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Introduction

We begin this article, which deals largely with
Benoit B. Mandelbrot’s contributions to and influ-
ence upon mathematics, with a quotation from
the introduction to Fractals: Form, Chance, and
Dimension [16]. This essay, together with many
pictures and numerous lectures in the same vein,
changed the way science looks at nature and had
a significant impact on mathematics. It is easy for
us now to think that what he says is obvious; it
was not.

Many important spatial patterns of Nature
are either irregular or fragmented to such an
extreme degree that Euclid—a term used in
this essay to denote all classical geometry—
is hardly of any help in describing their form.
The coastline of a typical oceanic island, to
take an example, is neither straight, nor
circular, nor elliptic, and no other classical
curve can serve, without undue artificial-
ity in the presentation and organization of
empirical measurements and in the search
for explanations. Similarly, no surface in Eu-
clid represents adequately the boundaries of
clouds or rough turbulent wakes....
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In the present Essay I hope to show that
it is possible in many cases to remedy this
absence of geometric representation by us-
ing a family of shapes I propose to call
fractals—or fractal sets. The most useful
among them involve chance, and their irreg-
ularities are statistical in nature. A central
role is played in this study by the concept
of fractal (or Hausdorff-Besicovitch) dimen-
sion....Some fractal sets are curves, others
are surfaces, still others are clouds of discon-
nected points, and yet others are so oddly
shaped that there are no good terms for
them in either the sciences or the arts. The
variety of these forms should be sampled by
browsing through the illustrations....

—Benoit B. Mandelbrot [16, pp. 1-2]

As with the now familiar principle that grav-
itational force tethers the earth to the sun, it
has become hard to imagine what it was like
not to know that many physical phenomena
can be described using nondifferentiable, rough
mathematical objects.

Important fractals such as the Cantor set, the
Sierpinski triangle, and Julia sets were well known
to some mathematicians, but they were neither
visible nor promoted to any practical purpose. To
me, looking back, it seems that these beautiful
things were hidden behind veils of words and
symbols with few diagrams, certainly no detailed
pictures; for example, the long text (in French)
of Gaston Julia failed to reveal to most people,
including most mathematicians, the full wonder of
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the endless arabesques and intricate visual adven-
tures in the boundaries of Fatou domains. It was as
though such objects were guarded by the priests
of mathematics, occasionally to be displayed, like
the monstrance at Benediction, to the inner core of
true believers. I was ritually inducted to calculus
in my first year at Oxford by Hammersley, who
took us through a full proof of the existence of
a Weierstrass nowhere differentiable continuous
curve from first principles. Half an hour with pic-
tures would have saved a lot of time and would
not have tainted our logical skills.

Benoit not only wrested these abstract objects,
these contrary children of pure mathematics, out
from the texts where they lay hidden, but he
also named them and put them to work to help
to describe the physical observable world. He
saw a close kinship between the needs of pure
mathematics and the Greek mythological being
Antaeus. In an interview [6] Benoit said, “The
son of Earth, he had to touch the ground every
so often in order to reestablish contact with
his Mother, otherwise his strength waned. To
strangle him, Hercules simply held him off the
ground. Separation from any down-to-earth input
could safely be complete for long periods—but
not forever.” He also said, “My efforts over the
years had been successful to the extent, to take an
example, that fractals made many mathematicians
learn a lot about physics, biology, and economics.
Unfortunately, most were beginning to feel they
had learned enough to last for the rest of their
lives. They remained mathematicians, had been
changed by considering the new problems I raised,
but largely went their own way.”

John Hutchinson is an example of a pure math-
ematician who was strongly influenced by Benoit’s
work.

In 1979 T was on study leave from the
Australian National University, visiting Fred
Almgren at Princeton for 6 months, as a re-
sult of my then interest in geometric measure
theory. While there, Fred suggested I read
Mandelbrot’s book Fractals: Form, Chance
and Dimension and look at putting it, or some
of it, into a unified mathematical framework.
As aresult, we organised a seminar in which
I spoke about six times as my ideas de-
veloped. Participants included, besides Fred
and myself, Bob Kohn, Vladimir Schaeffer,
Bruce Solomon, Jean Taylor and Brian White.
Out of this came my 1981 article “Fractals
and self-similarity” [7] in the Indiana Uni-
versity Math. Journal, which introduced the
idea of an iterated function system (though
not with that name) for generating fractal
sets, similar ideas for fractal measures, and
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Figure 1. An outlier Mandelbrot set (M-set)
(surrounded by yellow, then red) connected via a
branch of a tree-like path to the whole M-set.
The connectivity of the M-set was conjectured by
Benoit in 1980 and established by Adrien
Douady and John Hubbard in 1982.
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Figure 2. Picture of F16(S) where S C R?,

F(S) =f1(S) Uf2(S), and fi,f> : R2 — R? are affine
contractions. The sequence (F"(S)) converges
in the Hausdorff metric to a self-similar set, a
fractal, with Hausdorff dimension less than two.
This article has been decorated with pictures, in
the spirit of Benoit.

various structure theorems for fractals. In-
terestingly, this paper had no citations for a
few years, but now it frequently gets in the
AMS annual top ten list.

Mandelbrot’s ideas were absolutely es-
sential and fundamental for my paper. I still
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have my original copy of his book, signed by
Benoit, on the one occasion at Princeton that
we met.

—John Hutchinson

Iterated function systems (IFSs) are now a
standard framework for handling deterministic
fractals, self-similar sets and measures. They were
named by this author and Stephen Demko [1],
though Benoit thought we should have called
them “map bags”. He was fascinated by models of
leaves with veinlike internal structures made by
invariant measures of IFSs.

Hutchinson’s paper and the work of many oth-
ers influenced by Mandelbrot ended a long period
where geometry and the use of pictures played
little role in mathematics. Mandelbrot believed
passionately in pictorial thinking to aid in the de-
velopment of conjectures and formal proofs. His
advocacy has enabled it to be okay once again for
mathematicians to do experimental mathematics
using pictures.

Mandelbrot’sideas have inspired a huge amount
of research, from pure mathematics to engineer-
ing, and have resulted in deep theorems; a new
acceptance of geometry and pictures as having a
role to play in experimental mathematics; and var-
ious applications, including image compression
and antenna design. The notion of a fractal now
forms part of good preuniversity mathematics ed-
ucation, while the mathematical study of fractals
has its own specialist areas, including, for exam-
ple, analysis on fractals [8] and noncommutative
fractal geometry [9].

One important idea of Mandelbrot was that
various random phenomena, such as stock market
prices, are governed by probability distributions
with “fat tails”. This led him to warn in 2004 that
“Financial risks are much underestimated. I think
we should take a strongly conservative attitude
towards evaluating risks.” The subsequent global
financial crisis underlined his point.

Prior to editing both this article and [3], we
emailed colleagues to ask for memories and com-
ments on Benoit’s contributions to mathematics,
influence, and personal recollections. We received
replies from many: not only mathematicians but
artists, physicists, biologists, engineers, and so on.
Using these replies we have produced two articles:
this one and [3], which is more focused on recol-
lections of the man himself. Our goal has been to
put together something special using the words
of everyone who wrote but, in general, editing and
shortening to avoid repetition of themes.

From early on, Mandelbrot was driven by a
desire to do something totally original, to look at
problems that others found too messy to consider,
and to find some deep unifying principles. As the
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Figure 3. Superposition of the attractors, colored
using fractal transformations (see [2]) of two
simple bi-affine iterated function systems.

words in the following contributions show, he
succeeded.

Roger Howe

Participating in a Conversation That Takes
Place over Long Spans of Time

One pleasure of doing mathematics is the sense
of participating in a conversation that takes place
over long spans of time with some of the smartest
people who ever lived. Benoit’s work on fractals
provides a good example of this kind of long-term
dialogue.

A significant factor in the invention of calculus
was the idea of representing a curve by the graph
of a function and, reciprocally, of representing the
time variation of a quantity by a curve. This back-
and-forth identification allowed one to connect
the drawing of tangent lines with finding the rate
of change of quantities that vary in time.

When calculus was invented in the seventeenth
century, the concept of function was not very
precise. Work during the eighteenth century on
solving the wave equation using sums of sine and
cosine functions led to a sharpening of under-
standing of the essential properties of functions
and of their behavior. This led in the first half of
the nineteenth century to the isolation by Cauchy
of the notion of continuity, which made clear
for the first time the distinction between con-
tinuity and differentiability. During the rest of
the nineteenth century, mathematicians explored
this difference, which contributed to the general
unease and insecurity about the foundations of
mathematics. Hermite is quoted as “recoiling in
horror from functions with no derivatives.” The
early twentieth century saw the production of
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Figure 4. Two illustrations of IFS semigroup tilings. The triangle on the left is tiled with the orbit of a
six-sided figure under a system of two affine transformations. The limit set of the set of triangular
tiles on the right is the attractor of a system of three affine transformations. A theme of Benoit’s work
was that the iteration of simple rules (e.g., elementary geometrical transformations) can produce

nondifferentiable (rough) objects. Figure from [2].

a menagerie of striking examples (the Cantor
set, the Koch snowflake, the Sierpinski carpet,
etc.) illustrating the difference between continuity
and differentiability. However, for several decades
these examples were regarded as exotica, mon-
sters with no relation to the physical world. They
were objects only a mathematician would inves-
tigate. They were liberated from this marginal
status by Mandelbrot, who said, “Wait a minute.
A lot of things in the world—clouds, river sys-
tems, coastlines, our lungs—are well described by
these monsters.” Thus started the use of these
mathematical objects to study complicated, messy
nature.

Ian Stewart

No Lily-White Hands

I first learned about fractals from Martin Gar-
dener’s Scientific American column. I promptly
bought a copy of Fractals: Form, Chance, and Di-
mension [16]. Despite, or possibly because of, its
unorthodoxy and scope, it seemed to me that
Benoit Mandelbrot had put his finger on a brilliant
idea.

I'm pleased that, towards the end of his life, he
received due recognition, because it took a long
time for the mathematical community to under-
stand something that must have been obvious to
him: fractals were important. They were a game
changer, opening up completely new ways to think
about many aspects of the natural world. But for
along time it was not difficult to find professional

Ian Stewart is emeritus professor of mathematics at the
University of Warwick, UK. His email address is I.N.
Stewart@warwick.ac.uk.
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research mathematicians who stoutly maintained
that fractals and chaos were completely useless
and that all of the interest in them was pure hype.
This attitude persisted into the current century,
when fractals had been around for at least twenty-
five years and chaos for forty. That this attitude
was narrow-minded and unimaginative is easy to
establish, because by that time both areas were
being routinely used in branches of science rang-
ing from astrophysics to zoology. It was clear that
the critics hadn’t deigned to sully their lily-white
hands by picking up a random copy of Nature or
Science and finding out what was in it.

To be sure, Mandelbrot was not a conventional
academic mathematician, and his vision often
carried him into realms of speculation. And it was
easy to maintain that he didn’t really do much
that was truly novel—fractal dimension had been
invented by Hausdorff, the snowflake curve was
a century old, and so on. Mathematicians would
have cheerfully gone on employing Hausdorff-
Besicovitch dimension to consider such questions
as finding a set of zero dimension that covers
every polygon, but they would not have figured
out that quantifying roughness would make it
possible to apply that kind of geometry to clouds,
river basins, or how trees damp down the energy
of a hurricane.

Mandelbrot’s greatest strength was his instinct
for unification. He was the first person to real-
ize that, scattered around the research literature,
often in obscure sources, were the germs of a
coherent framework that would allow mathemat-
ical models to go beyond the smooth geometry
of manifolds, a reflex assumption in most areas,
and tackle the irregularities of the natural world
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Figure 5. A Julia set associated with the first
cascade of period doubling bifurcations of the
logistic equation. Julia sets for quadratic maps

are intimately related to the Mandelbrot set.
Benoit was one of the first to use computers to

make pictures of mathematical objects:
computations which took hours to run on
expensive mainframes can now be performed in
seconds on handheld devices. This image and
Figures 1 and 13 were computed using free
software (Fractile Plus) on an iPad.

in a systematic fashion. It took many years be-
fore these ideas began to pay off, but that’s how
pioneering mathematics often goes.

The conjecture whose proof so pleased him
(see [3, contribution by Ian Stewart]) was the work
of Gregory Lawler, Oded Schramm, and Wendelin
Werner in their paper “The dimension of the
planar Brownian Frontier is 4/3” [10]. It is part
of the work for which Werner received a Fields
Medal, and it shows that fractals have given rise
to some very deep mathematics. I suspect that
only now are we beginning to see the true legacy
of Mandelbrot’s ideas, with a new generation of
researchers that has grown up to consider chaos
and fractals to be as reasonable and natural as
periodic motion and manifolds. Mandelbrot was
a true pioneer, one of the greatest mathematical
visionaries of the twentieth and early twenty-first
centuries.

David Mumford

Benoit Told Me: “Now You Can See These
Groups and See Teichmiiller Space!”

Benoit Mandelbrot had two major iconoclastic
themes. First, that most of the naturally occurring
measurements of the world were best modeled
by nondifferentiable functions, and second, the
histograms of these measurements were best
modeled by heavy-tailed distributions. Even if
he did not bring a new unifying law like Newton’s

David Mumford is emeritus professor of mathematics at
Brown University. His email address is DavidMumford@
brown.edu.
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F = ma and even if he did not have the deep and
subtle theorems that make waves in the pure math
community, this vision was revolutionary. What
his lectures made clear was that fractal behavior
and outlier events were everywhere around us,
that we needed to take these not as exceptions but
as the norm. For example, my own work in vision
led me later on to express his ideas about out-
liers in this way: that the converse of the central
limit theorem is true, namely, the only naturally
occurring normal distributions are ones which are
averages of many independent effects.

Benoit’s immediate effect on my work was to
reopen my eyes to the pleasure and mathematical
insights derived from computation. I had played
with relay-based computers in high school and
with analog computer simulations of nuclear reac-
tors in two summer jobs. But at the time I thought
that only white-coated professionals could han-
dle the IBM mainframes and puzzled over what
in heaven’s name my colleague Garrett Birkhoff
meant when I read “x = x + 1” in some of his
discarded code. But Benoit told us that complex
iterations did amazing things that had to be seen
to be believed. These came in two types: the lim-
iting behavior of iterations of a single analytic
function and the limiting behavior of discrete
groups of Mobius transformations. The second of
these connected immediately to my interests. I
was always alert to whatever new tool might be
available for shedding any sort of light on moduli
spaces, whether it was algebro-geometric, topolog-
ical, characteristic p point counting, or complex
analytic. I had sat at the feet of Ahlfors and Bers
and learned about Kleinian groups and how they
led to Teichmiiller spaces and hence to moduli
spaces. Benoit told me, “Now you can see these
groups and see Teichmiiller space!”

I found an ally in Dave Wright, learned C, and
with Benoit’s encouragement, we were off and
running. When he returned to his position at the
IBM Watson Lab, he set up a joint project with us,
and we visited him and his team there. Later, Curt
McMullen, who also appreciated the power and
insight derived from these experiments, joined
us. It turned out that, in the early hours of the
morning, their mainframes had cycles to spare,
and we would stagger in each morning to see what
these behemoths had churned out. There was no
way to publish such experiments then, but Dave
and I astonished the summer school at Bowdoin
with a live demo on a very primitive machine of
a curvy twisting green line as it traced the limit
point set of a quasi-Fuchsian group. Ultimately,
we followed Benoit’s lead in his Fractal Geometry
of Nature [18] and, with Caroline Series, published
our images in a semipopular book, Indra’s Pearls
[27]. One anecdote: We liked to analyze our figures,
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estimating, for example, their Hausdorff dimen-
sion. We brought one figure we especially liked to
Watson Labs and, thinking to test Benoit, asked
him what he thought its Hausdorff dimension was.
If memory serves, he said, “About 1.8”, and indeed
we had found something like 1.82. He was indeed
an expert!

Hillel Furstenberg

He Changed Fundamentally the Paradigm
with Which Geometers Looked at Space

Let me begin with some words of encouragement
to you on this project, dedicated to memorializing
an outstanding scientist of our times and one we
can be proud of having known personally.

What do you see as Benoit’s most important con-
tributions to mathematics, mathematical sciences,
education, and mathematical culture?

Benoit Mandelbrot sold fractals to mathemati-
cians, changing fundamentally the paradigm with
which geometers looked at space. Incorporating
fractals into mainstream mathematics rather than
regarding them as freakish objects will certainly
continue to inspire the many-sided research that
has already come into being.

Kenneth Falconer

It Was Only on the Fourth or Fifth Occasion
That | Really Started to Appreciate What He
Was Saying

Benoit’s greatest achievement was that he changed
the way that scientists view objects and phenom-
ena, both in mathematics and in nature. His
extraordinary insight was fundamental to this,
but a large part of the battle was getting his ideas
accepted by the community. Once this barrier was
broken down, there was an explosion of activity,
with fractals identified and analyzed everywhere
across mathematics, the sciences (physical and
biological), and the social sciences.

Benoit realized that the conventional scien-
tific and mathematical approach was not fitted
to working with highly irregular phenomena. He
appreciated that some of the mathematics needed
was there—such as the tools introduced by Haus-
dorff, Minkowski, and Besicovitch—but was only
being used in an esoteric way to analyze spe-
cific pathological sets and functions, mainly as

Hillel Furstenberg is professor of mathematics at Bar-
Ilan University, Israel. His email address is harry@math.
huji.ac.il.
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Figure 6. A self-similar fractal of Hausdorff
dimension (4In2)/In5 = 1.72 associated with the
pinwheel tiling.

counterexamples that illustrated the importance
of smoothness in classical mathematics.

Benoit’s philosophy that such “fractal” objects
are typical rather than exceptional was revolu-
tionary when proposed. Moreover, he argued that
the mathematical and scientific method could
and should be adapted to study vast classes
of fractals in a unified manner. This was no
longer mathematics for its own sake, but math-
ematics appropriate for studying all kinds of
irregular phenomena—clouds, forests, surfaces,
share prices, etc.—that had been ignored to a
large extent because the tools of classical smooth
mathematics were inapplicable.

Benoit also realized that self-similarity, broadly
interpreted, was fundamental in the genesis, de-
scription, and analysis of fractals and fractal
phenomena. Given self-similarity, the notion of di-
mension is unavoidable, and “fractal dimension”
in various guises rapidly became the basic mea-
sure of fractality, fuelling a new interest in the
early mathematics of Hausdorff, Minkowski, and
others.

Benoit had many original ideas, but his presen-
tation of them did not always follow conventional
mathematical or scientific styles, and as a result it
often took time for his ideas to be understood and
sometimes even longer for them to be accepted.
A case in point is that of multifractal measures.
Multifractals are, in many ways, more fundamen-
tal than fractal sets. Many of the now standard
notions of multifractals may be found in his 1974
paper in the Journal of Fluid Dynamics [14], but
this is not an easy paper to fathom, and it was not
until the 1980s that the theory started to be ap-
preciated. Benoit suggested that “the community
was not yet ready for the concept,” but I think the
delay was partly because of the way the ideas were
presented. I heard Benoit’s talk on multifractals
many times in the 1980s; he was charismatic, but
his explanations were such that it was only on
the fourth or fifth occasion that I really started to
appreciate what he was saying.

NOTICES OF THE AMS



Figure 7. The left-hand picture illustrates the
points in the orbit of a set; the flower picture at
center left, under a Mobius transformation. The

picture at center right reveals that it is a “tiling”,
where the initial tile is shown on the right.
Mandelbrot caused many to look anew at natural
objects in geometrical terms. Figure from [2].

I am one of many whose life and career have
been influenced enormously by Benoit and his
work, both directly and indirectly. We miss him,
but the legacy of his ideas and work will remain
with us all and with those who follow.

Bruce J. West

The Intermittent Distribution of the Stars in
the Heavens

Benoit’s idiosyncratic method of communicat-
ing mathematical ideas was both challenging
and refreshing. The introduction of geometri-
cal and statistical fractals into the scientific
lexicon opened up a new way of viewing na-
ture for a generation of scientists and allowed
them to understand complexity and scaling in
everything from surface waves on the ocean to the
irregular beating of the heart to the sequencing
of DNA. This accelerated the early research done
by biologists, physicians, and physicists on the
understanding of complex phenomena.

The line between what was proven and what
was conjecture in Benoit’s work was often ob-
scure to me, but in spite of that, or maybe even
because of that lack of clarity, I was drawn into
discussions on how to apply the mathematics
of fractals to complex phenomena. Fractals be-
gan as descriptive measures of static objects,
but dynamic fractals were eventually used to de-
scribe complex dynamic phenomena that eluded
description by traditional differential equations.
Culturally, fractals formed the bridge between
the analytic functions of the nineteenth- and
twentieth-century physics of acoustics, diffusion,
wave propagation, and quantum mechanics to the

Bruce J. West is adjunct professor of physics at Duke Uni-
versity. His email address isbruce.j.west@us.army.mil.
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twenty-first-century physics of anomalous diffu-
sion, fractional differential equations, fractional
stochastic equations, and complex networks.

Benoit identified some common features of
complex phenomena and gave them mathemati-
cal expression without relying on the underlying
mechanisms. I used this approach to extract the
general properties of physiological time series,
which eventually led to the formation of a new
field of medical investigation called Fractal Phys-
iology, the title of a book [28] I coauthored in
1995 and the subject of an award-winning book
[29] on the fractional calculus. Later, in 2010, I be-
came founding editor-in-chief of the new journal
Frontiers in Fractal Physiology, which recognizes
the importance of fractal concepts in human
physiology and medicine.

I first met Benoit when I was a graduate student
in physics at the University of Rochester. Elliott
Montroll, who had the Einstein Chair in Physics
and who had been a vice president for research
at IBM, was friends with Benoit and would invite
him to come and give physics colloquia. In the
late 1960s, before the birth of fractals, I heard
Benoit conjecture as to why the night sky was
not uniformly illuminated because of the inter-
mittent distribution of stars in the heavens, why
the price of corn did not move smoothly in the
market but changed erratically, and why the time
between messages on a telephone trunkline were
not Poisson distributed as everyone had assumed.
These problems and others like them struck me
as much more interesting than calculating per-
turbation expansions of a nuclear potential. So
I switched fields and became a postdoctoral re-
searcher in statistical physics with Elliott. I have
interacted with many remarkable scientists, and
Benoit is at the top of that list. I am quite sure
that my decision to change fields was based in
large part on Mandelbrot’s presentations and the
subsequent discussion with him and Montroll.

Marc-Olivier Coppens

Engineering Complexity By Applying
Recursive Rules

As a chemical engineering researcher who worked
with Benoit since the middle of the 1990s, I
benefited a lot from his mentorship. I also miss
him alot as a friend. In 1996, while completing my
Ph.D. thesis, I worked closely with him for several
months at Yale, sharing an office with Michael
Frame. I developed, with Benoit, a new way to

Marc-Olivier Coppens is professor and associate direc-
tor of the Multiscale Science and Engineering Center,
Rensselaer Polytechnic Institute. His email address is
coppens@rpi . edu.
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Figure 8. A right-angle Sierpinski triangle. Benoit
realized that such objects were not freaks and
belonged in mainstream mathematics. Analysis
on fractals is now a fascinating area of
mathematics.

-

generate multifractals by taking the product of
harmonics of periodically extended functions.

Fractals in chemical engineering have affected
the modeling and characterization of various
porous materials. As Mandelbrot liked to say
in later years, fractals are an ideal way to mea-
sure “roughness”, and roughness is prevalent in
chemical engineering and materials science. The
roughness of porous media affects transport and
reactions in them and hence has a significant im-
pact on chemical engineering. For example, in my
thesis I showed how molecular-scale roughness
of porous catalysts influences chemical product
distributions up to industrial scales.

In my research I have used fractal trees to
interpolate efficiently between the micro- and
the macroscale, as in nature. Scaling up from
the laboratory to the production scale requires
preservation of small-scale, controlled features
up to larger scales. This challenge is met by
distributing or collecting fluid in a uniform way,
as is realized by scaling fractal architectures in
nature, such as trees, lungs, kidneys, and the
vascular network. Specifically, I proposed a fractal,
treelike injector to uniformly distribute fluids over
a reactor volume, so that the fluids can mix and
interact with the reactor contents. This patented
fractal injector has proven very efficient for gas-
solid fluidized beds. My laboratory is currently
developing a fractal fuel cell design, inspired by
the structure of the lung.

Benoit has had a major influence on my think-
ing. To a large extent, thanks or due to the advance
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Figure 9. An invariant measure on a fractal
attractor of a system of three similitudes has
here been rendered in shades of green. (Bright
green = greater “density”, black=least “density”.)

of massively parallel, high-performance comput-
ers, chemical, biological, and materials sciences
are increasingly atomistic, deconstructing and
constructing matter out of individual elements in
which the details of each component and its inter-
actions are more and more explicitly accounted
for. This atomistic treatment is very powerful and
facilitates the study of specific properties of mat-
ter. However, sometimes the importance of the
forest tends to be lost in looking too closely at one
tree. The complementary, holistic view is, in my
opinion, extremely powerful as well, as it allows us
to see essential features in a phenomenon without
the need to resolve every detail. Fractals are an
example of this idea, where complexity emerges
from the combination of simple rules. A marriage
between the holistic and atomistic views can lead
us beyond the deficiencies of each one separately.

Nathan Cohen

Complexity Was Well Modeled by Fractals
Mathematicians spar in an uncomfortable match
between the pure and applied, in which migration
from one to the other is one way, and no one is
allowed to do both. But Benoit Mandelbrot did.
My interest in fractals stems from needing to
solve real-world problems. In 1985 I was a newly
minted Ph.D. in Cambridge (MA). There the general
view was that fractals were a “flavor” of the month,
and they were treated as an a posteriori paradigm
with no evidence of solving problems unsolved
in other ways. But I read The Fractal Geometry

Nathan Cohen is the founder of Fractal Antenna Systems,
Waltham, Massachusetts. His email address is ncohen@
fractenna.com.
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Figure 10. A self-affine fractal provides a simple
model for the geometry of a fern.

of Nature and landed a consulting job on stock
options pricing. I concluded, as Mandelbrot had
surmised decades earlier, that the stock price is
not a “random walk”, that complexity and noise
are often indistinguishable, and that complexity
may be modeled by fractals. Market pricing is
essentially deterministic, not random. At that
time, on a daily basis, traders would run their
Black-Scholes models, which assume pricing is a
random diffusion process, and bring the results
to the floor each morning like racing forms at
the horsetrack. They trusted these cheat-sheets to
tell them when to buy and sell. But I was able to
exploit the limitations of the Black-Scholes model
using fractals and made a decent little fortune for
someone who had recently been a poverty-stricken
student.

The notion of “fractals as antennas” occurred
to me in 1987 while attending a lecture by Man-
delbrot. I went home and explored this curious
idea, which has subsequently become a major
theme of my efforts and a field in its own right.
Some years later I saw Benoit again at a fractals-
in-engineering conference. This was finally the
opportunity to converse with him and the first
of several lunch meetings and subsequent phone
conversations in the last dozen years of his life.
No one who had such conversations can forget the
brilliant, witty joy of Benoit the polymath. In par-
ticular, they helped me to realize that Maxwell’s
equations require self-similarity for frequency in-
variance, a fundamental and what should have
been obvious result. Now I see many problems
that benefit from fractals: metamaterials, a new
form of radiative transport, optimization, and
fluid mechanics and drag reduction. I only regret
that I can’t share these with Benoit anymore.
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Figure 11. Various pictures constructed from the
orbit of a leaf picture under a system of three
affine transformations. The limit set of the
semigroup is illustrated in red and yellow.
Figure from [2].

Stéphane Jaffard

Parts of Mathematics Are Totally Bathing in
the Ideas That Benoit Introduced

Benoit was one of the first to apply computer
graphics to mathematical objects. He used them to
develop intuitions and to make either discoveries
or deep conjectures.

He also put forward particular entities such
as Mandelbrot cascades, the Mandelbrot set, Lévy
dusts, and so on as beautiful objects, worthy of
study in their own right. At that time, this was
orthogonal to the main direction of mathematics
towards generalizations and abstract structures. I
believe that Benoit’s influence on the mathemat-
ical community was very helpful in that respect:
mathematics was able to admit a down-to-earth
component. Some parts of mathematics are now
totally bathing in the ideas that Benoit introduced.
For example, the idea of scale invariance is every-
where present in the mathematics of signal
processing, my area.

More broadly, the notion of fractal prob-
ability has been one of the most important
unifying concepts in science introduced in the
last fifty years. It has allowed scientists with di-
verse specializations to draw connections between
seemingly unrelated subjects and has created un-
expected cross-fertilizations. This was driven by
the mesmerizing and enthusiastic personality of
Benoit.

Note that fractals are one of the few parts of
mathematics that can be “shown” to the general

Stéphane Jaffard is professor of mathematics at Univer-
sité Paris Est (Créteil Val-de-Marne). His email address is
stephane. jaffard@u-pec.fr.
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Figure 12. “...[Elighty students in my fractal geometry course learn in a single class how to generate

the fractals pictured here....”

public. As a teenager, I was influenced by Benoit’s
fascinating books. They explained a part of math-
ematics that was under construction yet could be
readily understood.

My thesis was on the then-new topic of
“wavelets”. I worked at Ecole Polytechnique under
the supervision of Yves Meyer. Once Benoit visited
Ecole Polytechnique, and he heard that a Ph.D.
student was working on systems of functions that
could be decomposed into elementary blocks,
related inter alia by dilations and translations. He
came to my office, and we had long conversations
about new possibilities offered by wavelet anal-
ysis. For me, this was the start of interactions
which influenced me considerably; it certainly
pushed me towards specializing in multifractal
analysis, a part of fractals where Mandelbrot’s
ideas are prevalent. Our interactions resulted in
two joint papers on Polya’s function, whose graph
is space-filling and multifractal (its Lipschitz
regularity index jumps everywhere). The interest
that Benoit showed in this example, which was
quite forgotten at that time, was typical of his
fascination for beautiful mathematical objects
and the art with which he managed to draw
a correspondence between their mathematical
beauty and their graphical beauty. In all the con-
versations that we shared, I was always amazed
by the uninterrupted flow of original and brilliant
ideas that he very generously shared.

Sir Michael Berry

How to Model...a Surface With No Separation
of Scales

In the early 1970s, I was studying radio-wave
echoes from the land beneath the ice in Antarc-
tica. Existing theories separated the “geography”,
supposedly measured by the start of the echo,
from the “roughness”, indicated by the disorderly

Sir Michael Berry is professor of physics at the Univer-
sity of Bristol, UK. His email address is asymptotico@
physics.bristol.ac.uk.
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echo trail. The separation was modelled by a flat
surface (“geography”) superimposed on what was
single-scale randomness (“roughness”), typically
gaussian. I found this not only unappealing but
also scientifically absurd: in a natural landscape,
any apparent dichotomy must be an illusion, an
artifact of the wavelength used to interrogate it.
But how to model, or even describe, a surface with
no separation of scales? I had no idea until I read
Philip Morrison’s review of the English edition of
Mandelbrot’s Fractals: Form, Chance and Dimen-
sion [16]. 1 cannot remember being so excited by a
book review. It was immediately clear that fractal
dimension was the key idea I needed, and this was
confirmed by the book itself.

Quickly came the identification of a new class of
wave phenomena: “diffractals”, thatis, waves inter-
acting with fractal objects. In the echo-sounding
of landscapes, the interaction is mainly reflec-
tion. Later, a grim consequence of an absorption
interaction emerged: we realized that the pro-
longed winter predicted to occur after a nuclear
war, because of the absorption of sunlight by
smoke, would be significantly intensified by the
fact that smoke particles are fractal (it would also
be prolonged, because smoke’s fractality slows
the particles’ fall). From the development of quan-
tum chaology in the late 1970s came a conjecture
about the spectra of enclosures (“drums”) with
fractal boundaries: the “surface” correction to the
“bulk” Weyl eigenvalue counting formula would
scale differently with frequency and depend on
the fractal dimension. This generated considerable
mathematical activity.

In diffractals it is the objects interacting with
the waves, not the waves themselves, that are
fractal. But in some phenomena the wave intensity
is fractal on a wide range of scales down to the
wavelength. One such, unexpected in one hundred
fifty years, is the Talbot effect, associated with light
beyond diffraction gratings whose rulings have
sharp edges: the fractal dimensions of the wave
across and along the beam direction are different.
All this sprang from Benoit Mandelbrot’s insight,
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Figure 13. “Zoom in a few times...mysterious
spirals of spirals of spirals appear.”

meshing perfectly with my preoccupations at the
time. For further details, see my earlier tribute [4]
or my home page [5].

Michael Frame

| Believe the Classroom Is an Appropriate
Stage for a Final View of Benoit’s Work

Here I'll give a sketch of the remarkable breadth
and depth of Benoit’s work, setting most examples
in the world I know best, the classroom. That
students in college, high school, and elementary
school study the concepts Benoit developed filled
him with happiness. In his memoirs [26], Benoit
describes his reaction to student comments after
his lecture, “Uncanny forms of flattery! Each lifted
me to seventh heaven! Truly and deeply, each
marked a very sweet day! Let me put it more
strongly: it is occasions like that that make my
life.” For this reason, I believe the classroom is an
appropriate stage for a final view of Benoit’s work.

In September 2010, a few days after Benoit told
me of his diagnosis, I watched the eighty students
inmy fractal geometry course learnin a single class
how to generate the fractals pictured in Figure 12
just by looking at the images and understanding
a few attributes of plane transformations.

Their surprise and satisfaction are what Benoit
gave me, gave the mathematical world. To those
who doubt the value of this approach, I say
compare a standard geometry class lesson on
plane transformations with this day in any fractals
class. The combination of visually complex images
and the ability to decode these images by a few
simple rules explains why fractals are a wonderful
tool for teaching geometry.

A few weeks later in the course, I showed
these pictures again and asked the class to
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find their dimensions. Immediately, they answered
log(3)/log(2) and log(6)/log(3) for the first two,
and after a moment, log((—1 + /3)/2)/log(1/2)
for the third. That thousands, maybe tens of
thousands, of students know how to compute
and interpret dimensions and that dimension
measures complexity and roughness of objects
mathematical (Julia sets, Kleinian group limit
sets), physical (aggregation clusters, the distribu-
tion of galaxies), biological (pulmonary, nervous,
and circulatory systems), and artistic (Pollock’s
drip paintings, at least according to some) are
due to Benoit. Some knew bits of the picture;
Benoit assembled the whole and got many, many
others working on measuring and interpreting
dimensions.

For the teacher of a fractals class, the best
moment occurs during the day the Mandelbrot
set is introduced. The formula z,.1 = z,% + c is
simplicity itself. Describe the iteration process
and the color coding, start the program running
(seconds now for images that burned hours or
days with the personal computers of the mid-
1980s), and wait. (See Figure 1.) Startling baroque
beauty, but from a class jaded by CGI effects,
only a few polite “Oohs” and “Ahhs”. Zoom in a
few times near the boundary; mysterious spirals
of spirals of spirals appear. (See Figure 13). A bit
more emphatic exclamations of surprise, and then,
“You do remember this is produced by iterating
Zn+l = 2,2, + ¢, don’t you?” Expressions of disbelief
and occasional profanity follow.

Another day or two describing the known ge-
ometry of the Mandelbrot set, the arrangement
of the cyclic components, the infinite cascade of
ever smaller copies of the whole set, and this
complicated object starts to seem familiar. Then
state the hyperbolicity conjecture and point out it
remains a conjecture despite two decades of work
by brilliant mathematicians. Beautiful pictures for
sure; deep, deep mathematics, you bet.
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Some Key Events in the Life of Benoit B. Mandelbrot

1924
1936
1939
1947
1948
1952
1953
1955
1958
1963

1967
1972
1974
1975
1977
1979

1980

1982

1984

1985

1986
1987

1988

1989

1990
1991
1992
1993

Born in Warsaw, Poland, 20 November

Moved to Paris

Moved to Tulle

Ingenieur diploma, Ecole Polytechnique

M.S. aeronautics, CalTech

Ph.D. mathematics, University of Paris

Postdoc at MIT, then IAS postdoc of von Neumann

Married Aliette Kagan

Moved to the U.S., joined IBM Thomas J. Watson

Publication of “On the variation of certain speculative prices”, [11] and
“The stable Paretian income distribution, when the apparent exponent is near two” [12]
Publication of “How long is the coast of Great Britain?” [13]

Visiting professor of physiology, Albert Einstein College of Medicine
Publication of “Intermittent turbulence in self-similar cascades:
Divergence of high moments and dimension of the carrier” [14]
Publication of Les Objets Fractals: Forme, Hasard et Dimension [15]
Publication of Fractals: Form, Chance, and Dimension [16]

Began studying the Mandelbrot set; formulated the MLC (Mandelbrot
set is locally connected) conjecture

Publication of “Fractal aspects of the iteration of z — Az(1 — z)

for complex A and z” [17];

formulated the question that the Mandelbrot set is connected
Publication of The Fractal Geometry of Nature [18];

Fellow of the American Academy of Arts and Sciences;

formulated the 4/3 conjecture and that the inside and outside of the
Brownian boundary curve are statistically self-similar; connectivity of the
Mandelbrot set proved by Douady and Hubbard

TED lecture; formulated the n? conjecture, proved by

Guckenheimer and McGehee

Barnhard Medal, U.S. National Academy of Sciences;

formulated the conjecture that the boundary of the Mandelbrot

set has dimension 2

Franklin Medal, Franklin Institute; D.Sc., Syracuse University

Foreign associate, U.S. National Academy of Sciences;

Abraham Robinson Adjunct Professor of Mathematical Sciences at Yale;
D.Sc., Boston University

Steinmetz Medal, IEEE; Science for Art Prize, Moet-Hennessy-Louis
Vuitton; CalTech Alumni Distinguished Service Award;

Humboldt Preis, Humboldt-Stifftung;

honorary member, United Mine Workers of America;

D.Sc., SUNY Albany, Universitdat Bremen

Chevalier, National Legion of Honor, Paris;

Harvey Prize for Science and Technology, Technion;

D.Sc., University of Guelph

Fractals and Music, Guggenheim Museum, with Charles Wuorinen
Nevada Prize

D.Sc., University of Dallas

Wolf Prize in Physics;

D.Sc., Union College, Universite de Franche-Comte, Universidad
Nacional de Buenos Aires
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1994 Honda Prize; J.-C. Yoccoz awarded the Fields Medal, in part for his
work on MLC; Shishikura proved the Mandelbrot set boundary
has dimension 2

1995 D.Sc., Tel Aviv University

1996 Médaille de Vermeil de la Ville de Paris

1997 Publication of Fractals and Scaling in Finance [19]

1998 Foreign member, Norwegian Academy of Sciences and Letters;

C. McMullen awarded the Fields Medal, in part for his work on MLC;
D.Sc., Open University London, University of Business and Commerce Athens

1999 Sterling Professor of Mathematical Sciences at Yale; John Scott Award,;
publication of Multifractals and 1/f Noise [20]; publication of
“A multifractal walk down Wall Street” [21]; D.Sc., University of St. Andrews

2000 Lewis Fry Richardson Award, European Geophysical Society

2001 Member, U.S. National Academy of Sciences;
publication of “Scaling in financial prices, I - IV”

2002 Sven Berggren Priset, Swedish Academy of Natural Sciences;

William Proctor Prize, Sigma Xi; Medaglia della Prezidenza della
Republica Italiana; publication of Gaussian Self-Affinity and Fractals [22]
and of Fractals, Graphics, and Mathematics Education [23];

D.Sc., Emory University

2003 Japan Prize for Science and Technology; Best Business Book of the Year
Award, Financial Times Deutschland, for The (Mis)Behavior of Markets [25]

2004 Member, American Philosophical Society; publication of Fractals and
Chaos. The Mandelbrot Set and Beyond [24], and (with R. Hudson
of The (Mis)Behavior of Markets [25]

2005 Sierpinski Prize, Polish Mathematical Society; Casimir Frank Natural
Sciences Award, Polish Institute of Arts and Sciences of America;
Battelle Fellow, Pacific Northwest Labs; D.CE., Politecnio, Torino

2006 Officer, National Legion of Honor, Paris; Einstein Public Lecture, AMS
Annual Meeting; Plenary Lecture, ICM; W. Werner awarded the Fields
Medal for proving (with G. Lawler and O. Schramm) the 4/3 conjecture;
Doctor of Medicine and Surgery, University degli Studi, Bari, Puglia

2010 D.Sc., Johns Hopkins University; TED lecture; S. Smirnov awarded the
Fields Medal for work on percolation theory and SLE related to the
4/3 conjecture.

Died in Cambridge, MA, 14 October
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