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Essential Dimension?
Zinovy Reichstein

Informally speaking, the essential dimension of

an algebraic object is the minimal number of

independent parameters one needs to describe

it. This notion was introduced in [1], where the

objects in question were field extensions of finite

degree. The general definition below is due to

A. Merkurjev.

Essential Dimension of a Functor

Fix a base field k and let F be a covariant functor

from the category of field extensions K/k to the

category of sets. We think of F as specifying

the type of algebraic object under consideration

and F(K) as the set of algebraic objects of this

type defined over K. For a field extension K/K0,

the natural (“base change”) map F(K0) → F(K)

allows us to view an object defined over K0 as

also being defined over the larger field K. Any

object α ∈ F(K) in the image of this map is said

to descend to K0. The essential dimension ed(α) is

defined as the minimal transcendence degree of

K0/k, where α descends to K0.

For simplicity we will assume that char(k) = 0

from now on. Much of what follows remains true

in prime characteristic (with some modifications).

Example 1. Let F(K) be the set of isomorphism

classes of nondegenerate n-dimensional quadratic

forms defined over a field K. Every quadratic

form over K can be diagonalized. That is, q is K-

isomorphic to the quadratic form (x1, . . . , xn) ֏

a1x
2
1+ . . .+anx

2
n for some a1, . . . , an ∈ K

∗. Hence,

q descends to K0 = k(a1, . . . , an) and ed(q) à n.

Example 2. Let F(K) be the set of equivalence

classes of K-linear transformations T : Kn → Kn.
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Here, as usual, K-linear transformations are con-

sidered equivalent if their matrices are conjugate

over K. If T is represented by an n×nmatrix (aij),

then T descends to K0 = k(aij | i, j = 1, . . . , n), so

that a priori ed(T) à n2. However, this is not op-

timal; we can specify T more economically by its

rational canonical form R. Recall that R is a block-

diagonal matrix diag(R1, . . . , Rm), where each Ri
is a companion matrix. If m = 1 and R = R1 =






0 . . . 0 c1
1 . . . 0 c2

.
.
.

.

.

.
0 . . . 1 cn





, then T descends to k(c1, . . . , cn)

and thus ed(T) à n. A similar argument shows

that ed(T) à n for any m.

Example 3. Let F(K) be the set of isomorphism

classes of elliptic curves defined over K. Every el-

liptic curve X over K is isomorphic to the plane

curve cut out by a Weierstrass equation y2 = x3 +

ax + b, for some a, b ∈ K. Hence, X descends to

K0 = k(a, b) and ed(X) à 2.

In many instances one is interested in the “worst

case scenario”, i.e., in the number of independent

parameters that may be required to describe the

“most complicated” objects of a particular kind.

With this in mind, we define the essential dimen-

sion ed(F) of the functor F as the supremum of

ed(α) taken over all α ∈ F(K) and all K. We have

shown that ed(F) à n in Examples 1 and 2 and

ed(F) à 2 in Example 3. We will later see that, in

fact, ed(F) = n in Example 1. One can also show

that ed(F) = n in Example 2 and ed(F) = 2 in

Example 3.

Essential Dimension of an Algebraic Group

Of particular interest are the Galois cohomology

functors FG given by K ֏ H1(K,G), where G is

an algebraic group over k. Here, H1(K,G) denotes

the set of isomorphism classes of G-torsors (oth-

erwise known as principal homogeneous spaces)
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over Spec(K). For many groups G this functor

parametrizes interesting algebraic objects. For

example, H1(K,On) is the set of isomorphism

classes of n-dimensional quadratic forms over K

(in other words, FOn is the functor of Example 1),

H1(K,PGLn) is the set of isomorphism classes

of central simple algebras of degree n over K,

H1(K,G2) is the set of isomorphism classes of

octonion algebras over K, etc. (On the other hand,

the functors F in Examples 2 and 3 are not of the

form FG for any algebraic group G.) The essential

dimension of FG is called the essential dimension

of G and is denoted by ed(G).

Algebraic groups of essential dimension zero

are precisely the special groups, introduced by

J-P. Serre in the 1950s. An algebraic group G over

k is called special if H1(K,G) = {1} for every

field K/k. For example, SLn and Sp2n are special

for every n. Over an algebraically closed field of

characteristic zero, special groups were classified

by A. Grothendieck. The essential dimension ed(G)

may be viewed as a numerical measure of how

much G differs from being special.

Symmetric Groups

Computing ed(Sn) is closely linked to the classi-

cal problem of simplifying polynomials of degree

n in one variable by a Tschirnhaus transforma-

tion and may be viewed as an algebraic variant of

Hilbert’s 13th problem [1]. In his 1884 “Lectures on

the Icosahedron”, F. Klein classified faithful finite

group actions on the projective line P1 and used

this classification to show that, in our terminology,

ed(S5) = 2. More generally, J. Buhler and I showed

(by a different method) that ed(Sn) á ⌊n/2⌋ for

any n, and ed(Sn) à n − 3 for n á 5; see [1].

Using these inequalities one easily finds ed(Sn)

for n à 6. For larger n the only additional bit of

insight we have is via birational classifications of fi-

nite group actions on low-dimensional unirational

varieties (over an algebraically closed field), ex-

tending Klein’s original approach. In dimension 2

this yields ed(A6) = 3 (due to Serre) and in dimen-

sion 3, ed(A7) = ed(S7) = 4 (due to A. Duncan).

Serre’s argument is based on the Enriques-Manin-

Iskovskikh classification of rational G-surfaces,

and Duncan’s is based on the recent work on ra-

tionally connected G-threefolds by Yu. Prokhorov.

In higher dimensions this approach appears to be

beyond the reach of Mori theory, at least for now.

The exact value of ed(Sn) remains open for every

n á 8.

Projective Linear Groups

The value of ed(PGLn) is intimately connected

with the theory of central simple algebras. An

important open conjecture, due to A. A. Albert,

is that every division algebra of prime degree p

is cyclic. Suppose that the base field k contains

a primitive pth root of unity. Then the essential

dimension of a cyclic division algebra is easily seen

to be 2. Thus ed(PGLp) á 2, and if this inequality

happens to be strict for some p, then Albert’s

conjecture fails. The value of ed(PGLp) is 2 for

p = 2 or 3 and is unknown for any other prime.

The problem of computing ed(PGLn) first arose

in C. Procesi’s pioneering work on universal

division algebras in the 1960s. The inequality

ed(PGLn) à n
2 proved by Procesi has since been

strengthened (see [3]), but the new upper bounds

are still quadratic in n. In the 1990s B. Kahn

asked if ed(PGLn) grows sublinearly in n, i.e., if

there exists a C > 0 such that ed(PGLn) à Cn

for every n. By the primary decomposition the-

orem we lose little if we assume that n is a

prime power. Until recently, the best known lower

bound was ed(PGLpr ) á 2r . This has been dramat-

ically improved by A. Merkurjev, who showed that

ed(PGLpr ) á (r − 1)pr + 1 for any prime p and

any r á 2. In particular, this inequality answers

Kahn’s question in the negative. Surprisingly, es-

sential dimension is not a Brauer invariant; there

are central simple algebras A of degree 4 such

that ed(M2(A)) < ed(A). Little is known about

essential dimension of Brauer classes.

Cohomological Invariants

Let G be an algebraic group over k. A cohomo-

logical invariant of G of degree n is a morphism

of functors FG → Hn, where Hn(K) is the nth

Galois cohomology group. The coefficient mod-

ule can be arbitrary; in the examples below it

will always be Z/2Z. (Observe that Hn(K) is a

group, whereas, in general, FG(K) = H1(K,G)

has no group structure.) Serre noted that if k is

algebraically closed and G admits a nontrivial co-

homological invariant of degreen, then ed(G) á n.

LettingG be the orthogonal group On, so thatFG is

the functor considered in Example 1, and applying

the above inequality to the cohomological invari-

ant FG → Hn(K) which takes a quadratic form

q = a1x
2
1 + ·· · + anx

2
n to its nth Stiefel-Whitney

class (a1) · · · (an) ∈ H
n(K), we obtain ed(On) á n

and thus ed(On) = n (we showed that ed(On) à n

in Example 1). Another interesting example, also

due to Serre, is the degree 5 invariant of the excep-

tional group F4, which gives rise to the inequality

ed(F4) á 5.

Nontoral Finite Abelian Subgroups

Nontoral finite abelian subgroups first arose

in the foundational work of A. Borel on the

cohomology of classifying spaces for compact

Lie groups. Nontoral finite abelian subgroups of

algebraic groups were subsequently studied by

T. Springer, R. Steinberg, R. Griess, and many
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others. In a special group such as SLn, every finite

abelian subgroup is contained in a torus. Ph. Gille,

B. Youssin, and I generalized this as follows: if

A ⊂ G is a finite abelian subgroup, then ed(G) á

rank(A) − rank(ZG(A)
0). Here G is connected

and reductive, rank(A) is the minimal number

of generators of A, ZG(A)
0 is the connected

component of the centralizer of A in G, and the

rank of ZG(A)
0 is the dimension of its maximal

torus. (Note that the above inequality is of interest

only ifA is nontoral; otherwise the right-hand side

is à 0.) For example, the exceptional group G = E8

has a self-centralizing subgroup A ≃ (Z/2Z)9;

hence ed(E8) á 9. I am not aware of any other proof

of the last inequality. In particular, no nontrivial

cohomological invariants of E8 of degree 9 are

known.

Spinor Groups

Over the past few years there has been rapid

progress in the study of essential dimension,

based on an infusion of methods from the theories

of algebraic stacks and algebraic cycles. These

developments are beyond the scope of the present

note; please see the surveys [2, 3] for an overview

and further references. I will, however, mention

one unexpected result that has come up in my

joint work with P. Brosnan and A. Vistoli: it turns

out that the essential dimension of the spinor

group Spinn increases exponentially with n. This

has led to surprising consequences in the theory

of quadratic forms. Note that FSpinn is closely

related to n-dimensional quadratic forms with

trivial discriminant and Hasse-Witt invariant, very

much in the spirit of Example 1, and that there

are no high rank finite abelian subgroups in Spinn
to account for the exponentially high value of

ed(Spinn). Are there high-degree cohomological

invariants of Spinn? We do not know.
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