Carathéodory’s ideas, constructed a continuous

scale of measures. After this, it became obvious

that area should be regarded as a two-dimension-

al measure and should establish the well-known

integral formulas associated with area. Later

Lebesgue’s definition, somewhat modified by

Frechet, of the area as being the lower limit

of areas of approximating polyhedra became the

dominant one. It became dominant partly because

of its successful application in the solution of

the classical Plateau problem. It had the notable

feature of lower semicontinuity, which is crucial

in the calculus of variations.

Federer’s next two papers, [Fed44a], [Fed44b],

mark the beginning of his research on Lebesgue

area, a field that was dominated by two influential

mathematicians, Lamberto Cesari and Tibor Radó.

In [Fed44b], Federer considers the problem that

is perhaps the central question in area theory,

the answer to which had been sought by many

researchers.

(1) It asks for the type of multiplicity function

that, when integrated over the range of

f with respect to Hausdorff measure, will

yield the Lebesgue area of f .

In this paper his results imply that if all the partial

derivatives of f exist everywhere in a region T ,

then the Lebesgue area can be represented as

the integral of the crude multiplicity function

May 2012 Notices of the AMS 627



N(f , T , y), which denotes the number of times in

T that f takes the value y .

The paper [Fed47] really lays the foundation for

the development of GMT. Up to the time of this

paper, A. S. Besicovitch had studied the geometric

properties of plane sets of finite Carathéodory

linear measure and these studies were extended

by A. P. Morse and J. F. Randolph. The corre-

sponding problems for two-dimensional measures

over three-dimensional space are connected with

the theory of surface area. This paper contains a

discussion of these properties for a large class of k-

dimensional (outer) measures over n-dimensional

space and also develops some of the fundamental

tools of GMT. For example, he shows that any

set E ⊂ Rn with finite k-dimensional Hausdorff

measure can be decomposed into rectifiable and

nonrectifiable parts. Then Federer applies the pre-

ceding theory to show that the Hausdorff measure

of a two-dimensional nonparametric surface in R3

equals the Lebesgue area of the map defining the

surface.

The problem of finding a suitable multiplicity

function such that its integral over the range of

f will yield the Lebesgue area of f remained in-

tractable until Federer brought some notions of

algebraic topology to bear. In [Fed46], an area is de-

fined for all continuous k-dimensional surfaces in

terms of the stable values of their projections into

k-dimensional subspaces; the area thus defined

is lower semicontinuous. Its relation to Lebesgue

area is only partially settled in this paper.

Then, in [Fed48], results were announced which

represent generalizations to n dimensions of pre-

vious material known only in the two-dimensional

case. The topological index, which had been used

as a principal tool in the two-dimensional case,

is replaced by the topological degree, expressed

in terms of Čech cohomology groups, and the

use of the Hopf Extension Theorem, which allows

the stable multiplicity function to be determined

by merely counting the number of essential do-

mains of f−1(U), where U is a domain in Rn. The

techniques of algebraic topology are fully applied.

The key to extending the theory of Lebesgue

area from two-dimensional surfaces in R3 to sur-

faces in Rn was the generalization of Cesari’s

inequality from R
3 to Rn [Ces42]. That inequal-

ity states that the Lebesgue area of a mapping

f : X → R
3 is dominated by the sum of the areas

of its projection onto the three coordinate planes.

Here X denotes a finitely triangulable subset of

the plane. In [Fed55], Federer proved the extension

of this inequality to Rn, which was a monumental

achievement as it necessitated the complete de-

velopment of the length of light mappings defined

on an arbitrary metric space, thus foretelling the

directions of modern day GMT. Here, the length

of a light mapping f : X → Y , where X is assumed

to be a locally compact, separable metric space

and Y an arbitrary metric space, is defined as the

supremum of
∑

diam[f (C)] where the supremum

is taken over all countable disjoint families of

nondegenerate continua in X. So, with this result,

the theory of Lebesgue area for surfaces in R3 can

be essentially generalized to surfaces in Rn.

The paper [Fed55] is one of Federer’s best

efforts in area theory. In particular, it contains

the basic idea that led to the fundamental result,

the Deformation Theorem of GMT [FF60, §5]. It

appears in the Annals of Mathematics because it

was rejected for publication by the Transactions

despite the fact that it was of the highest quality.

This bothered Federer considerably and he con-

templated leaving the field. Fortunately, he did

not, and thus his best work was yet to come. For

example, he and Demers went on to improve the

results in [Fed55] by showing that in the case of a

flat mapping, a mapping in which both the domain

space and range space are of the same dimension,

the k-dimensional Lebesgue measure equals the

integral of a new multiplicity function which is

defined in terms of norms of cohomology classes

[DF59].

The paper [Fed59] establishes a very useful

result in GMT, known as the co-area formula. In

its most elementary form, it states that if f is

real-valued, then the total variation of f can be

expressed in terms of integration of f over the

fibers of f with respect to (n − 1)-dimensional

Hausdorff measure. In its more general form, the

formula is valid for any Lipschitz mapping from

X to Y where X and Y are separable Riemannian

manifolds of class 1 with respective dimensions n

and k, n ≥ k.

This result has generated great interest and has

led to many applications and generalizations. For

example, [FR60] established a co-area formula for

f ∈ BV(Rn), while [MSZ03] proved it for a suitable

class of Sobolev mappings.

The paper [Fed60] establishes that the Lebesgue

area of a nonparametric surface in Rn is equal

to the (n − 1)-dimensional Hausdorff measure of

its graph. This was proved previously in [Fed47]

when n = 3, and thus this answers the question

that Federer pursued in his first publication in

area theory [Fed44a].

As for the question that was posed in (1), the

answer was provided in his last publication on the

subject [Fed61]. Let f : X → R
n be a continuous

mapping whereX is a compact manifold of dimen-

sion k ≤ n. Assuming that f has finite Lebesgue

area and that either k = 2 or that the range of f has

(k+1)-dimensional Hausdorff measure 0, Federer

proves that there exists a unique current-valued

measure µ defined over Mf , the middle space
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associated with f , such that the total variation of

µ is equal to the Lebesgue area of f . Moreover,

the density of µ, with respect to k-dimensional

Hausdorff measure, yields a multiplicity function

that provides the answer to the question posed

in (1). While Herb was writing this paper, he said

that he intended to write it very concisely because

he knew that area theory was a dying field and

that the paper would not generate much interest.

By that time, he was already consumed with the

development of GMT.

Even for the casual reader of Herbert Federer’s

work, it becomes clear that he brings an incredible

arsenal of tools to bear on the problem at hand.

It is also clear that his determination to learn

essentially everything about a problem is highly

unusual, for example, taking a period of seventeen

years to answer the question raised in (1). He once

told me that he uses everything he has learned

in his work. This becomes apparent to virtually

anyone who has studied his papers. Consider the

following quote from G. Bailey Price in his review

of Federer’s paper [Fed46]: “The paper as a whole

is characterized by the treatment of problems and

the employment of methods of great generality.

The author uses many results from two of his

previous papers [Fed44a], [Fed44b]. In addition,

he employs a wide variety of powerful tools

selected freely from the theory of topological

groups, measure theory, integration theory, the

theory of functions of real variables, topology

and other fields of modern mathematics.” As an

indication of how he has inspired others to carry

on his work, one may note that the number of

citations to his book in Mathematical Reviews is

nearly 1,500, and one should look at the recent

work of those who have extended Federer’s work

to metric spaces; cf. [AK00a], [AK00b], [Mal03],

and the references therein.

Herb told me that while he was writing his book,

he “was inscribing his epitaph on his tombstone.”

Indeed, he has and it is our good fortune that he

has done it so indelibly because his legacy will

be the source of inspiration into the far distant

future.

Wendell Fleming

Herbert Federer is remembered for his many deep

and original contributions to geometric measure

theory (GMT) beginning with his 1945 paper on the

Gauss–Green theorem [Fed45]. His work has had

Wendell Fleming is professor emeritus of mathematics at

Brown University. His email address is whf@dam.brown.

edu.

Herbert Federer, 1990.

a profound influ-

ence. It is difficult

to imagine that the

rapid growth of

GMT beginning in

the 1960s, as well

as its subsequent

influence on other

areas of mathe-

matics and appli-

cations, could have

happened without

Federer’s ground-

breaking efforts.

His book [Fed69]

is a classic refer-

ence. He gave the

Colloquium Lectures at the 1977 Summer AMS

Meeting in Seattle. The manuscript for those lec-

tures appears as [Fed78] and provides a summary

of results in GMT through the late 1970s, includ-

ing historical background. Nonspecialists may find

[Fed78] a useful complement to the more detailed

development in [Fed69].

I first met Herb Federer at the 1957 Summer AMS

Meeting at Penn State. Afterwards, he suggested

to the mathematics department at Brown that I

might be offered an assistant professorship. An

offer was made, which I accepted. Upon our arrival

in Providence in the fall of 1958, my wife and I were

warmly welcomed by Herb and Leila Federer. The

academic year 1958–1959 was the most satisfying

time of my mathematical life. Our joint work on

normal and integral currents was done then. This

involved many blackboard sessions at Brown, as

well as evening phone calls at home. Both Herb

and I had heavy teaching loads (by present day

standards) and families with young children. Herb

undertook the task of organizing our results into

a systematic, coherent form, which appeared as

[FF60].

During the 1960s there was a lot of activity

in GMT at Brown. We had strong Ph.D. students

and several visitors. Among the visitors were Pe-

ter Reifenberg, who was at Brown in the summer

of 1963, and Ennio De Giorgi who visited dur-

ing the spring semester of 1964. Reifenberg had

found another highly original approach to the

higher-dimensional Plateau problem [Rei60]. Un-

fortunately, his promising career ended when he

died in a mountaineering accident in 1964.

Herbert Federer set very high standards for

his mathematical work and expected high quality

work from his students. He was fair-minded and

very careful to give proper credit to the work of

other people. He was generous with his time when

serious mathematical issues were at stake. Federer

was the referee for John Nash’s 1956 Annals of
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Herb and his wife, Leila, in

1979.

Mathematics paper “The

imbedding problem for

Riemannian manifolds”.

This involved a collabo-

rative effort between the

author and referee over a

period of several months.

In the final accepted ver-

sion, Nash stated, “I am

profoundly indebted to H.

Federer, to whom may be

traced most of the im-

provements over the first

chaotic formulation of this

work.”

By the 1970s I had left

GMT to work on stochastic

control. When Herb and I met in later years, we

didn’t discuss mathematics very much, but we

always exchanged updates about our children.

In the 1950s Lebesgue area theory had reached

a mature state. It had succeeded in providing ex-

istence theorems for two-dimensional geometric

problems of the calculus of variations, including

the Plateau problem. In the area theory formu-

lation, the minimum is achieved among surfaces

of a prescribed topological type which have as

boundary a given curve. A very different for-

mulation would be needed to study calculus of

variations problems with k ≥ 2, in which only the

(k − 1)-boundary but not the topological type of

the k-dimensional comparison surfaces is given.

One such formulation is in terms of L. C. Young’s

generalized surfaces [You51]. Young was my Ph.D.

advisor. I came to Brown expecting to continue

working in a generalized surface setting. However,

Federer soon convinced me of the advantages of

developing instead a theory expressed in terms

of de Rham’s theory of currents. His wisdom and

foresight in this regard have been amply justified

by developments in GMT which followed our joint

paper [FF60].

The k-dimensional Plateau problem in n-dimen-

sional Euclidean Rn is to minimize k-dimensional

area in a suitably defined class of objects with

given (k − 1)-dimensional boundary. The objects

which Federer and I considered are called integral

currents. Our paper provided a theorem about the

existence of k-area minimizing integral currents.

There remained the notoriously difficult “regular-

ity question”, which is to prove smoothness of the

support of an integral current which minimizes

k-area, except at points of a singular set of lower

Hausdorff dimension. Examples show that in di-

mensions 1 < k < n− 1, the singular set can have

Hausdorff dimension k − 2. The earliest partial

regularity results were due to De Giorgi [DG61]

and Reifenberg [Rei64]. Federer’s Ph.D. student

Fred Almgren and coauthors later made remark-

able further progress on the regularity problem

for a larger class of elliptic variational integrands

[Whi98], [Tay99]. This required persistent, coura-

geous efforts. References [Fed69, Chapter 5] and

[Fed78, Section 10] also give systematic accounts

of results for the regularity problem up to 1977.

In codimension one (k = n − 1) it seemed at

first that area minimizing currents might have

no singular points. This turned out to be correct

for n ≤ 7 by results of De Giorgi, Almgren, and

Simons. However, Bombieri, De Giorgi, and Giusti

[BDGG69] gave an example of a cone in R8 which

provides a seven-dimensional area-minimizing in-

tegral current with a singularity at the vertex.

In [Fed70], Federer showed that, for codimension

one, this example is generic in the sense that

the singular set can have Hausdorff dimension at

most n− 8.

In the integral current formulation, orientations

are assigned to tangent k-spaces. These orienta-

tions vary continuously on the regular part of the

support of any k-area minimizing integral current.

Another formulation of the Plateau problem is in

terms of Whitney-type flat chains with coefficients

in the group Z2 of integers mod 2. This for-

mulation, in effect, ignores orientations. Federer

showed in [Fed70] that for this “nonoriented” ver-

sion of the Plateau problem, the singular set has

Hausdorff dimension at most k−2 for arbitrary k.

This is essentially the best possible result for the

nonoriented version.

Federer also made notable contributions to

the theory of weakly differentiable functions on

R
n with applications to Fourier analysis [Fed68],

[Fed69, Section 4.5], [Fed78, Section 5]. These in-

clude sharp results which extend to n > 1 the

fact that a function of one variable of bounded

variation has everywhere finite left and right limits

which differ only on a countable set. Federer’s re-

sults are included in the lengthy Theorem 4.5.9 in

[Fed69]. The statement of that theorem provides a

comprehensive list of properties of functions on

Rn with first-order partial derivatives which are

measures (in the Schwartz distribution sense). Any

such function with compact support corresponds

to a normal current of dimension k = n.
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