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From the Characteristica Universalis to Ideal
Entities
Leibniz envisioned the creation of a universal
language, characteristica universalis, ambitiously
designed to serve as the vehicle for deduction and
discovery in all fields of knowledge. Couturat [10]
pointed out in 1901 that, in Leibniz’s vision, the
infinitesimal calculus was but the first salvo, or
sample, of his characteristica universalis.

Leibniz’s vision of the ideal nature of math-
ematical entities was remarkably modern. His
description of infinitesimals as fictional entities
shocked his disciples J. Bernoulli, l’Hôpital, and
Varignon. And his infinitesimals certainly appeared
as “Mysteries” to critics such as Berkeley, whose
empiricist philosophy tolerated no conceptual
innovations, such as infinitesimals, without an
empirical counterpart or referent:

Yet some there are, who, though they shrink
at all other Mysteries, make no difficulty of
their own, who strain at a Gnat and swallow
a Camel [1, section XXXIV].

While today we are puzzled by Berkeley’s rigid
rejection of the idea of an infinitely divisible
continuum, he also articulated a specifically logical
criticism of the calculus (see [46]), alleging that
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the system suffered from logical flaws and even
contradictions. Even today, many historians believe
Berkeley’s criticism to have been on target. Not even
Robinson escaped this trend, praising Berkeley’s
criticism of the foundations of the calculus as “a
brilliant exposure of their logical inconsistencies”
[45, p. 280].

We argue that, contrary to Berkeley’s view, Leib-
niz’s system for the differential calculus was robust
and free of contradiction. Leibniz articulated a
set of coherent heuristic procedures for his calcu-
lus. Thus, Leibniz’s system incorporated versatile
heuristic principles, such as his law of continuity
and laws of homogeneity, which were amenable,
in the ripeness of time, to implementation as
general principles governing the manipulation of
modern infinitesimal and infinitely large quantities,
such as the transfer principle and the standard
part principle. Kanovei [21] and others performed
similar reconstructions of Euler’s work.

We will draw on Leibniz’s work, more specifically
his Cum Prodiisset, to argue for the consistency of
Leibniz’s system for the differential calculus.1 We
will also draw on the work of Leibniz historians
Bos, Ferraro, Horváth, Knobloch, and Laugwitz.

Berkeley’s attack on infinitesimal calculus fo-
cused specifically on the product rule as well as

1The text Cum Prodiisset sheds more light on foundational
issues than the terser 1684 text Nova methodus pro max-
imis et minimis… [35], so named because the determination
of maxima and minima was one of the central problems
of analysis as practiced at the time, with leading scholars
having composed works of similar titles (see, e.g., [12]).
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on the derivation of polynomials. Once the logical
contradiction, alleged by Berkeley, is resolved in
the context of the product rule (see the section
“Justification of the Product Rule” below), it can
similarly be resolved (namely, by applying the
transcendental law of homogeneity) in all other
contexts.

In a seminal 1974 study of Leibnizian method-
ology, Bos described a pair of distinct approaches
to justifying the calculus:

Leibniz considered two different ap-
proaches to the foundations of the cal-
culus; one connected with the classical
methods of proof by “exhaustion”, the
other in connection with a law of continuity
[5, item 4.2, p. 55].

The first approach relies on an Archimedean
“exhaustion” methodology. We will therefore refer
to it as the A-methodology. The other methodology
exploits infinitesimals and the law of continuity.
We will refer to it as the B-methodology, in an
allusion to Johann Bernoulli, who, having learned
an infinitesimal methodology from Leibniz, never
wavered from it.

Knobloch explains the role of Leibniz’s law of
continuity in the following terms:

In his treatise Leibniz used a dozen rules
which constitute his arithmetic of the
infinite. He just applied them without
demonstrating them, only relying on the law
of continuity : The rule of the finite remains
valid in the domain of the infinite [30, p. 67].

Laugwitz pointed out that Leibniz’s law of
continuity

contains an a priori assumption: our mathe-
matical universe of discourse contains both
finite objects and infinite ones [32, p. 145].

What is the ontological status of such infinitary
(infinitesimal or infinite) objects in Leibniz’s theory?
Leibniz’s was a remarkably modern insight that
mathematical entities need not have a referent ,
or empirical counterpart. The fictional nature of
infinitesimals was stressed by Leibniz in 1706:

Philosophically speaking, I no more admit
magnitudes infinitely small than infinitely
great…I take both for mental fictions, as
more convenient ways of speaking, and
adapted to calculation, just like imaginary
roots are in algebra (Leibniz to Des Bosses,
11 March 1706, in [16, II, p. 305]).

Infinitesimals, like imaginaries, were well-
founded fictions to Leibniz. The nature of Leibniz’s
infinitesimals is further clarified by Ferraro, who
analyzes a lengthy quotation from Leibniz’s
famous letter of 1702 [38] to Varignon (which
we do not reproduce here to save space) in the
following terms:

According to Leibniz, imaginary numbers,
infinite numbers, infinitesimals, the powers
whose exponents were not “ordinary” num-
bers and other mathematical notions are
not mere inventions; they are auxiliary and
ideal quantities that…serve to shorten the
path of thought [13, p. 35].

In Ferraro’s view, Leibniz’s infinitesimals enjoy
an ideal ontological status similar to that of the
complex numbers, surd (irrational) exponents, and
other ideal quantities.

In the next section we will examine Leibniz’s
foundational stance as expressed in his seminal
text Cum Prodiisset.

Cum Prodiisset
Leibniz’s text Cum Prodiisset [37] (translated by
Child [9]) dates from around 1701 according to
modern scholars. The text is of crucial importance
in understanding Leibniz’s foundational stance.
We will analyze it in detail in this section.

Law of Continuity, with Examples

Leibniz formulates his law of continuity in the
following terms:

Proposito quocunque transitu continuo in
aliquem terminum desinente, liceat racio-
cinationem communem instituere, qua ul-
timus terminus comprehendatur [37, p. 40].

The passage can be translated as follows:

In any supposed continuous transition,
ending in any terminus, it is permissible to
institute a general reasoning, in which the
final terminus may also be included.

We have deliberately avoided using the term limit
in our translation.2 In fact, translating terminus
as limit would involve a methodological error,
because the term limit misleadingly suggests
its modern technical meaning of a real-valued
operation applied to sequences or functions.

In a similar vein, Bos notes that

the fundamental concepts of the Leibnizian
infinitesimal calculus can best be under-
stood as extrapolations to the actually
infinite of concepts of the calculus of finite
sequences. I use the term “extrapolation”

2This is consonant with Child’s translation: “In any supposed
transition, ending in any terminus, it is permissible to insti-
tute a general reasoning, in which the final terminus may
also be included” [9, p. 147]. We have reinstated the ad-
jective continuous modifying transition (deleted by Child
possibly in an attempt to downplay a perceived logical circu-
larity of defining a law of continuity in terms of continuity
itself).
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here to preclude any idea of taking a limit
[5, p. 13].3

Leibniz gives several examples of the application
of his law of continuity. We will focus on the
following three examples.

(1) In the context of a discussion of parallel
lines, he writes:

When the straight line BP ultimately
becomes parallel to the straight line
VA, even then it converges toward it
or makes an angle with it, only that
the angle is then infinitely small [9,
p. 148].

(2) Invoking the idea that the term equality may
refer to equality up to an infinitesimal error,
Leibniz writes:

When one straight line4 is equal to
another, it is said to be unequal to
it, but that the difference is infinitely
small [9, p. 148].5

(3) Finally, a conception of a parabola expressed
by means of an ellipse with an infinitely
removed focal point is evoked in the following
terms:

A parabola is the ultimate form of an
ellipse, in which the second focus is
at an infinite distance from the given
focus nearest to the given vertex [9,
p. 148].

Status Transitus

We return to our analysis of the law of continuity as
formulated in Cum Prodiisset. Leibniz introduces
his next observation by the clause “of course it
is really true that” and notes that “straight lines
which are parallel never meet” [9, p. 148], that
“things which are absolutely equal have a difference
which is absolutely nothing” [9, p. 148], and that “a
parabola is not an ellipse at all” [9, p. 149]. These
remarks would seem to rule out the wondrous
entities of the previous subsection. How does one,
then, account for these examples? Leibniz provides
an explanation in terms of a state of transition
(status transitus in the original Latin [37, p. 42]):

A state of transition may be imagined,
or one of evanescence, in which indeed
there has not yet arisen exact equality…or

3Bos goes on specifically to criticize the Bourbaki’s limite
wording “(Leibniz) se tient très près du calcul des différences,
dont son calcul différentiel se déduit par un passage à la
limite” [6, p. 208].
4Here Leibniz is using the term line in its generic meaning
of a segment.
5Equality up to an infinitesimal is a state of transition from
inequality to equality (this anticipates the transcendental
law of homogeneity, dealt with in the section “Assignable
and Inassignable Quantities” below).

parallelism, but in which it is passing into
such a state, that the difference is less
than any assignable quantity; also that
in this state there will still remain some
difference,…some angle, but in each case
one that is infinitely small; and the distance
of the point of intersection, or the variable
focus, from the fixed focus will be infinitely
great, and the parabola may be included
under the heading of an ellipse [9, p. 149].

A state of transition in which “there has not yet
arisen exact equality” refers to example (2) in
the previous subsection; “parallelism” refers to
example (1); including parabola under the heading
of ellipse is example (3).

Thus, the term terminus encompasses the status
transitus, involving a passage into an assignable
entity while being as yet inassignable. Translating
terminus as limit amounts to translating it as an
assignable entity, the antonym of the meaning
intended by Leibniz.

The observation that Leibniz’s status transitus is
an inassignable quantity is confirmed by Leibniz’s
conceding that its metaphysical status is “open to
question”:

Whether such a state of instantaneous tran-
sition from inequality to equality,…from
convergence [i.e., lines meeting—] to par-
allelism, or anything of the sort, can be
sustained in a rigorous or metaphysical
sense, or whether infinite extensions suc-
cessively greater and greater, or infinitely
small ones successively less and less, are
legitimate considerations, is a matter that
I own to be possibly open to question [9,
p. 149].

Yet Leibniz asserts that infinitesimals may be
utilized independently of metaphysical controver-
sies:

But for him who would discuss these
matters, it is not necessary to fall back
upon metaphysical controversies, such as
the composition of the continuum, or to
make geometrical matters depend thereon
[9, pp. 149–150].

To summarize, Leibniz holds that the
inassignable status of status transitus is no
obstacle to its effective use in geometry. The point
is reiterated in the next paragraph:

If any one wishes to understand these [i.e.,
the infinitely great or the infinitely small—]
as the ultimate things, or as truly infinite,
it can be done, and that too without falling
back upon a controversy about the reality
of extensions, or of infinite continuums
in general, or of the infinitely small, ay,
even though he think that such things
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are utterly impossible; it will be sufficient
simply to make use of them as a tool
that has advantages for the purpose of the
calculation, just as the algebraists retain
imaginary roots with great profit [9, p. 150].

Leibniz has just asserted the possibility of the
mathematical infinite: “it can be done”, without
philosophical commitments as to its ontological
reality.

Mathematical Implementation of Status
Transitus

We will illustrate Leibniz’s concept of status
transitus by implementing it mathematically in the
three examples mentioned by Leibniz.

In the subsection “Status Transitus”, we men-
tioned that Leibniz viewed infinitesimals as fictions,
and so his methods avoided any metaphysical com-
mitments. Ishiguro [20] and others viewed a
Leibnizian infinitesimal as a logical fiction, involv-
ing a syncategorematic paraphrase with a hidden
quantifier applied to ordinary real values. We have
argued against the syncategorematic interpreta-
tion in [28]. Rather, Leibnizian infinitesimals are
pure fictions akin to imaginaries. Thus, Leibniz
exploited infinitely large and infinitely small quan-
tities in the same sense in which Albert Girard
(1595–1632) and others exploited imaginary roots
in order to simplify algebra. In neither case is there
a commitment to corresponding mathematical en-
tities. Thus, Leibniz anticipates modern formalist
positions such as Hilbert’s and Robinson’s.

Of course, the structural properties of Leibniz’s
infinite and infinitely small quantities are different
from those of modern day infinitesimals. Nonethe-
less, modern theories of infinitesimals are a way
of implementing Leibniz’s heuristic procedures.
Thus, example (2) can be illustrated as follows.
Leibniz denotes a finite positive quantity by

(d)x

(Bos [5, p. 57] replaced this by dx). The assignable
quantity (d)x passes via infinitesimal dx on its way
to absolute 0. Then the infinitesimal dx is the status
transitus. Zero is merely the assignable shadow6

of the infinitesimal. Then a line (i.e., segment) of
length 2x+dx will be equal to one of length 2x, up
to an infinitesimal. This particular status transitus
is the foundation of the Leibnizian definition of
the differential quotient.

Example (1) of parallel lines can be elaborated
as follows. Let us follow Leibniz in building the line
through (0,1) parallel to the x-axis in the plane.
Line LH with y-intercept 1 and x-intercept H is
given by y = 1− x

H . For infinite H, the line LH has
negative infinitesimal slope, meets the x-axis at an

6See footnote 7.

infinite point, and forms an infinitesimal angle with
the x-axis at the point where they meet. We will
denote by st(x) the assignable (i.e., real) shadow7

of a finite x. Then every finite point (x, y) ∈ LH
satisfies

st(x, y) = (st(x), st(y))

=
(
st(x), st

(
1− x

H

))
= (st(x),1).

Hence the finite portion of LH is infinitely close to
the line y = 1 parallel to the x-axis, which is its
shadow. Thus, the parallel line is constructed by
varying the oblique line depending on a parameter.
Such variation passes via the status transitus
defined by an infinite value of H.

To implement example (3), let’s follow Leibniz
in deforming an ellipse, via a status transitus, into
a parabola. The ellipse with vertex (apex) at (0,−1)
and with foci at the origin and at (0;H) is given by

(1)
√
x2 + y2 +

√
x2 + (y −H)2 = H + 2.

We square (1) to obtain

x2 + y2 + x2 + (H − y)2

+ 2
√
(x2 + y2)(x2 + (H − y)2)

= H2 + 4H + 4.

(2)

We move the radical to one side:

2
√
(x2 + y2)(x2 + (H − y)2)

= H2 + 4H + 4−
(
x2 + y2 + x2 + (H − y)2

)(3)

and square again. After cancellation we see that
(1) is equivalent to

(4)
(
y + 2+ 2

H

)2
− (x2 + y2)

(
1+ 4

H +
4
H2

)
= 0.

The calculation (1) through (4) depends on
habits of general reasoning, such as:

• squaring undoes a radical,
• the binomial formula,
• terms in an equation can be transferred to

the other side, etc.

General reasoning of this type is familiar in the
realm of ordinary assignable (finite) numbers,
but why does it remain valid when applied to
the fictional “realm” of inassignable (infinite or
infinitesimal) numbers? The validity of transferring
such general reasoning, originally instituted in

7Here “st” stands for the standard part function in the
context of the hyperreals. Of course, Leibniz used neither
the term “shadow” nor the “st” notation. Rather, these
notations from modern infinitesimal analysis implement
mathematically a heuristic principle of Leibniz’s called the
transcendental law of homogeneity, discussed in the section
“Assignable and Inassignable Quantities” below.
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the finite realm, to the “realm” of the infinite is
precisely the content of Leibniz’s law of continuity.8

We therefore apply Leibniz’s law of continuity to
equation (4) for an infiniteH. The resulting entity is
still an ellipse of sorts, to the extent that it satisfies
all of the equations (1) through (4). However, this
entity is no longer finite. It represents a Leibnizian
status transitus between ellipse and parabola. This
status transitus has foci at the origin and at an
infinitely distant point (0,H). Assuming x and
y are finite, we set x0 = st(x) and y0 = st(y) to
obtain an equation for a real shadow of this entity:

st
((
y + 2+ 2

H

)2
− (x2 + y2)

(
1+ 4

H +
4
H2

))
=
(
y0 + 2+ st

(
2
H

))2

−
(
x2

0 + y2
0

)(
1+ st

(
4
H +

4
H2

))
= (y0 + 2)2 −

(
x2

0 + y2
0

)
= 0.

Simplifying, we obtain

(5) y0 =
x2

0

4
− 1.

Thus, the finite portion of the status transitus (4)
is infinitely close to its shadow (5), namely, the

real parabola y = x2

4 − 1. This is the kind of payoff
Leibniz is seeking with his law of continuity.

Some historians have been reluctant to inter-
pret Leibniz’s mathematics in terms of modern
mathematical theories. Thus, Dauben presents a
list of authors, including Detlef Laugwitz, who
“have used nonstandard analysis to rehabilitate or
‘vindicate’ earlier infinitesimalists,” and concludes:

Leibniz, Euler, and Cauchy…had, in the
views of some commentators, “Robinso-
nian” nonstandard infinitesimals in mind
from the beginning. The most detailed and
methodically [sic] sophisticated of such
treatments to date is that provided by Imre
Lakatos; in what follows, it is his analysis
of Cauchy that is emphasized [11, p. 179].

However, Lakatos’s treatment was certainly not
“the most detailed and methodically sophisticated”
one by the time Dauben’s text appeared in 1988.
Thus, in 1987, Laugwitz had published a detailed
scholarly study of Cauchy in Historia Mathemat-
ica [31]. Laugwitz’s text in Historia Mathematica
seems to be the published version of his 1985
preprint “Cauchy and infinitesimals”. Laugwitz’s
1985 preprint does appear in Dauben’s bibliog-
raphy [11, p. 199], indicating that Dauben was
familiar with it. It is odd to suggest, as Dauben

8When the general reasoning being transferred to the
infinite “realm” is generalized to encompass arbitrary el-
ementary properties (i.e., first-order properties), one obtains
the Łoś-Robinson transfer principle.

seems to, that a scholarly study published in
Historia Mathematica would countenance a view
that Leibniz and Cauchy could have had “‘Robin-
sonian’ nonstandard infinitesimals in mind from
the beginning.” Surely Dauben has committed a
strawman fallacy here.

To a historian, the claim that Leibniz’s differ-
ential calculus was free of logical fallacies may
seem analogous to claiming that the circle can be
squared,9 but only if the historian embraces the
triumviratist story of analysis as an ineluctable
march from incoherent infinitesimalism toward
the yawning heights of Weierstrassian epsilontics.

Rather, Lakatos, Laugwitz, Bråting [8], and
others have argued that infinitesimals as employed
by Leibniz, Euler, and Cauchy have found a set-
theoretic implementation in the framework of
modern theories of infinitesimals. The existence of
such implementations indicates that the historical
infinitesimals were less prone to contradiction
than has been routinely maintained by triumvirate
historians.10 The issue is dealt with in more detail
by Katz and Katz [22], [23], [24], [25]; Błaszczyk et
al. [2]; Borovik et al. [3]; Katz and Leichtnam [26];
Katz, Schaps, and Shnider [27].

Assignable versus Unassignable

In this section we will retain the term “unassignable”
from Child’s translation [9] (inassignabiles in the
original Latin; see [37, p. 46]). After introducing
finite quantities (d)x, (d)y, (d)z, Leibniz notes that

the unassignables dx and dy may be substi-
tuted for them by a method of supposition
even in the case when they are evanescent
[9, p. 153].

Leibniz proceeds to derive his multiplicative law
in the case ay = xv. Simplifying the differential
quotient, Leibniz obtains

(6)
ady
dx

= xdv
dx

+ v + dv.

At this point Leibniz proposes to transfer “the
matter, as we may, to straight lines that never
become evanescent,” obtaining11

(7)
a (d)y
(d)x

= x (d)v
(d)x

+ v + dv.

The advantage of (7) over (6) is that the expressions
(d)y
(d)x and (d)v

(d)x are assignable (real). At this stage,
Leibniz points out that “dv is superfluous.” The rea-
son given is that “it alone can become evanescent.”

9Such was indeed the tenor of a recent referee report; see
http://u.cs.biu.ac.il/∼katzmik/straw2.html
10C. Boyer refers to Cantor, Dedekind, and Weierstrass as
“the great triumvirate;” see ([7, p. 298]).
11Child incorrectly transcribes formula (7) from Gerhardt,
replacing the equality sign in Gerhardt by a plus sign. Note
that Leibniz himself used the sign [\ (see [42, p. 371]).
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The transcendental law of homogeneity (see the
section “Assignable and Inassignable Quantities”)
is not mentioned explicitly in Cum Prodiisset ; there-
fore the discussion of this step necessarily remains
a bit vague. Discarding the dv term, one obtains the
expected product formula a (d)y

(d)x =
x (d)v
(d)x + v in this

case. Note that thinking of the left-hand side of (7)
as the assignable shadow of the right-hand side
is consistent with Leibniz’s example (2) (see the
subsection “Law of Continuity, with Examples”).

Souverain Principe

In a February 2, 1702, letter to Varignon, Leibniz
formulated the law of continuity as follows:

…et il se trouve que les règles du fini
réussissent dans l’infini comme s’il y avait
des atomes (c’est à dire des éléments
assignables de la nature) quoiqu’il n’y en
ait point la matière étant actuellement
sousdivisée sans fin; et que vice versa les
règles de l’infini réussissent dans le fini,
comme s’il y’avait des infiniment petits
métaphysiques, quoiqu’on n’en n’ait point
besoin; et que la division de la matière ne
parvienne jamais à des parcelles infiniment
petites: c’est parce que tout se gouverne
par raison, et qu’autrement il n’aurait point
de science ni règle, ce qui ne serait point
conforme avec la nature du souverain
principe [38, p. 350].

This formulation was cited by Robinson in 1966,
[45, p. 262]. To summarize: the rules of the finite
succeed in the infinite, and conversely.

Assignable and Inassignable Quantities
How did Leibniz view the relation of assignable
and inassignable quantities?

Relation of Being Infinitely Close

The rule governing infinitesimal calculation that
Knobloch represents as Leibniz’s rule 2.2 states:

2.2. x, y finite, x = (y+ infinitely small) ⇐⇒
x − y ≈ 0 (not assignable difference) [30,
p. 67].

Here the pair of parallel wavy lines represents
the relation of being infinitely close. Leibnizian
assignable quantities mark locations in what would
be called today an Archimedean continuum, or
A-continuum for short. Such a continuum stems
from the sixteenth-century work of Simon Stevin
(1548–1620) [47], [48]. Stevin initiated a systematic
approach to decimal representation of measuring
numbers, marking a transition from a discrete
arithmetic as practiced by the Greeks, to the
arithmetic of the continuum taken for granted
today (see [41], [44], and [2]).

Closely related to the distinction between the
A- and B-methodologies is a distinction between
two types of continua, which could be called an
A-continuum and a B-continuum. The latter encom-
passes inassignable entities such as infinitesimals
(in addition to assignable ones) and can be de-
scribed as a “thick” continuum.12 On occasion,
Leibniz describes such entities as “incomparable
quantities” and defines them in terms of the vi-
olation of what today is called the Archimedean
property. Thus, Leibniz writes in a letter to l’Hôpital:

I call incomparable quantities of which the
one can not become larger than the other
if multiplied by any finite number. This
conception is in accordance with the fifth
definition of the fifth book of Euclid ([36,
p. 288], cited in [19, p. 63]).13

Transcendental Law of Homogeneity

To mediate between assignable and inassignable
quantities, Leibniz developed an additional princi-
ple called the transcendental law of homogeneity .
Leibniz’s transcendental law of homogeneity
governs equations involving differentials. Bos
interprets it as follows:

A quantity which is infinitely small with
respect to another quantity can be neglected
if compared with that quantity. Thus all
terms in an equation except those of the
highest order of infinity, or the lowest order
of infinite smallness, can be discarded. For
instance,

a+ dx = a,(8)

dx+ ddy = dx,
etc. The resulting equations satisfy this…re-
quirement of homogeneity [5, p. 33], para-
phrasing [39, pp. 381–382].

The title of Leibniz’s 1710 text is Symbolismus
memorabilis calculi algebraici et infinitesimalis in
comparatione potentiarum et differentiarum, et de
lege homogeneorum transcendentali. The inclusion
of the transcendental law of homogeneity (lex
homogeneorum transcendentalis) in the title of the
text attests to the importance Leibniz attached to
this law.

How did Leibniz use the transcendental law
of homogeneity in developing the calculus? In
the next section we will illustrate an application
of the transcendental law of homogeneity to the
particular example of the derivation of the product
rule.

12The B-continuum can be thought of as “thicker” than the
A-continuum, because the B-continuum is, as it were, packed
chock-full of numbers, including infinitesimals.
13Horváth notes that Leibniz is actually referring to the
fourth definition of the fifth book.
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Figure 1. Zooming in on infinitesimal εεε (here
st(±ε) = 0)(±ε) = 0)(±ε) = 0).

Justification of the Product Rule
The issue is the justification of the last step in the
following calculation:

(9)

d(uv) = (u+ du)(v + dv)− uv
= udv + vdu+ dudv
= udv + vdu.

The last step in the calculation (9), namely,

udv + vdu+ dudv = udv + vdu,
is an application of Leibniz’s law of homogeneity.14

In his 1701 text Cum Prodiisset [37, pp. 46–47],
Leibniz presents an alternative justification of the
product rule (see [5, p. 58]). Here he divides by dx
and argues with differential quotients rather than
differentials. We analyzed Leibniz’s calculation in
the subsection “Assignable versus Unassignable”.
Adjusting Leibniz’s notation to fit with (9), we
obtain an equivalent calculation:15

d(uv)
dx

= (u+ du)(v + dv)− uv
dx

= udv + vdu+ dudv
dx

= udv + vdu
dx

+ dudv
dx

= udv + vdu
dx

.

Under suitable conditions the term dudv
dx is

infinitesimal, and therefore the last step

udv + vdu
dx

+ dudv
dx

= u dv
dx
+ v du

dx
is legitimized as a special case of the transcendental
law of homogeneity, which interprets the equality
sign in (8) as the relation of being infinitely
close, i.e., an equality up to infinitesimal error.
Note that the use of the equality sign “=” to
denote a nonsymmetric relation of discarding the
“inhomogeneous” terms as in (8) and (9) should

14Leibniz had two laws of homogeneity, one for dimension
and the other for the order of infinitesimalness. Bos notes
that they “disappeared from later developments” [5, p. 35],
referring to Euler and Lagrange.
15The special case treated by Leibniz is u(x) = x. This
limitation does not affect the conceptual structure of the
argument.

hardly shock the modern reader accustomed to
the “big O” notation: we write sinx = O(1), but we
would certainly not write O(1) = sinx. Leibniz’s
transcendental law of homogeneity involved such
an “asymmetric” relation, since it replaced an
inassignable quantity such as 2x + dx by the
assignable quantity 2x.

Was Leibniz’s System for Differential
Calculus Consistent?
Berkeley’s logical criticism of the calculus is that
the evanescent increment is first assumed to be
nonzero to set up an algebraic expression and
then treated as zero in discarding the terms that
contained that increment when the increment is
said to vanish. The criticism, however, involves a
misunderstanding of Leibniz’s method. The rebut-
tal of Berkeley’s criticism is that the evanescent
increment need not be “treated as zero” but, rather,
merely discarded through an application of the
transcendental law of homogeneity by Leibniz, as
illustrated in the previous section in the case of
the product rule.

While consistent, Leibniz’s system unquestion-
ably relied on heuristic principles, such as the laws
of continuity and homogeneity, and would thus fall
short of a standard of rigor if measured by today’s
criteria. On the other hand, the consistency and
resilience of Leibniz’s system is confirmed through
the development of modern implementations of
Leibniz’s heuristic principles. Thus, in the 1940s,
Hewitt [18] developed a modern implementation
of a hyperreal B-continuum extending R by means
of a technique referred to today as the ultrapower
construction. We will denote such a B-continuum
by the new symbol IIR. Denoting by IIR∞ the subset
of IIR consisting of inverses of nonzero infinitesi-
mals, we obtain a partition IIR = IIR<∞ ∪ IIR∞, where
IIR<∞ is the complement of IIR∞. We then have the
standard part function

(10) st : IIR<∞ → R,
illustrated in Figure 1. Note that the hyperreals
can be constructed out of integers (see [4]). The
traditional quotient construction using Cauchy
sequences, usually attributed to Cantor (and actu-
ally due to Méray [43], who published three years
earlier than E. Heine), can be factored through the
hyperreals (see [17]). In 1955, Łoś [40] proved his
celebrated theorem on ultraproducts, implying in
particular that elementary (more generally, first-
order) statements overR are true if and only if they
are true over IIR, yielding a modern implementation
of the Leibnizian law of continuity . Such a result
is equivalent to what is known in the literature as
the transfer principle (see [29]). The map that asso-
ciates to every finite element of IIR the real number
infinitely close to it is known in the literature as

1556 Notices of the AMS Volume 59, Number 11



the standard part function (10) (alternatively, the
shadow). Such a map is a mathematical imple-
mentation of the Leibnizian transcendental law of
homogeneity .
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About the Cover
Does it get any better?
The theme of this month’s cover is taken from 
the article by Jeff Lagarias and Chuanming 
Zong in this issue. As they mention, the highest 
known packing density of regular tetrahedra is 
4000/4671 (about 0.856347…). The packing is 
reported in “Dense crystalline dimer packings 
of regular tetrahedra”, an article in Discrete and 
Computational Geometry by Elizabeth Chen, 
Michael Engel, and Sharon Glotzer. It is a lat-
tice made up of a basic assembly of 4 regular 
tetrahedra, grouped in pairs. Each pair, called 
a dimer, is a pair of tetrahedra joining face-to-
face. One of these dimers is the inversion of 
the other, so that the two dimers are comple-
mentary, and are tightly bound to each other, 
with faces intersecting as in the figure at left 
on the cover.

In the packing, a layer of dimers is laid out in 
a slightly rising plane. A layer of inverted dimers 
is then inserted tightly onto that one, and then 
more alternating layers are added. Some idea of 
how the layers fit can be seen in the top view on 
the cover, and in the figure below.

One thing notable about the packing is how 
similar it appears to the well-known packing of 
spheres proved not so long ago by Tom Hales 
to be optimal.

The packing was constructed so as to be 
optimal among lattice packings with faces inter-
secting tightly. Chen et al. include in their article 
some heuristic reasoning that they might in fact 
have discovered the densest possible packing of 
regular tetrahedra, although it is hard to imagine 
that this can ever be proved. The article includes 
in an appendix a remarkable set of pictures il-
lustrating the construction, drawn by Chen. 

—Bill Casselman
Graphics Editor

(notices-covers@ams.org)
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