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I. M. Gelfand

Israel Moiseevich Gelfand, a
mathematician compared by
Henri Cartan to Poincaré and
Hilbert, was born on Septem-
ber 2, 1913, in the small town
of Okny (later Red Okny) near
Odessa in the Ukraine and died
in New Brunswick, New Jersey,
USA, on October 5, 2009.

Nobody guided Gelfand in
his studies. He attended the
only school in town, and his
mathematics teacher could
offer him nothing except
encouragement—and this was
very important. In Gelfand’s

own words: “Offering encouragement is a teacher’s
most important job.” In 1923 the family moved
to another place and Gelfand entered a vocational
school for chemistry lab technicians. However,
he was expelled in the ninth grade as a son of
a “bourgeois element” (“netrudovoi element” in
Soviet parlance)—his father was a mill manager.
After that Gelfand (he was sixteen and a half at
that time) decided to go to Moscow, where he had
some distant relatives.

Until his move to Moscow in 1930, Gelfand lived
in total mathematical isolation. The only books
available to him were secondary school texts and
several community college textbooks. The most ad-
vanced of these books claimed that there are three
kinds of functions: analytical, defined by formulas;
empirical, defined by tables; and correlational. Like
Ramanujan, he was experimenting a lot. Around
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age twelve Gelfand understood that some problems
in geometry cannot be solved algebraically and
drew a table of ratios of the length of the chord to
the length of the arc. Much later it became clear
for him that in fact he was drawing trigonometric
tables.

From this period came his Mozartean style
and his belief in the unity and harmony of
mathematics (including applied mathematics)—
the unity determined not by rigid and loudly
proclaimed programs, but rather by invisible
and sometimes hidden ties connecting seemingly
different areas. Gelfand described his school years
and mathematical studies in an interview published
in Quantum, a science magazine for high school
students [1]. In Gelfand’s own words: “It is my deep
conviction that mathematical ability in most future
professional mathematicians appears…when they
are 13 to 16 years old…. This period formed my
style of doing mathematics. I studied different
subjects, but the artistic form of mathematics that
took root at this time became the basis of my taste
in choosing problems that continue to attract me
to this day. Without understanding this motivation,
I think it is impossible to make heads or tails of
the seeming illogicality of my ways in working
and the choice of themes in my work. Because of
this motivating force, however, they actually come
together sequentially and logically.”

The interview also shows how a small provincial
boy was jumping over centuries in his mathematical
discoveries. At the age of fifteen Gelfand learned
of a series for calculating the sine. He described
this moment in the “Quantum” interview: “Before
this I thought there were two types of mathematics,
algebraic and geometric…When I discovered that
the sine can be expressed algebraically as a series,
the barriers came tumbling down, and mathematics
became one. To this day I see various branches of
mathematics, together with mathematical physics,
as parts of a united whole.”

After arriving in Moscow, Gelfand did not
have steady work and lived on earnings from
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occasional odd jobs. At some point he had the
good fortune to work at the checkout counter at
the State (Lenin’s) Library. This gave Gelfand a rare
opportunity to talk with mathematics students
from Moscow University. He also started to attend
university seminars, where he found himself under
intense psychological stress: new breezes were
blowing in mathematics with the new demands
for rigorous proofs. It was so different from his
“homemade” experiments and his romantic views
of mathematics. He also learned that none of
his discoveries were new. Neither this nor other
circumstances of his life deterred him, and his
interest in mathematics continued to grow.

Just as his abrupt expulsion from school, the
next twist in Gelfand’s fate was also one of many
paradoxes of life in the Soviet Union. On one hand,
as a son of a “bourgeois element” he could not be a
university student. On the other hand, at eighteen
he was able to obtain a teaching position at one
of many newly created technical colleges and at
nineteen to enter the Ph.D. program at Moscow
University. The reasons were simple: the Soviet
state needed knowledgeable instructors to educate
its future engineers and scientists of the proper
“proletarian origin”. But at that time the system
was not rigid enough to purge or even strictly
regulate graduate schools. As a result, a talented
boy was able to enter a Ph.D. program without a
college or even a high school diploma.

At the beginning of his career Gelfand was
influenced by several Moscow mathematicians,
especially his thesis adviser, A. N. Kolmogorov.
In the Quantum interview Gelfand said that from
Kolmogorov he learned “that a true mathematician
must be a philosopher of nature.” Another influence
was the brilliant L. G. Shnirelman. In 1935 Gelfand
defended his “candidate” (Ph.D.) thesis and in 1940
obtained the higher degree of Doctor of Science.
In 1933 he began teaching at Moscow University,
where he became a full professor in 1943 and
started his influential seminar. He lost this position
temporarily in 1952 during the infamous “anti-
cosmopolitans” (in fact, anti-Semitic) campaign but
was allowed to continue the seminar. Gelfand also
worked at the Steklov Institute and for many years
at the Institute for Applied Mathematics. There
he took part in the secret program related to the
Soviet version of the Manhattan Project and its
extensions. Andrei Sakharov mentioned his work
with Gelfand in [1].

In 1953 Gelfand was elected a Corresponding
Member of the Academy of Science (an important
title in the Soviet hierarchy). This happened right
after Stalin’s death and at the end of the anti-
cosmopolitans campaign. According to Gelfand,
the political uncertainty of the times made his
election possible. Later the situation in the USSR

Gelfand’s parents.

stabilized, anti-Semitism be-
came part of the Soviet
system, and Gelfand be-
came a full member of
the Soviet Academy only in
1984 after being elected to
leading foreign academies.

In 1989 Gelfand moved
to the United States. Af-
ter spending some time
at Harvard and MIT, he
became a professor at Rut-
gers University, where he
worked until his death.

The articles in the Notices

Gelfand at age 3, 1916.

present various descriptions
of Gelfand’s multifaceted re-
search, his way of doing
mathematics, and interaction
with people. A leading Amer-
ican expert once told me that
after reading all definitions
in Gelfand’s papers, he could
easily prove all his theorems.
Well, this easiness was based
on long computations and a
thorough consideration of a
variety of carefully selected
examples. Gelfand himself
liked to repeat a statement
by a Moscow mathematician:
“Gelfand cannot prove hard
theorems. He just turns any
theorem into an easy one.”

Gelfand always was surrounded by numerous
collaborators attracted by his legendary intuition
and the permanent flow of new ideas: in every
decade he was establishing a new area of research.
He had completely different approaches to different
people, as described by A. Vershik, A. Zelevinsky,
and me in our recollections. His students and
collaborators represent an unusual variety of styles
and interests. The only similarity for members of
the Gelfand school was their inherited passion for
mathematics.

One cannot write about Gelfand without men-
tioning his legendary seminar, which started in
1943 and continued until his death. Gelfand con-
sidered the seminar one of his most important
creations. It is hard to describe the seminar in a few
words: it was a “mathematical stock exchange”, a
breeding ground for young scientists, a demonstra-
tion of how to think about mathematics, a one-man
show, and much more. It was not about functional
analysis or geometry, it was about mathematics.
Some would come to the seminar just to hear
Gelfand’s jokes and paradoxes. For example, after
his visit to the U.S. he stated, “[The] Mathematical
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Gelfand in 1934.

world is not a metric space:
The distance from Harvard to
MIT is greater than the sum
of distances from Harvard to
Moscow and from Moscow to MIT.”

One should add that sometimes
Gelfand’s jokes were rather sharp,
but for a young person to become
a subject of Gelfand’s joke meant
to be noticed, to be knighted. The
seminar was also the right place to
find out about fresh preprints com-
ing from the inaccessible West. But
most participants were attracted
by the power and originality of

Gelfand, circa 1950.

Gelfand’s approach to mathematics.
He used the simplest grass-roots
examples, but he could turn them
around in a totally unexpected way.

Gelfand always paid special at-
tention to students, who formed the
majority of the seminar audience.
From time to time he would re-
peat: “My seminar is for high school
students, decent undergraduates,
bright graduates, and outstanding
professors.” One of the best descrip-
tions of the seminar was given by S.
Gindikin [3]. You may also see the
notes by Zelevinsky and me in this
collection (my notes will appear in

the next issue). Dusa McDuff described the seminar
impressions of a young foreigner.

The seminar also served as a constant supply of
Gelfand’s collaborators, who were already familiar
with Gelfand’s style and his way of thinking. Their
roles were quite different. Sometimes they would
discuss specific examples, sometimes very vague
ideas; sometimes they would bring their own
suggestions that would be ridiculed, torn apart,
turned upside down, and then transformed into
something exquisite. Only a few could bear the
task, but the pool of mathematicians in Moscow
was enormous.

The seminar was a reflection of Gelfand’s passion
to teach, as he tried to teach everyone and every-
where. Among his former students are F. Berezin,
J. Bernstein, E. Dynkin, A. Goncharov, D. Kazh-
dan, A. Kirillov, M. Kontsevich, and A. Zelevinsky.
The number of his informal students is hard to
estimate.

From the early period of his life also comes
Gelfand’s interest in education, especially in edu-
cation for school students living far from research
centers. He was among the founders of the Moscow
Mathematical Olympiads and later organized his
famous Mathematics School by Correspondence
for middle and high school students (see the

recollections by Sergei Tabachnikov in the second
part of this article). Gelfand founded, ran, and
wrote several textbooks for the school. His uni-
versity textbooks Linear Algebra and Calculus of
Variations (written with S. Fomin) also bear the
imprint of his style and personality.

It is hard to describe all of Gelfand’s achieve-
ments in mathematics. He left his unique and
powerful imprint everywhere (excluding, probably,
mathematical logic). Some (but far from all) of
his breakthroughs are described here by Simon
Gindikin, David Kazhdan, Bertram Kostant, Peter
Lax, Isadore Singer, and Anatoly Vershik. But
Gelfand’s interests spread far beyond pure and
applied mathematics. He left a number of papers
in biology, physiology, medicine, and other fields.

Gelfand was the first to obtain the Wolf Prize,
in 1978 (together with C. L. Siegel), and had many
other awards, including the Kyoto Prize (1989) and
the MacArthur Fellowship (1994). He was elected
to all leading academies and had honorary degrees
from many universities.

This collection of articles about Gelfand also
contains an impression of the Gelfand seminar
by a foreigner (Dusa McDuff), a look at the
Gelfand school from inside (Andrei Zelevinsky and
Vladimir Retakh), a description of Gelfand’s School
by Correspondence (Sergei Tabachnikov), and an
essay, “Gelfand at 92” by Mark Saul.
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I. M. Singer

I. M. Gelfand

Israel Gelfand was one of the most influential
mathematicians of the twentieth century—I dare
say, the most outstanding in the last sixty years.

Unfortunately, our society neither understands
nor appreciates mathematics. Despite its many
applications, despite its intellectual power which
has changed the way we do science, mathematicians
are undervalued and ignored. Its practitioners,
its leaders go unrecognized. They have neither
power nor influence. Watching the negative effects
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Adapted from: I. M. Singer, “Tribute to I. M. Gelfand”,
Progress in Mathematics, vol. 132, Birkhäuser Boston, 1995.
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popularity causes in other fields and looking at
the few superficial articles about mathematics, I
think it is just as well.

Faced constantly with problems we can’t solve,
most mathematicians tend to be modest about
themselves and their accomplishments. Perhaps
that is why we have failed to recognize a giant
in our midst. I won’t compare Gelfand with other
outstanding mathematicians or scientists of the
twentieth century; if I did, you would start checking
for yourselves whether you agree with me. But focus
on my point—we had a giant in our midst. I turn
to other fields to find comparable achievements:
Balanchine in dance or Thomas Mann in literature
or Stravinsky, better still, Mozart in music, but
for me, a better comparison is with artists like
Cezanne and Matisse. I commend to you the great
poet Paul Rilke’s letter on Cezanne. He said, “Paul
Cezanne has been my supreme example, because
he has remained in the innermost center of his
work for forty years…which explains something
beyond the freshness and purity of his paintings”
(of course, much longer for Gelfand).

Evoking Matisse is perhaps more apt. A Matisse
is breathtaking. No matter what his personal
circumstance, he turns to new frontiers with joy
and energy. Particularly outstanding is his later
work: Jazz and the remarkable “papier-decouples”,
efforts done in the early 1880s.

Gelfand always dazzled us with new and pro-
found ideas. One of his latest works, the book with
Kapranov and Zelevinsky, is a major effort that
maps out new directions for decades to come.

In preparing this article, I asked many people for
topics I should emphasize. You will be interested
in what happened. First, there was little inter-
section in the subjects my correspondents chose.
Second, everyone gave me a five- to twenty-minute
enthusiastic lecture on the essence of Gelfand’s
contribution—simple and profound.

Reviewing Gelfand’s contributions to mathemat-
ics is an education. Let me remind you of some of
his main work.

1. Normed rings
2. C*-Algebras (with Raikov)—the GNS Con-

struction
3. Representations of complex and real semisim-

ple groups (with Naimark and Graev)
4. Integral Geometry—Generalizations of the

Radon Transform
5. Inverse scattering of Sturm-Liouville systems

(with Levitan)
6. Gelfand-Dickey on Lax operators and KdV
7. The treatises on generalized functions
8. Elliptic equations
9. The cohomology of infinite dimensional Lie

algebras (with Fuchs)

After receiving honorary degree at Oxford in
1973. Left with Gian-Carlo Rota.

10. Combinatorial characteristic classes (begin-
ning with MacPherson)

11. Dilogarithms, discriminants, hypergeometric
functions

12. The Gelfand seminar
It is impossible to review his enormous contri-

butions in a short note. I will just comment on a
few results that affected me.

As a graduate student, one of the first strong
influences on me was Gelfand’s normed ring paper.
Marshall Stone had already taught us that points
could be recaptured in Boolean algebras as maximal
ideals. But Gelfand combined analysis with algebra
in a simple and beautiful way. Using the maximal
ideal in a complex commutative Banach algebra, he
represented such algebras as algebras of functions.
Thus began the theory of commutative Banach
algebras. The spectral theorem and the Wiener’s
Tauberian theorem were elementary consequences.
I was greatly influenced by the revolutionary view
begun there.

A natural next step for Gelfand was the study of
noncommutative C*-algebras. He represented such
algebras as operator algebras using the famous GNS
construction. It seemed inevitable to find unitary
representations of locally compact groups using
their convolution algebras. The representation
theory of complex and real semisimple Lie groups
followed quickly. What struck me most was the
geometric approach Gelfand and his coworkers
took. Only recently it appears this subject has
become geometric again.

In 1963 twenty American experts in PDE were
on their way to Novosibirsk for the first visit of
foreign scientists to the academic city there. It
was in the midst of Khrushchev’s thaw. When I
learned about it, I asked whether I could be added
to the list of visitors, citing the index theorem
Atiyah and I had just proved. After reading his
early papers, I wanted to meet Gelfand. Each day of
my two-week stay in Novosibirsk I asked Gelfand’s
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With M. Atiyah, 1973.

students when
he was com-
ing. The response
was always “to-
morrow”. Gelfand
never came. I
sadly returned to
Moscow. When I
got to my room
at the famous Ho-
tel Ukraine, the
telephone rang
and someone said
Gelfand wanted to

With I. M. Singer, 1973.

meet me, could
I come down-
stairs. There was
Gelfand. He in-
vited Peter Lax and
me for a walk.
During this walk,
Peter tried to tell
Gelfand about his
work on SL(2, R)
with Ralph Phillips.
Gelfand tried to ex-
plain his own view
of SL(2, R) to Pe-
ter, but his English

was inadequate. (He was rusty; within two days his
English was fluent.) I interrupted and explained
Gelfand’s program to Peter. At the corner Gelfand
stopped, turned to me and said, “But you are my
student.” I replied, “Indeed, I am your student.”
(By the way, Gelfand told me he didn’t come to
Novosibirsk, because he hated long conferences.)

Although it was an honor to be Gelfand’s student,
it was also a burden. We tried to imitate the depth
and unity Gelfand brought to mathematics. He
made us think harder than we believed possible.
Gelfand and I became close friends in a matter of
minutes, and we remained so ever since. I was ill
in Moscow, and Gelfand took care of me.

I didn’t see him again for ten years. He was
scheduled to receive an honorary degree at Oxford,
where I was visiting. It was unclear that he would be
allowed to leave the Soviet Union to visit the West.
I decided not to wait and returned home. A week
later, I received a telegram from Atiyah: Gelfand
was coming—the queen had asked the Russian
ambassador to intercede. I flew back to England and
accompanied Gelfand during his visit—a glorious
time. Many things stand out, but I’ll mention only
one: our visit to a Parker fountain pen store. Those
of you who have ever shopped with Gelfand will
smile; it was always an unforgettable experience.
Within fifteen minutes, he had every salesperson
scrambling for different pens. Within an hour I

knew more about the construction of fountain
pens than I ever cared to know and had ever
believed possible! Gelfand’s infinite curiosity and
focused energy on details were unbelievable; those,
coupled with his profound intuition of essential
features, are rare among human beings. He was
beyond category.

Talking about Oxford, let me emphasize
Gelfand’s paper on elliptic equations. In 1962
Atiyah and I had found the Dirac operator on
spin manifolds and already had the index formula
for geometric operators coupled to any vector
bundle, although it took another nine months to
prove our theorem. Gelfand’s paper was brought
to our attention by Smale. It enlarged our view
considerably, as Gelfand always did, and we quickly
realized, using essentially the Bott periodicity
theorem, that we could prove the index theorem
for any elliptic operator.

I should also mention the application of
Gelfand’s work to physics: Gelfand-Fuchs, for
example, on vector fields on the circle, the so-
called Virasoro algebra, which Virasoro did not in
fact define. Although I mentioned Gelfand-Dickey,
I have to stress its influence on matrix model
theory. And I have to describe how encouraging
he was and how far ahead of his time he was in
understanding the implication of a paper which
seemed obscure at the time.

Claude Itzykson told me that his famous pa-
per with Brezin, Parisi, and Zuber that led to
triangulating moduli space at the beginning went
unnoticed by scientists. The authors then received
one request for a reprint—from Gelfand.

Ray and I were very excited about our definition
of determinants for Laplacian-like operators and
its use in obtaining manifold invariants-analytic
torsion. The early response in the United States was
silence; Gelfand sent us a congratulatory telegram.

In conclusion, I want to mention one special
quality of Gelfand. He was a magician. It is not very
difficult—not very difficult at all—for any of us
mere mortals to keep the difference in our ages a
constant function of time. But with Gelfand, when I
met him at his fiftieth, and in his sixtieth, I thought
he was older than I. Ten years later, I felt that we
were the same age. Later it became clear to me
that Gelfand was, in fact, much younger than most
mathematicians.
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David Kazhdan

Works of I. Gelfand on the Theory of
Representations

The theory of group representations was the center
of interest of I. Gelfand. I think this is related
to the nature of this domain, which combines
analysis, algebra, and topology in a very intricate
fashion. But this richness of the representation
theory should not be taken as self-evident. To a
great extent we owe this understanding to works of
I. Gelfand, to his unique way of seeing mathematics
as a unity of different points of view.

In the late thirties, when Gelfand started his
mathematical career, the theory of representations
of compact groups and the general principles of
harmonic analysis on compact groups were well
understood due to works of Hermann Weyl. Har-
monic analysis on locally compact abelian groups
was developed by Lev Pontryagin. The general
structure of operator algebras was clarified by
Murray and von Neumann. But the representation
theory of noncompact noncommutative groups
was almost nonexistent. The only result I know of
is the work of Eugene Wigner on representations
of the inhomogeneous Lorentz group. Wigner has
shown that the study of physically interesting
irreducible representations of this group can be
reduced to the study of irreducible representations
of its compact subgroups.

It was not at all clear whether the theory of
representations of real semisimple noncompact
groups is “good”, i.e., whether the set of irreducible
representations could be parameterized by points
of a “reasonable” set, and whether the unitary
representations can be uniquely decomposed into
irreducible ones. The conventional wisdom was
to expect that the beautiful theory of Murray-von
Neumann factors is necessary for the description
of representations of real semisimple noncompact
groups. On the other hand, Gelfand, for whom
Gauss and Riemann were the heroes, expected
that the theory of representations of such groups
should possess classical beauty.

Gelfand’s first result in 1942 with D. Raikov
in the theory of representations of groups is
a proof of the existence of “sufficiently many”
unitary representations for any locally compact
group G. In other words, any unitary irreducible
representation ofG is a direct integral of irreducible
ones. The proof of this result is based on the very
important observation that the representation
theory of the group G is identical to the theory
of representations of the convolution algebra of
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On Raoul Bott’s porch, 1976. Left to
right, I. Gelfand, R. MacPherson,
R. Bott, D. Kazhdan.

measures onGwith
compact support
and on an appli-
cation of Gelfand’s
theory of normed
rings.

Next, in the
late forties, there
was a stream of
papers (most of
them jointly with
M. Naimark) that
developed the main
concepts of the rep-
resentation theory
of noncompact classical groups G. It would be a
much simpler task to describe the concepts that
appeared later than to describe the richness of this
work.

Gelfand believed that the space Ĝ of irreducible
representations of G is a reasonable “classical”
space. If I understand correctly, the first indication
of the correctness of this intuition came from the
theory of spherical functions, developed in the
early forties but published only in 1950. Let K ⊂ G
be the maximal compact subgroup and Ĝ0 ⊂ Ĝ be
the subset of irreducible representations of class 1
(that is, the representations (π,V) of G such that
VK ≠ 0). Gelfand observed that the subset Ĝ0 is
equal to the set of irreducible representations of
the subalgebra of two-sided K-invariant functions
on G, proved the commutativity of this algebra,
and identified the space of its maximal ideals with
the quotient LT/W where LT is the torus dual
to the maximal split torus T ⊂ G and W is the
Weyl group. The generalization of this approach
developed in the fifties by Harish-Chandra and
Godement led to the proof of the uniqueness of
the decomposition of any representation of the
group G into irreducibles.

Given such a nice classification of irreducible
representations of class 1, it was natural to
guess that the total space Ĝ is also an algebraic
variety. But for this purpose one had to find a
way to construct irreducible representations of
G. Gelfand introduced the notion of parabolic
induction (for classical groups) and, in particular,
studied representations πξ of G induced from
a character ξ of a Borel subgroup B ⊂ G. He
showed that, for generic character ξ of T = B/U ,
the representation πξ is irreducible and that the
representations πξ , πξ′ are equivalent if and only
if the characters ξ, ξ′ of T are conjugate under
the action of the Weyl group W . The proof is
based on the decomposition G =

⋃
w∈W BwB for

classical groups. This decomposition was extended
by Harish-Chandra to the case of an arbitrary
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semisimple group and is
known now as the Bruhat
decomposition.

This construction gives
many irreducible repre-
sentations. But how to
show that not much is
missing? In the case of
a compact group G it
is well known that all
the representations of
G are constituents of
the regular representa-
tion. Therefore, to see
that a list of represen-
tations πa, a ∈ A, of G is
complete, it is sufficient
to show that one can write
the delta function δe on

G as a linear combination of the characters tr(πa).
But for representations (π,V) of a noncompact
group G, which are typically infinite-dimensional,
the trace of the operator π(g), g ∈ G, is not
defined. The ingenious idea of Gelfand was to
define characters tr(π) as distributions. That is,
he showed that for any smooth function f (g) with
compact support, the operator

πξ(f ) :=
∫
f (g)πξ(g)dg

is of trace class and defined the distribution tr(π)
by tr(π)(f ) := tr(π(f )). Now one could look
for a W -invariant measure (called the Plancherel
measure) µX on the space X of unitary characters
of T such that

(1) δe =
∫
ξ ∈ Xtr(πξ)µX .

It is not difficult to see that such a measure µX
is unique (if it exists), and the knowledge of µX
is equivalent to the explicit decomposition of the
regular representation L2(G) into irreducible ones.

In a series of joint works with M. Naimark,
Gelfand was able to guess a beautiful algebraic
expression for the Plancherel measure µX in the
case of classical complex groups and to prove
equality 1 by very intricate explicit calculations—a
great reward for difficult work.

As a continuation of this series of works, Gelfand
posed a number of questions (he was able to answer
them only in particular cases) which influenced the
development of representation theory for many
years.

1. In joint work with M. Graev, Gelfand classified
generic irreducible representations of the group
SL(n,R). They found that Ĝ is a union of pieces
called series which correspond to conjugacy classes
of maximal tori. Moreover, the series correspond-
ing to nonsplit tori have realizations in spaces of

(partially) analytic functions. Gelfand conjectured
that the analogous description of the space Ĝ
should be true for all real semisimple groups
and that it should be possible to realize discrete
series in appropriate spaces of analytic functions.
The first part of the conjecture was justified by
Harish-Chandra, who constructed discrete series
of representations for real semisimple groups and
found the Plancherel measure concentrated on uni-
tary representations induced from discrete series
of Levi subgroups. The second part was modified
by Langlands, who suggested the realization of
discrete series (which exist if and only if there is
a maximal compact torus T c ⊂ G) in the space
of cohomologies Hi(G/T c ,F) of homogeneous
holomorphic vector bundles F on G/T c (while
Gelfand considered only the realization in sections
of such bundles).

2. In joint work with Graev, Gelfand constructed
the analog of the Paley-Wiener theorem for groups
SL2(C) and SL2(R) (that is, a decomposition of the
representation of G on the space C∞c (G) of smooth
functions with compact support) and raised the
question about the extension of this result to
other groups. This generalization was obtained by
J. Arthur in 1983.

3. Also in joint work with Graev, Gelfand con-
structed the decomposition of representations of
the group SL2(C) on the space L2(SL2(C)/SL2(R)
and asked the question about the decomposition of
representations of the group G on L2(G/H) where
H ⊂ G is the set of fixed points of an involution.
An extension of this result to arbitrary such pairs
(G,H) was achieved only recently (see the talk by
P. Delorme at the ICM Congress, 2002).

4. Gelfand showed that many special functions,
such as Bessel and Whittaker functions and Ja-
cobi and Legendre polynomials, appear as matrix
coefficients of irreducible representations. This
interpretation of special functions immediately
explains the functional and differential equations
for these functions. It is clear now that (almost)
all special functions studied in the nineteenth
and twentieth centuries can be interpreted as
matrix coefficients or traces of representations
of groups or their quantum analogs (see, for ex-
ample, papers of Tsuchiya-Kanie, Koelink, Noumi,
Rosengren, Stokman, Sugitani, and others on repre-
sentation theoretic interpretation of Askey-Wilson,
Macdonald, and Koornwinder polynomials).

The next series of Gelfand’s work (with M. Tsetlin)
was on irreducible finite-dimensional representa-
tions of classical groups G. The classification of
such representations (πλ, Vλ) was known, but
Gelfand asked a new question, partially influenced
by his interest in physics: how to find a “good”
realization of these representations. In other words,
how to find a basis in Vλ which allows one to
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compute matrix coefficients of πλ(g), g ∈ G, in
these bases. Such a basis (Gelfand-Tsetlin basis)
was constructed for irreducible representations of
groups SLn and SOn and became the core of many
works in representation theory and combinatorics.

Gelfand and Graev found the expression for
the matrix coefficients of representations πλ in
terms of discrete versions of Γ -functions. This
realization of finite-dimensional representations
has an important analog for infinite-dimensional
representations of groups over local fields.

As part of the theory of finite-dimensional
representations, Gelfand studied the Clebsch-
Gordan coefficients, which give a decomposition of
tensor products of irreducible representations into
irreducible components. He noticed (at least for
G = SL2) that Clebsch-Gordan coefficients of G are
discrete analogs of Jacobi polynomials which are
matrix coefficients of irreducible representations
of G. Possibly an explanation of this can be given
by using the theory of quantum groups, where
multiplication and comultiplication are almost
symmetric to each other.

The next series of Gelfand’s work was on
representations of groups over finite and local
fields F . The basic results here are the proof of the
uniqueness of a Whittaker vector, the existence
of a Whittaker vector for cuspidal representations
of GLn(F), the construction of an analog of the
Gelfand-Tsetlin basis for such representations,
and the description of cuspidal representations
of GLn(F) in terms of Γ -functions (joint work
with M. Graev and D. Kazhdan). But I think
that his most important work in this area is the
complete description of irreducible representations
of groups SL2(F) and GL2(F) for local fields with
the residue characteristic different from 2 (joint
work with M. Graev and A. Kirillov). They showed
that irreducible representations of GL2(F) are
essentially parameterized by conjugacy classes
of pairs (T , ξ) where T ⊂ GL2(F) is a maximal
torus and ξ : T → C is a character. Moreover,
they found a formula for the characters trTξ (g) of
these representations and an explicit expression
for the Plancherel measure. A striking and until
now unexplained feature of these formulas is that
they are essentially algebraic. For example, the
Mellin transform L(g, t) in ξ of trTξ (g), which is a
function of GL2(F)× T , is given by

L(g, t) = δ(det(g),Nm(t))εT
× (tr(g)− tr(t))/|tr(g)− tr(t)|.

Here T = E∗ where E is a quadratic extension
of F , εT : F∗ → ± is the quadratic character
corresponding to E, tr is the matrix trace, and tr
and Nm are the trace and norm maps from E to F .

The understanding of the existence of an
intrinsic connection between the structure of

Talking at 90th birthday conference,
2003.

irreducible represen-
tations of groups
over local fields
and number theory
was greatly clarified
by Langlands. On
the other hand, a
generalization of al-
gebraic formulas for
the Mellin transform
of characters and
for the Plancherel
measure was never
found.

In other work,
Gelfand and Graev
found a description
of the irreducible representations of the multiplica-
tive group D∗ of quaternions over F as induced
from 1-dimensional representations of appropriate
subgroups. This was of constructions of irreducible
representations of D∗ that were later generalized
by R. Howe to other p-adic groups.

The description of representations of the groups
SL2(F) and GL2(F) for local fields is presented in
the book Generalized Functions, Volume 6 written
with Graev and I. Piatetski-Shapiro. In the same
book, Gelfand developed the theory of representa-
tions of semisimple adelic groups G(AK) for global
fields K. He defined the cuspidal part

L2
0(G(AK)/G(K)) ⊂ L2(G(AK)/G(K))

of the space of automorphic forms, proved that
the representation of G(AK) on L2

0(G(AK)/G(K))
is a direct sum of irreducible representations, and
developed a representation-theoretical interpreta-
tion of the theory of modular forms. The work of
Langlands is very much influenced by these results
of Gelfand.

It became clear that generic representations of
any semisimple Lie group or Lie algebra almost
do not depend on a choice of a particular group,
so Gelfand tried to find a way to express this
similarity in an intrinsic way. In a series of papers
with A. Kirillov he studied the structure of the
skew-field F(g) of fractions for the universal
enveloping algebra of a Lie algebra g. He found
that the skew-fields F(G) are almost defined by
the transcendence degree of the center Z(g) (equal
to the rank r(g) of g) and by their Gelfand-Kirillov
dimension (equal to (dim(g) − r(g))/2). These
results are the foundation of works of A. Joseph
on the structure of the category of Harish-Chandra
modules.

The last series of work of Gelfand on represen-
tation theory was on category O of representations
of a semisimple Lie algebra. This category of
representations was defined by Verma, but the
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basic results are due to J. Bernstein, I. Gelfand,
and S. Gelfand. They constructed a resolution
of finite-dimensional representations by Verma
modules Vw , w ∈ W (known as the BGG-resolution),
discovered the duality between irreducible and pro-
jective modules in the category O, and found the
relation between the category O and the category
of Harish-Chandra modules. These results form
the cornerstone of the theory of representations of
semisimple Lie algebras and their affine analogs.

However, their main discovery was the existence
of a strong connection between algebraic geometry
of the flag space B of a semisimple group and
the structure of the category O. For example,
they showed that there is an embedding of Vw
into Vw ′ if and only if the Bruhat cell BwB ⊂ B
belongs to the closure of Bw ′B. This connection
between algebraic geometry and the category of
representations is the basis for the recent geometric
theory of representations.

There are other important works of Gelfand
on representation theory (such as indecompos-
able representations of semisimple Lie groups,
models of representations, and representations
of infinite-dimensional groups), but I want to
mention two series of works that originated in
representation theory but have an independent
life. The appearance of such works is very natural,
since for Gelfand representation theory was a part
of a much broader structure of analysis.

Integral geometry is an offshoot of representa-
tion theory. The proof of the Plancherel theorem
for complex groups is equivalent to the construc-
tion of the inversion formula, which gives the
value of a function in terms of its integrals over
horocycles. Gelfand (in a series of joint works
with Graev, Z. Shapiro, S. Gindikin, and others)
found inversion formulas for reconstruction of
the value of a function on a manifold in terms
of its integrals over an appropriate family of
submanifolds. The existence of such inversion
formulas found applications in such areas as
symplectic geometry, multi-dimensional complex
analysis, algebraic analysis, nonlinear differential
equations, and Riemannian geometry, as well as
in applied mathematics (tomography). (A more
detailed description of Gelfand’s work on integral
geometry is given by S. Gindikin in the current
issue of the Notices.)

Analogously, the work of Gelfand with V. Pono-
marev and, later, with J. Bernstein on quivers
was motivated by the problems in representation
theory—the description of indecomposable repre-
sentations for the Lorentz group. But the inner
development of this subject led to a beautiful and
deep theory which later made a full circle in works
of Ringel, Lusztig, and Nakajima and became the

foundation for geometric representation theory of
Lie algebras and quantum groups.

Anatoly Vershik

Gelfand, My Inspiration

The achievement of Israel Moiseevich Gelfand
was an unusual phenomenon of twentieth-century
mathematics. His name must be included on any
short list of those who formed the mathematics of
that century. He pioneered many new ideas and
created whole new provinces of knowledge. An ex-
ceptional intuition, a depth and breadth of thought,
a liveliness in comprehending mathematics—these
were his chief qualities.

But the most important quality of this wonderful
mathematician was his ability to inspire others.
Many other mathematicians, both in Russia and
abroad, felt an amazing sense of inspiration in
talking to or corresponding with Gelfand. His ideas
and his advice stimulated many discoveries and
much research done by others.

Gelfand and Leningrad Mathematics
I was a student in Leningrad in the 1950s, when
Gelfand’s name was well known to all Leningrad
mathematicians, including students interested in
the subject. This is not surprising. The interests
of most Leningrad mathematicians (including
L. V. Kantorovich, V. I. Smirnov, G. M. Fikhtengoltz,
and others) centered on functional analysis and
its applications, and this “Leningrad approach”
was one of the branches of functional analysis
that developed in the Soviet Union in the years
1930–1950. I. M. Gelfand was an iconic figure in
this development.

The Leningrad approach differed from that
taken in Moscow (by A. N. Kolmogorov, I. M.
Gelfand, L. A. Lyusternik and A. I. Plessner) and
in the Ukraine (by M. G. Krein and N. I. Akhiezer).
It was centered around the theory of functions,
operator theory, and its applications to differential
equations and methods of computation. The main
difference between the Moscow approach and the
other two was the study advocated by Gelfand of
infinite-dimensional representations of groups and
algebras and an interest not so much in Banach
spaces as in general problems of noncommutative
Fourier analysis and, more broadly, in a synthesis
of algebra, classical analysis, and the theory
of functions. These ideas were not present in
Leningrad for many years.

Anatoly Vershik is professor of mathematics at the St.
Petersburg Department of the Steklov Mathematical Institute
RAS. His email address is vershik@pdmi.ras.ru.

This segment of the article was translated from the Russian
by Vladimir Retakh and Mark Saul.
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Gelfand’s fame and authority went unchallenged
at Leningrad seminars. While still young, Gelfand
had broken into the elite club of Moscow mathe-
maticians of the highest level, amazing everyone
with his theory of maximal ideals of commutative
Banach algebras (the so-called “Gelfand trans-
form”), and he remained a leader of this club until
his death.

Among Leningrad mathematicians Gelfand es-
pecially valued L. V. Kantorovich, D. K. Faddeev,
and V. A. Rokhlin, whom he remembered from his
student days. Like Kantorovich, Gelfand played an
active role in the atomic research project and gen-
erally knew the work of Kantorovich on functional
analysis. Both these outstanding mathematicians
did much work on applied problems.

In 1986, at the funeral of Kantorovich, Gelfand
told me that of all of Kantorovich’s results, the one
that impressed him the most was his pioneering
work on linear programming. That was my view as
well. On the other hand, when I asked Kantorovich
to submit my paper to Doklady in 1971, he noted
that the paper really represented the work of
Gelfand and that it was disgraceful that Gelfand
was not still a full member of the Soviet Academy
of Science. Gelfand had direct contact with only a
few of the younger Leningrad mathematicians in
addition to me—in particular, with L. D. Faddeev
and M. S. Birman.

My First Acquaintance with Gelfand’s Work
The first significant mathematical papers that I
studied were the papers of I. M. Gelfand, D. A.
Raikov, and G. E. Shilov (Gimdargesh, as I called
them) on commutative normed rings and their pa-
pers that followed on generalized Fourier analysis.
This theory was a mathematical awakening for me.
I was enchanted by its beauty and simplicity, its
generality and depth.

Before this I had been hesitant. I could join
the Department of Algebra, where I attended
lectures by D. K. Faddeev. Or I could work in the
Department of Analysis, where my first mentor was
G. P. Akilov and where I might choose to specialize
in complex analysis (V. I. Smirnov, N. A. Lebedev)
or real and functional analysis (G. M. Fikhtengoltz,
L. V. Kantorovich, G. P. Akilov). Now functional
analysis was my only choice. And my interest was
mostly in the analysis of the Moscow school—
Gelfand’s functional analysis, as I described earlier.
Since that time the work of Gelfand and his school
in various areas have become my mathematical
guide.

One could say a lot about the great variety
of Gelfand’s interests and works. In fact, he
was interested in everything: biology, music, and

Lab of Function Theory at Moscow State
University, circa 1958. Left to right sitting,
I. Gelfand, Polyakov, D. E. Menshov,
N. K. Bari, G. P. Tolstov; standing,
P. L. Ulyanov, A. G. Kostychenko,
F. A. Berezin, G. E. Shilov, R. A. Minlos.

politics, not just
mathematics. I
would like to
write here about
the area of
his mathemati-
cal activity that
was closest to
my interests and
about the prob-
lems on which I
was fortunate to
work with him.

I would go so
far as to say that
the main legacy
of the work of
Gelfand’s first
period was his foundation (along with the group of
students he led) of the theory of normed commu-
tative rings (commutative Banach algebras, as they
are now called) and, most importantly, the theory
of unitary infinite-dimensional representations of
locally compact groups. These papers became
classics of mathematics despite the youth of the
authors.

As a byproduct of this theory, Gelfand and
Naimark gave a definition of general C∗-algebras
that is now in common usage. Once, as early
as the 1970s, Gelfand said to me, “If I could
only talk to von Neumann, I would explain to
him why our C∗-algebras are more important
than W∗-algebras (von Neumann algebras).” I can
add that Gelfand was always more interested
in topological and smooth problems (which are
connected with C∗-algebras) than in theoretical
metric problems (which are formulated in terms
of W∗-algebras). The representation theory that
will forever be connected with his name always
was a favorite subject of Gelfand’s, but his ideas
about relationships and details within this theory
kept changing. Among his wonderful traits was
a fearless irony towards his own earlier results.
When I told him that as a student I was impressed
by his work on Banach algebras, Gelfand replied,
“But why did we consider only maximal and not
prime ideals?” This remark is similar to one he
made in a talk in the 1970s, when I mentioned to
him my interest in his early papers. “I am always
praised for my work that was done five or more
years ago, and the same people are not satisfied
with what I am doing right now,” he explained
about his not uncommon critics. In fact, he was
always ahead of his time, he was always creating a
new fashion.

I remember being strongly influenced by
Gelfand’s talk in 1956 about problems in func-
tional analysis (he was probably following the
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example of a similar talk by von Neumann at the
International Congress of Mathematicians in 1954).
In this address he posed several general problems
and talked about their relationship to various
mathematical phenomena. One of these problems
was a conjecture about a possible connection
between Wiener measures and von Neumann
factors and of its possible utility in future work.
“Such beauty must not perish unused,” noted
Gelfand. I was a student at that time and I was
deeply impressed by this strong assertion of the
primacy of aesthetic estimation of mathematical
theories above other criteria.

A Few Comments on Gelfand’s Work of the
1950s and 1960s
Perhaps Gelfand’s highest achievement was the
theory of infinite-dimensional unitary representa-
tions of complex semisimple Lie groups, created
together with M. A. Naimark, M. I. Graev, and
others.

It is hardly possible to comment on this devel-
opment completely here, but it is worth noting
that Gelfand faced many difficulties common to all
pioneers: many details had to be clarified later or
proofs rewritten, and so it would happen that attri-
butions of priority or authorship were given to other
researchers. But one must remember that Gelfand
was the first to initiate and develop this huge
area of mathematics, which is so useful in physics.
There was no theory of infinite-dimensional rep-
resentations before Gelfand’s. From reading the
recently published diaries of A. N. Kolmogorov,
one can understand how impressed the world of
mathematics was by these works in the 1940s. It is
remarkable how confident Gelfand was in starting
up completely new areas.

Gelfand’s next great passion in the late 1950s
and 1960s—an interest common to many centers
of mathematics—was the theory of distributions
of L. Schwartz (called in Russia “generalized
functions”). Several Russian mathematicians had
a keen interest in the subject but with a touch of
bitterness and perhaps chagrin. The reason was
simple: Gelfand, and before him N. M. Gyunter
(a famous Petersburg mathematician) and L. V.
Kantorovich and certainly S. L. Sobolev in fact
not just made use of but created the theory of
generalized functions. In one of his lectures in
Leningrad in the early1960s, Gelfand stated directly
that he and Naimark used distributions in their
work on representation theory. However, the merit
of L. Schwartz’s work is that he understood the
importance of the general theory and substantiated
it with many examples. It is important to add that,
as often happens in the theory of functions, this
reformulation actually gave a new language and
new understanding to many concepts.

However, the hope that arose at that time that
this reformulation would give essentially new
results did not exactly come true, and we cannot
talk about a serious change from the theory of
Banach spaces to the theory of locally convex
spaces, despite the expectations of that time.

The celebrated six-volume series of books Gen-
eralized Functions by Gelfand and his coauthors
demonstrated their unparalleled depth of under-
standing of the subject. The breadth of the area
covered, from partial differential equations to rep-
resentations and number theory, is characteristic
of Gelfand’s style.

In particular, Gelfand was among the first to un-
derstand the importance of turning from Banach’s
methods in functional analysis to more general
linear topological (nuclear) spaces and their value
for the spectral theory of operators (the Gelfand-
Kostyuchenko theorem) and the theory of measure
in linear spaces (the Minlos theorem). Gelfand
also immediately understood the usefulness of
generalized stochastic processes (Gelfand-Ito pro-
cesses). This stimulated the construction of the
theory of measures in linear spaces started by
A. N. Kolmogorov in the 1930s. The famous “holy
trinity” (triples of Hilbert spaces), generalized
spectral decompositions, an original approach to
Levi processes and to Gelfand-Segal constructions,
quasi-invariant measures, and so on were studied
and developed by hundreds of mathematicians.

My First Meeting with Gelfand
Not counting a few brief discussions with Gelfand
during the Mathematical Congress in 1966 or in the
late 1960s or on my rare visits to his seminar when
I happened to be in Moscow, our first close meeting
took place in the spring of 1972 when I came to
Moscow for two months. After the seminar I walked
to his home with several participants. I started
talking about the work I had recently started
on asymptotic statistics of the lengths of cycles
of random permutations. This paper initiated
a long series written by me and my students
on what I later called the asymptotic theory of
group representations. Gelfand was interested and
invited me to his home the next day to continue the
conversation. I remember that Dima Kazhdan, who
was also there, understood me sooner than Gelfand,
who often asked me to repeat what I had said.
His active and sometimes aggressive questioning
was very helpful to the development of the theme
and the improvement of the talk, if you could
ignore the form of the criticism. But I had long
ago heard about Gelfand’s manner in such things.
In talking about mathematics he would openly
express his displeasure to his listener. One of his
expressions, which is useful in the upbringing of
young mathematicians, was “Keep your work and
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your self-esteem separate.” In other words, do not
take even harsh intellectual criticism personally.

I told Gelfand about my plans to study the
symmetric group and its representations. My
motivation for this research lay not only in the study
of the subject by itself but also in its applications
to optimization theory, linear programming, and
combinatorics. (At that time I worked in the
Department of Computational Mathematics and
Operational Research.) There was also a way
of connecting asymptotic theory with ergodic
theory. In our discussions, Gelfand remarked
that everything seemed to be clear with regard
to representations of finite groups, then started
talking enthusiastically about symmetric functions.
He recommended that I look at a mysterious paper
of E. Thoma about characteristics of the infinite
symmetric group, which were of special interest to
me.

Many things about the symmetric group were
unclear to me, and I was not satisfied with the
classical exposition of the theory of its representa-
tions despite the fact that it had been developed
by Frobenius, Schur, and Young, and also by such
giants as von Neumann and H. Weyl. It seemed to
me then that the foundations of this theory and
its relations with combinatorics were not yet clear.
Gelfand gave his final conclusion many years later,
after he had gotten to know and appreciate my
papers with S. Kerov and later with A. Okounkov.
He said something like, “It is all clear now.” But
that was all years later. In fact, the main idea of my
approach was, roughly speaking, an application of
the Gelfand-Tsetlin method, created in the early
1950s for representation of compact Lie groups, to
the theory of symmetric groups. It is worth noting
that a dissatisfaction with established theory often
begins with those studying the theory in their
mature years. That is what happened in my case. I
started to study representations theory later than
usual and got a certain advantage from this.

In Moscow, during our first conversation at
his home, Gelfand once again surprised me. He
repeated part of our discussion to Dima Kazhdan,
who had come in later, and said, as if it had already
been done, that I was studying the asymptotics of
Young diagrams. However, I had not mentioned
this and was just planning to do it. When I
corrected him, Gelfand said, “Yeah, yeah, but you
will do it later.” This unique ability of Gelfand
to see “three meters under the ground where
his interlocutor was standing” was one of his
most remarkable qualities. It instilled trust in his
judgment by many who got to know him, but
also drove off many who feared his ability to
see through them. He immediately and (usually)
correctly guessed what his companions were about
to say or what they had in mind but did not express,

With M. I. Graev, 1999.

and generally
knew how the
discussion would
turn out. There
are many ex-
amples of this,
the most striking
was his mathe-
matical intuition,
which allowed
him to guess the
result (often with-
out calculations)
and to foresee
what to expect
from a given method or even from the fur-
ther work of a mathematician or a whole team.
During that discussion Gelfand approved of my
ideas (later called asymptotic representations the-
ory). Many of these plans were then acted on by S.
Kerov, G. Olshanski, A. Okounkov, A. Borodin, and
a number of Western mathematicians.

At Gelfand’s seminar in 1977 I talked with
S. Kerov about my results on the limiting form
of Young diagrams and about our approximation
approach to representations of the infinite symmet-
ric group. At that time Gelfand, Graev, and I had
already started our work on the representations of
current groups. I. M. always commented on every
talk at his seminar. During my talk he said (and
repeated this many times) that combinatorics is
becoming a central part of mathematics of the
future. As a permanent seminar participant said
to me, “He was excited.”

Our Collaboration
Let me return to 1972 and to the history of our
collaboration. After our conversation I said good-
bye and intended to leave for Leningrad. In Moscow
I always stayed with my old friend, the virologist
N. V. Kaverin. He once attended a Gelfand seminar
in biology. Gelfand remembered him, but they had
no other contact. I mentioned to Gelfand that I was
staying with Kaverin. Suddenly, on the day of my
departure, Gelfand called me at Kaverin’s (having
found the phone number with some difficulty1)
and asked me to come over immediately. He also
invited M. I. Graev, and during our long walk
together started to talk about a construction of
noncommutative integrals of representations of
semisimple groups, primarily for SL(2, R). He said
that he had been incubating this problem for a long
time and had suggested it to his other students,
but he was confident that the problem was perfect
for me.

1There was no “official” way to get someone’s telephone
number in Moscow at the time.
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At the time of the ICM, 1966. Second
from left, I. Gelfand; third from left, A.

Kolmogorov; fifth from left, S. V. Fomin;
far right, O. A. Oleinik.

I was a bit
surprised that
Gelfand was
aware of my
knowledge of
the represen-
tation theory
of Lie groups,
in particular
of SL(2, R). We
had not talked
about this. But
Gelfand was
right: the prob-
lem was posed
at just the right

time for me. In the early 1970s, independent of my
other work, I was lecturing on representations of
groups, C∗-algebras, and factors. Perhaps Gelfand
had heard about this, but not from me. More
likely, this was the result of his ability to foresee
things that I mentioned earlier. Gelfand said that
in order to construct the multiplicative integral
of representations we have to study “infinitesi-
mal” representations, i.e., a neighborhood of the
identity representation. In the summer of 1972
Gelfand came to Leningrad for the thesis defense
of M. Gromov, and I told him about my preliminary
experiments with the Heisenberg group, where a
construction of the integral by other methods was
already known. In December of 1972 we found
a solution, a spherical function of the required
representation of SL(2, R), or the “canonical state”,
as Gelfand suggested we call it. I came to Moscow
and we drafted the text. The problem was solved
in a few months. The next spring Gelfand came to
Leningrad with M. I. Graev and stayed with us. My
domestic helpers prepared food as instructed by
Zorya Yakovlevna.2 While we were working on the
paper with Graev, I. M. talked with my wife, Rita,
about his favorite music and paintings. Of course,
we went to the Hermitage Museum, where Gelfand
talked a lot about a painting of El Greco (Saints
Peter and Paul) and where we also discussed how
to continue our work.

I recall next Gelfand’s last visit to Leningrad in
1984. I invited him to talk about his own life at a
meeting of the Leningrad Mathematical Society (he
had turned seventy-six months earlier). It was an
interesting talk with many details about his first
steps in mathematics, including his discovery at a
young age of the Euler-Maclaurin formula (recall
that he taught himself almost entirely and never
attended a high school).

2Zorya Yakovlevna Shapiro was then Gelfand’s wife, with
whom he wrote several important papers.

Our first paper was published in Uspekhi in
1973 in an issue honoring the seventieth birthday
of Kolmogorov, and this was the beginning of
my collaboration with Gelfand and Graev, which
continued with some breaks over ten years. (At
some point I will write more about this.) The first
paper in this series (in Gelfand’s opinion and mine,
the best one) touched on many subjects that were
important at that time. In particular, we discussed
cohomology with coefficients in irreducible rep-
resentations. In the next paper we described the
cohomology of all semisimple groups without the
Kazhdan property and gave explicit formulas for
semisimple groups of rank 1. We also constructed
irreducible nonlocal representations of the cor-
responding current groups. The next paper was
devoted to representations of groups of diffeo-
morphisms and the start of the development of
the geometry of configurations and its application
to representation theory. We had no doubts (and
it was later confirmed and reconfirmed) that this
series of papers would have various applications
and that the work would continue. In recent years
M. I. Graev and I have found new constructions
and new representations of functional groups, and
this idea certainly has a future.

I would like to recall here one particular story.
Our first paper had a natural continuation related
to representations of groups of smooth functions
on a manifold with values in a simple compact Lie
group. The properties of these so-called “energy”
representations depend on the dimension of the
manifold.

This is not the place for details, but we were
able to prove that the representations are reducible
when the dimension is three or higher and when
the dimension is two under some conditions on
the length of a simple root (see our papers and also
papers by R. Ismagilov, R. Hoeg-Krohn, S. Albaverio,
and N. Wallach). Dimension one is special, and
even at the beginning of our work, Gelfand said
that we would probably have to deal with a von
Neumann factor-representation. There were no
obvious reasons or even preliminary estimates
for this at that time; we had just started to
work on the subject. After some years Gelfand’s
prediction was confirmed: in dimension one the
energy representation is a factor-representation of
type III1, and it turned out to be connected with
a Wiener measure (not with the scalar one, but
with a measure generated by Brownian motion on
a compact group). Do you remember the mystic
prediction by Gelfand fifty years ago that factors
should connect with Wiener measures? Today the
subject is actively being developed.
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The Seminar
Gelfand left us an enormous number of statements
on different mathematical subjects. Someone with
patience should collect them. Similarly, someone
should have kept a diary of the Gelfand Seminar.
Unfortunately, no one took the responsibility. Now
we can pick up only bits and pieces. The seminars
were like one-man shows, sometimes successful,
sometimes rough, with salty humor, often relevant
and instructive. I gave several talks at Gelfand
Seminars in Moscow and later at Rutgers. I have
already described my first very successful talk.
The second was shorter and less successful but
also distinctive. When I mentioned a not very
interesting but very new fact, Gelfand called a
graduate student to the blackboard and asked him
to give a proof right away. Should I take this as an
offense? Certainly not.

I attended the seminar for the first time when I
was a graduate student. A French mathematician
was talking about a paper by von Neumann. The talk
was not very clear. Then Gelfand said, “Next time so-
and-so will give a talk on this paper” and mentioned
several names of professors and graduate students
and immediately started to evaluate the future
talks. He said that one professor’s talk would give
an illusion of understanding, but in reality neither
the speaker nor the listeners would have any idea
of what was going on. Another one would speak
about something else, including his own results,
and so on. All this added some drama to the
seminar. One could take it seriously or with a smile.
Much later Gelfand told me that L. D. Landau ran a
seminar in the style of Pauli (which bore a surface
resemblance to Gelfand’s but was somewhat more
rude). Gelfand himself attended Landau’s seminar
and once repeated to me a joke made by M. Migdal:
“Gelfand goes to the physicists as an intellectual to
the peasantry.”3

At the same time, we must note that the Gelfand
style was not for everyone. It drove some away
and even complicated their lives. For example,
one of his first, and most beloved, students was
F. A. Berezin. At one point they parted ways
completely. In the 1970s I tried unsuccessfully to
get them to meet and talk. Nowadays, Berezin’s
work, especially in supermathematics, has gotten
worldwide recognition, but he did not live to see
this. Because I was not nearby and did not talk
to Gelfand very often, I was able to avoid the
frustration of some of his coauthors who worked
with him more closely. On the other hand, with
me he was always extremely polite and friendly.

3A reference to the political movement in Russia in the
1870s known as “Going to the People” (Ho�denie k nar-
odu), during which intellectuals went to the countryside in
expectations of “enlightening” the peasants.

His telegrams on my birthday were always very
complimentary.

Life in the USSR
It is more and more difficult nowadays to explain
to my Western colleagues, as well as young people
in Russia, what academic life was like in the USSR,
or even what other parts of life were like. For
example, why did Gelfand, with all his achievements
in science and contributions to classified state
projects (which were considered exceptionally
important), become a full member of the Soviet
Academy of Science only after a shameful delay? Of
course, one of the reasons is an official academic
and even governmental anti-Semitism. But, for
example, this feeling was not so strong among
physicists. There were other reasons as well.

Once Gelfand told me, “The situation was quite
simple for me in the beginning of the 1950s [the
time of the infamous “fight with cosmopolitism”,4

when Gelfand lost his position in Moscow State
University]: only those who were really interested
in mathematics became my students.” It was
true at that time (and also later) that it was
better to have another advisor for one’s career.
But he still had quite a number of students.
And here we face one of the most important
and, in some ways, transcendental qualities of
Gelfand: he could attract very different kinds of
people. He surrounded himself with a whirlpool
of established mathematicians, newcomers to
the field, biologists, and others. His seminar
was a place for meetings, corridor discussions,
exchanges of news, opinions, and so on. It was
not by chance that the famous “letter from 99
mathematicians” defending A. Esenin-Volpin5 was
openly distributed for signatures at his seminar. It
was met by authorities with resentment and fear
at the highest levels. In a totalitarian state such as
the USSR, only those who were trusted and tested
by the state could be a magnet for people. For this
reason, officials, including official mathematicians,
did not like Gelfand and his circle, not just out
of consideration of their origins but also by the
principle of “either with us or against us”.

“Of course, we live in a prison,” Gelfand once
told me during a conference outside Moscow in
the late 1970s during lively discussions between
our scientists and others visiting from the West.
Still, he always refused to take any Samizdat books
from me. People should write more about this.

Before any of his few visits abroad, Gelfand
had to pass a number of unpleasant procedures,
as did almost all Soviet people. My friends and I,

4A euphemism for an anti-Semitic government program.
5In 1969 Esenin-Volpin was thrown into a psychiatric
“hospital” for political reasons.
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who were openly denied the right to travel abroad
for any purpose, were for that reason spared
the examinations by party commissions of our
behavior and of our knowledge of party politics.
These seemed to us unfortunate, but at the same
time as rather a prestigious distinction.

At the end of the 1980s and the beginning of
the 1990s the desire of many scientists to leave
Russia (quite understandably, especially at that
time) touched Gelfand as well. His Moscow seminar
died soon after that. It was impossible to replace its
leader. A relatively modest version of the seminar
was reestablished at Rutgers. One can only guess
what might have happened had Gelfand stayed in
Moscow.

I met Gelfand in the U.S. several times. While
mathematical life was different in the U.S., Gelfand
found his place. The celebration of his ninetieth
birthday at Harvard was perfectly organized and
became a real scientific event with his brilliant talk.

I have never had any doubts that the name of I. M.
Gelfand will be one of the icons of mathematics
in the twentieth century, because the century was
not just a century of outstanding achievements
but also of new conceptions. I. M. Gelfand valued
and created exactly this sort of mathematics.

Bertram Kostant

I. M. Gelfand

I first heard of I. M. Gelfand when I was a graduate
student in Chicago in the early 1950s. At that time,
Gelfand’s paper “Normed rings” played a major
role in the area of modern harmonic analysis, which
was then very popular with students. My thesis
advisor, Irving Segal, had arranged for me to spend
the years 1953–1955 at the Institute for Advanced
Study in Princeton. I already knew Chern and
Weil from my years in Chicago, and at Princeton
I became friendly with Lefschetz, Hermann Weyl,
von Neumann, and Einstein. Certainly I considered
Gelfand to be in the same class as these twentieth-
century math and physics luminaries, and I looked
forward to meeting him as well.

My chance for this meeting came about when I
was invited to a 1971 summer school in Budapest.
The activities of the school were organized by
Gelfand himself, and I believe this was the first
time he had been given permission to attend
a conference outside the Soviet Union. A large
number of his students and colleagues came with
him. It was an unforgettable experience for me to
be a participant in one of his famous multihour
seminars. Gelfand is a coauthor in a vast number

Bertram Kostant is professor emeritus at the Mas-
sachusetts Institute of Technology. His email address is
kostant@math.mit.edu.

of papers. No doubt many of these papers were
outgrowths of these seminars. He seemed to have
a very distinctive style of inspiring research by
posing probing questions to potential collaborators
and insisting on not letting go until there was
some sort of resolution. I went to Budapest
carrying a recently written paper on the spherical
principal series. Gelfand requested that I submit
the paper to the proceedings (Lie Groups and
Their Representations) of the Budapest conference.
Even though this paper was later (1990) to win
the Steele Prize, it was probably a mistake for me
to publish the paper in the proceedings of the
Budapest conference. The initial publisher, Halsted
Press, went out of business, and the book did not
appear until 1974. When it finally did appear, many
people reported that it was very hard to find.

In June 1972, responding to an invitation, I went
to Moscow, accompanied by my wife, Ann, for a
three-week stay. I have to say that I was deeply
touched and happy to be the recipient of Gelfand’s
warmth, friendship, and respect. In his 1970 ICM
report he had included me in a very small (5) group
of people whom he said had made outstanding
contributions to representation theory. In Moscow,
Gelfand made arrangements for me to address
a meeting of the Moscow Mathematics Society,
chaired by Shafarevich, with whom I had a pleasant
lunch. Gelfand also made arrangements for me
to meet on a regular basis with a number of his
students, including Kazhdan, Bernstein, Kirillov,
Gindikin, and his son, Sergei. I was also introduced
to his colleagues Manin, Novikov, and Graev, and
I spent an afternoon with Berezin in Gorky Park
talking about (from my perspective, geometric)
quantization.

One of the mathematical topics that came up
during my conversations with Gelfand was the
results in the first of the BGG, [BGG-71] papers.
Somewhat earlier I had solved a problem of Bott
which asked for a determination of the polynomial
functions on the dual of a Cartan subalgebra
which mapped, via Borel transgression, onto the
dual basis of the Schubert classes of a general flag
manifold. Acknowledging my precedence in solving
this problem, [BGG-71] made a penetrating further
development in the solution of this problem by
introducing the very important BGG operators.

What was apparent to me during my stay
was that Gelfand seemed to have created an
environment where he was involved with both the
personal as well as the professional lives of the
many people around him. Gelfand’s apartment was
like Grand Central Station, with any number of
people going in and out. He seemed to be carrying
on n conversations. I can’t speak for the people
orbiting around him, but as an outsider looking
in I was charmed. Doing mathematics for me has
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had many lonely moments, but in this exciting
environment I sensed that mathematics (like much
of physics) could be done in a communal, socially
satisfying way.

There are any number of unforgettable incidents
which occurred during my Moscow visit. The
following was very embarrassing for me (but not
without its comic aspects). One day Gelfand invited
Ann and me to have some borscht with him at the
restaurant of the Soviet Academy. All the tables in
the room were filled with people, except for the
table opposite us. That table was occupied by only
one man. Suddenly Gelfand started whispering to
me, but I couldn’t make out what he was saying.
Then he repeated it somewhat louder. Finally, when
I heard what he was saying, I foolishly blurted
out loud the name Lysenko. The room became
still, and then I realized what I had done. “Oh my
God,” I thought. “I have gotten Gelfand into trouble
with the authorities.” For a moment visions of him
being dragged off to the Gulag went through my
head. But all turned out well. By the early seventies
Lysenko had apparently been defanged.

Much later Ann and I saw a great deal of Gelfand
when he was invited to Cambridge, Massachusetts,
in the United States to receive an honorary degree
from Harvard. A number of scenes during that
visit still stick in my head. One was at my house
during a party as I watched him on the floor with a
bunch of young kids, somehow managing to keep
their interest by telling them some mathematical
gems. Another was the scene at the breakfast table
after Gelfand spent the night in our house. Gelfand
was complaining about the absence of good bread
in the U.S. and the difficulty of finding healthy
food. I countered by pointing to the Swiss muesli
in my breakfast bowl. Exhibiting a sample of his
delicious (no pun intended) sense of humor, he
then proceeded to eat the fruits and raisins in my
bowl, all the while cautioning me not to have that
for breakfast because it wasn’t good for me.

Sometime during his visit I met him in New
York City and introduced him to my son, Steven,
then engaged in filmmaking. Gelfand gave a long
discourse to Steven and his friends on Stanislavski.
Apparently method acting was one of Gelfand’s
many artistic interests. I also took him to see Jean
Renoir’s famous film Le Grande Illusion, whose
main theme was the disintegration of European
aristocracy in the wake of World War I. I was
totally surprised by his reaction to the film. Since
it was made in the late thirties, he thought it
was unconscionable that a prominent film was
produced on such a topic at a time when Hitler
was planning his march across Europe.

Another scene that sticks in my head was
when, while driving Gelfand to the airport

With Serre and MacPherson at
Monday night seminar, Moscow
State University, 1984.

for his flight back to Rus-
sia, he started to recite
poems of Ossip Mandel-
stam, Anna Akhmatova,
and others. I remember
recording him on tape,
but unfortunately I seem
to have misplaced the

Lecture at MIT, 1990.

tape.
Several years later my

mathematical interests
intersected with those
of Gelfand in the area
of completely integrable
systems. In 1979 I had
written a paper show-
ing that the complete
integrability of the open
Toda lattice arises from
a consideration of a
certain coadjoint orbit
of the Borel subgroup.
Gelfand brilliantly put
this result in an infinite-
dimensional context and
applied it to the theory
of pseudodifferential op-
erators. I believe a
similar observation was made by Mark Adler.

I would like to end here by citing a mathemat-
ically philosophical statement of Gelfand which
I think deserves considerable attention. It also
opens a little window, presenting us with a view of
the way Gelfand’s mind sometimes worked. One of
my first papers gave a formula for the multiplicity
of a weight in finite-dimensional (Cartan-Weyl) rep-
resentation theory. A key ingredient of the formula
was the introduction of a partition function on
the positive part of the root lattice. The partition
function was very easy to define combinatorially,
but giving an expression for its value at a particular
lattice point was altogether a different matter.
Gelfand was very interested in this partition func-
tion and mentioned it on many occasions. He
finally convinced himself that no algebraic formula
existed which would give its values everywhere.
He dealt with this realization as follows. One
day he said to me that in any good mathematical
theory there should be at least one “transcendental”
element and this transcendental element should
account for many of the subtleties of the theory. In
the Cartan-Weyl theory, he said that my partition
function was the transcendental element.
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Simon Gindikin

50 Years of Gelfand’s Integral Geometry

As I begin this paper, the entire fifty-year history of
integral geometry in Gelfand’s life unfolds before
my eyes. I was fortunate enough to collaborate
with him during some key moments. I would like
to discuss here those points that appear to me to
be the most important in this wonderful endeavor.

First Presentation

I remember well a meeting of Dynkin’s seminar on
Lie groups, most likely in the spring of 1959. The
seminar, which had been only for undergraduate
students at first, at this point combined both
undergraduate students (Kirillov, Vinberg, me) and
well-known mathematicians (Karpelevich, Berezin,
Piatetski-Shapiro). Suddenly, Gelfand appeared
(late as usual and accompanied by Graev), and with
enormous enthusiasm he began talking about their
new work [1]. This was the first time their work on
integral geometry was presented.

It may appear strange that Gelfand did not
present this in his own seminar (in fact, he almost
never presented his new results there) and that
he selected what was mostly a student seminar.
Without a doubt, this was no accident, since Gelfand
was always very precise in selecting venues for his
talks, and this fit well into traditions of Moscow’s
mathematical life. My mind’s eye does not see
any specifics of the presentation but rather recalls
Gelfand’s excitement, obvious to the listeners, and
his certainty that something significant had opened
before him—a new direction of geometric analysis,
which he proposed to call “integral geometry”, as
it was equaled in importance only by differential
geometry. He commented that Blaschke used this
term for a certain class of problems connected
with calculations of geometric measures but that
this narrow area did not deserve such an ambitious
title, and so he felt justified in appropriating it for
this new field. The contentious nature of such a
position is obvious. Such things worried Gelfand
only a little, and I will not venture an opinion on the
subject. I think this is important for understanding
Gelfand’s emotional state. He reminded us of his
frequent saying that “representation theory is all of
mathematics.” (I heard this many times, and Manin
once recalled that he also heard from Gelfand that
“all mathematics is representation theory,” noting
the delicate difference between these aphorisms.)
From now on, Gelfand said, he considered that
“integral geometry is all of mathematics.”

Simon Gindikin is Board of Governors Professor at Rutgers
University. His email address is gindikin@math.rutgers.
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Now a word about Gelfand’s mathematical mo-
tivation. He considered that the main problem of
the theory of representations was the decompo-
sition of certain reducible representations—most
importantly, regular representations on homoge-
neous spaces—into a sum (maybe continuous) of
irreducible representations (Plancherel formulas).
The class of groups and homogeneous spaces was
not specified in the talk. It was only clear that
complex semisimple Lie groups, together with their
homogeneous spaces with maximally compact and
Cartan isotropy subgroups, were in this class. The
first two spaces are symmetric, but the third is
not. This is of principal importance—spaces that
are not symmetric are considered. From the very
beginning the decomposition into irreducible rep-
resentations is interpreted as a noncommutative
analog of the Fourier integral: under the conditions
of a continuous simple spectrum, we can talk
about the “projections” of a function on a homo-
geneous space onto irreducible representations.
The usual Fourier transform on Rn has a geomet-
ric twin in the Radon transform: integration on
hyperplanes. They are connected with each other
via the one-dimensional Fourier transform. The
marvelous discovery of Gelfand-Graev was that,
in the case of semisimple Lie groups, there is an
analogous geometric twin: on homogeneous spaces
we consider horospheres—the set of orbits of all
maximally unipotent subgroups—and the horo-
spherical transform (the operator of integration on
horospheres). The generalized Fourier transform
and the horospherical transform are connected by
the (commutative) Mellin transform, equivalently,
with the commutative Fourier transform. For this
reason, problems about the Plancherel formula
and inversion of the horospherical transform on a
homogeneous space are trivially reduced to each
other. Horospheres in hyperbolic geometry were
well known (and highly valued) already by their
creators: they are spheres of infinite radius with
centers at infinity and different from hyperbolic
hyperplanes. For other homogeneous spaces (in-
cluding symmetric spaces), they had remained
unnoticed before the work of Gelfand-Graev.

A posteriori, the idea of the horospherical
transform seems almost obvious. Let G be a
complex semisimple Lie group and let B = MAN
be a Borel subgroup; hereN is the nilpotent radical,
MA is a Levi subgroup (which is commutative in
this case) with M and A its compact and vector
subgroups, respectively. Then the manifold of
horospheres is Ξ = G/N. Gelfand and Graev called
it the “principal affine space”. On this space there
are two commuting actions: that of the group G
acting by left shifts and that of the group MA
acting by right shifts; the latter action is well
defined because MA normalizes N.
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The decomposition of the regular representation
on Ξ relative to the action ofMA gives precisely the
irreducible representations of group G realized in
the spaces of sections of line bundles over the flag
manifold F = G/B (the “principal projective space”
in Gelfand-Graev’s terminology). This is simply a
rephrasing of the conventional realization of the
principal series representations. Therefore, if the
horospherical transform (which is an intertwining
operator) is injective, the decomposition of the
regular representation is reduced to the decompo-
sition relative to the action of MA on the space
of horospheres and the above-mentioned Mellin
transform along the abelian subgroup A.

Prehistory

Needless to say, the real road to the discovery just
outlined was entirely different. I was lucky to hear
about it from Gelfand, and I want to share it here.
Three papers appeared in 1947—by Bargmann,
Gelfand-Naimark, and Harish-Chandra—in which
unitary representations of the Lorentz group were
found. I believe that I once heard Gelfand’s ob-
servation that important things in mathematics
spring forward independently from three places
at once (the history of mathematics indeed de-
livers striking examples of this, beginning with
non-Euclidean geometry). The Lorentz group is
locally isomorphic to group SL(2;C). Not sur-
prisingly, the initiative in this problem belonged
to the physicists, and the authors were target-
ing physical applications. (Bargmann was solving
Pauli’s problem and discussed it with Wigner and
von Neumann; the problem was suggested to
Harish-Chandra by Dirac; the first publication of
Gelfand-Naimark was in a physics journal.) Because
representations of the rotation group play a key
role in nonrelativistic quantum mechanics, it was
natural to expect representations of the Lorentz
group to play an analogous role in the relativistic
case. The difficulty lay in the fact that, while the
rotation group is compact and all its irreducible
unitary representations are finite dimensional, the
Lorentz group is not compact and its only finite-
dimensional unitary representation is the trivial
one-dimensional representation. (It is precisely
the unitary representations that have a physical
interpretation.)

In the 1930s Dirac and Wigner considered certain
infinite-dimensional unitary representations of the
Lorentz group. From the other direction, in the
early 1940s Gelfand-Raikov constructed an analog
to the theory of Peter-Weyl for general locally
compact groups using infinite-dimensional unitary
representations. It seems likely that there was
a consensus that the description of all unitary
representations of the Lorentz group could not be
done in an explicit form and had to include difficult

Lecture at Collège de France, 1978.

considerations of
von Neumann fac-
tors. Doubtless the
biggest surprise
for the authors
was how explicitly
and simply all ir-
reducible unitary
representations of
the Lorentz group
can be described.

Bargmann also
considered representations of the “real” Lorentz
group SL(2;R) and discovered representations
of the discrete series, realized in holomor-
phic functions on the disk. The central result
is the completeness of the constructed unitary
representations, although Bargmann and Harish-
Chandra proved only an infinitesimal version of
the completeness. Bargmann also proved a cer-
tain statement of the completeness of matrix
coefficients.

At the same time, Gelfand and Naimark [2]
went much further, establishing essentially all
the principal concepts of the theory of unitary
representations. They introduced characters of
irreducible unitary representations as distributions,
showed that characters define representations up to
equivalence, and computed explicitly the character
values on regular elements, thus obtaining an exact
analog of the classical Weyl character formula.
The paper contains a complicated analytical proof
of the fact that their list of irreducible unitary
representations is complete; however, the focus of
the work is an analog of the Plancherel formula.
This provides the (continuous) decomposition into
irreducibles of the two-sided regular representation
on theL2 space of the group relative to the invariant
measure.

It turned out that in this decomposition only
some unitary representations appear; they were
called representatives of the principal series (the
rest of the unitary representations make up the
complementary series). It is remarkable that the
Plancherel measure, which appears in the expres-
sion of a norm of a function on a group through the
norms of its projections on irreducible components,
was computed explicitly. However, this remarkable
formula, reminiscent of the classical Weyl formula
for finite-dimensional representations, was a result
of almost ten pages of dense computations without
any visible attempts to uncover the conceptual
structure. Later this was pointed out by Mautner
while refereeing a more conceptual proof found by
Harish-Chandra. This fitted the style of Gelfand,
who at the beginning was more concerned with the
beauty and clarity of the final result than with a
simplification of the proof.
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Talking with René Thom at
IHÉS, 1974.

However, it is typical of
Gelfand that years after-
wards he persistently tried to
clarify the situation. Already
at the time of the publica-
tion of [2] several notes had
appeared announcing gen-
eralizations to the case of
the group SL(n;C). In 1950
a big book of Gelfand and
Naimark appeared dedicated
to unitary representations of
the classical groups (Gelfand
liked to call the book “Blue”
because of the color of the
cover, and the paper about
n = 2 “Red”). This book is a re-
sult of an incredible amount
of work, which to me appears
to be nothing short of heroic.
The style is clear: derivation
of explicit formulas through

intense analytic attacks, overcoming many obsta-
cles. The proof of an analog of the Plancherel
formula, the peak of the theory, especially stands
out. The authors were unable to generalize an
already difficult proof from the paper about the
Lorentz group; the proof given in the book is
exceptionally difficult and contains many bril-
liant inventions. Gelfand especially prized the
calculations in a certain generalization of elliptic
coordinates.

Around 1950 significant changes took place
in Gelfand’s mathematical life. First of all, he
concluded his extraordinarily fruitful collabora-
tion with Naimark. More than that, he decisively
changed the organization of his work. If before,
he concentrated on some one direction (Banach
spaces, Banach algebras, theory of representations)
at every moment, now he worked simultaneously
with several coauthors on problems from very
different areas. He did not abandon the theory of
representations, and for many years Graev became
his primary collaborator. Soon Harish-Chandra
gave a conceptual proof of the Plancherel formula
for all complex semisimple Lie groups and also
for SL(2;R). However, something kept Gelfand
from being satisfied, and from time to time he
continued returning to the Plancherel formula. In
1953 he and Graev offered an exceptionally elegant
way to derive it through application of the result
of M. Riesz about regularization of powers of a
quadratic form.

Gelfand kept coming back to his proof of the
Plancherel formula for the Lorentz group, which
had not been generalized to other groups and
in which he felt something important was left
not understood. In 1958 suddenly he saw in

this proof something that had remained hidden
for almost ten years, namely, that a large part
of the proof was dedicated to the solution of
the following elementary-sounding problem of
geometrical analysis: Consider a function f (α,β, δ)
of three complex variables. Integrate this function
(in the real sense) on all complex lines intersecting
the hyperbola α = λ, δ = λ−1, β = 0, where
λ ∈ C. Then reconstruct f through all of these
integrals. What connection do these lines have to
the Lorentz group SL(2;C)? Consider the set of
horocycles in this group: the two-sided shifts of
the unipotent subgroup N of unit upper triangular

matrices
(

1 u
0 1

)
with u ∈ C. This set turns out

to be exactly the three-parameter family (on C)
of all (complex) lines in the group, considered as
a hyperboloid αδ − βγ = 1 in C4. If we project
the hyperboloid onto the plane with coordinates
(α,β, δ), then almost all the horocycles (excluding
those that project into points) transform into lines
intersecting the hyperbola. The solution to the
inversion problem in [1] is a very simple formula,
reminiscent of the Radon inversion formula. For
the inverse of the generalized Fourier transform
on the group (Plancherel formula), it remains
only to invert the usual Mellin transform. After
this interpretation, it was straightforward for
Gelfand and Graev to define horospheres and
the horospherical transform in the general case.
The authors of [2] apparently did not know of
this geometrical interpretation, but looking at the
paper, one can’t stop marveling at how closely they
followed it in their calculations (the corresponding
text about this problem of integral geometry in the
fifth volume of Generalized Functions [4] differs
from the text of the 1947 paper only in the addition
of certain words without any substantial changes
to any of the formulas).

However, at this point the romantic side of
the story concludes and prosaic everyday mathe-
matical problems begin. There is no doubt about
the beauty of the horospherical transform and its
significance, but it is fair to raise the question: what
does it contribute to the theory of representations?
From the very beginning, Gelfand had the idea
that there have to be direct methods to invert
certain generalized Radon transforms, including
the horospherical transforms, and there had to be
a more natural way to derive Plancherel formulas.
However, in 1959 such a way was not uncovered,
and in [1] the situation is essentially the opposite:
the formula for the inversion of the horospherical
transform for complex semisimple Lie groups and
certain homogeneous spaces was derived from
the already-known Plancherel formula. A remark-
able formula was produced, which resembled the
the Radon inversion formula in odd-dimensional
spaces but which also showed which modifications
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are required for spaces of rank greater than 1: one
needed to average (over the set of horospheres
passing through a point) the result of applying an
explicit differential operator (of the order equal
to the rank) that acts along parallel horospheres.
It remained to develop direct methods of integral
geometry and to understand what advantages
this approach had to harmonic analysis. This was
accomplished, partially, only ten years later [5].

Even so, some important supporting obser-
vations slowly accumulated. Gelfand noticed
in the very beginning that the symmetric Rie-
mannian space for the group SL(2;C) is the
three-dimensional hyperbolic space, with horo-
spheres in the classical sense. It turned out that
the inversion formula for this horospherical trans-
form, with the appropriate definitions, exactly
matches the formula for the inversion of the Radon
transform in three-dimensional Euclidean space.
By contrast, the Plancherel formulas for the Fourier
transform in Euclidean and hyperbolic spaces
differ dramatically. In a sense, the horospherical
transform is independent of curvature! There was
no doubt of the importance of this observation, but
for a surprisingly long time there were no attempts
to incorporate this into some general result. Today
it is clear that if one considers for a Riemannian
symmetric space of negative curvature its “flat”
twin (sending curvature to zero), then the inversion
formulas for the horospherical transforms will
be identical for these two spaces. It seems to me
that this explains the nature of the simple explicit
formulas for the representations of semisimple
Lie groups (which surprised their creators): from
the point of view of the horospherical approach,
the problems turn out to be equivalent to flat ones.
There exists another important circumstance which
doubtlessly was tacitly understood, even though
I’ve never encountered a discussion of it. Namely,
in the standard approach to the Plancherel formula,
integrals on conjugacy classes are regularized so
as to be meaningful as “integrals” on singular
conjugacy classes, eventually, on the unit class.
Horospheres, in a certain sense, are generators of
conjugacy classes; bringing them into the analysis
illuminates the consideration of singular classes.

Integral Geometry of Lines and Curves

The biggest success in the following period was
connected with the interpretation of horocycles on
the Lorentz group as lines intersecting a hyperbola.
Everything began with a natural question: What
happens if the hyperbola is replaced by another
curve? Kirillov proved that under such a replace-
ment the inversion formula remains unchanged.
This meant something very important: with a
replacement of the hyperbola by another curve,
the group disappeared, and it became clear that a

significant part of the theory of representations
of the Lorentz group is connected not with the
group structure, but rather with some sort of
more general geometrical structure. This was the
first supporting evidence for Gelfand’s project to
embed the theory of representations into a wider
area of geometrical analysis.

The next step was again evident: understand
the nature of the condition on a family of lines “to
intersect a fixed curve”. The family of all lines in C3

depends on four (complex) parameters. For integral
geometry it is natural to consider families with
three parameters (complexes of lines in classical
terminology), because then integration transforms
a function of three variables into a function of
three variables. For which complexes of lines are
there inversion formulas of Radon’s type? Gelfand
and Graev [4] showed that this is possible not only
for complexes of lines intersecting a fixed curve
but also for complexes of lines tangent to a fixed
surface and not for any others. They called such
complexes admissible. It is worthwhile to say a few
words about the proof of this astounding result.

F. John discovered that in the real case the
image of the operator of integration along lines
in a three-dimensional space is described by
the ultrahyperbolic differential equation. In the
complex case one has to consider the holomorphic
and antiholomorphic versions of this differential
equation. It turns out that existence of the required
inversion formula is equivalent to solvability of the
Goursat problem and therefore coincides with the
characteristic condition for this operator. This is a
nonlinear equation that can be integrated using the
method of Hamilton-Jacobi. The consideration of
bicharacteristics gives the description of admissible
complexes. These complexes had already appeared
in classical differential geometry. They are, in a
natural sense, maximally degenerate: the lines of
the complex that intersect one fixed line of the
complex lie (infinitesimally) in one plane.

This result is generalized to complexes of lines
in general position in spaces of any dimension. The
natural next step is to consider the possibility of
the replacement of lines by curves. The final result
in this direction was obtained by Bernstein and me
[12] (after Gelfand, Shapiro, and I previously found
a universal structure of inversion formulas for
complexes of curves [6]). Admissible complexes of
curves turned out to be exactly infinitesimally full
families of rational curves (infinitesimally, they are
spaces of all sections of a certain vector bundle
on the projected line). Here the most significant
condition is for the curves to be simultaneously
rational. This is a quite effective condition, allow-
ing the construction of many explicit examples
of families of curves with inversion formulas of
Radon type, for example, curves of the second

January 2013 Notices of the AMS 43



order. In these constructions it is natural to give
up the requirement that the family of curves be a
complex (the number of parameters of the family
equals the dimension of the manifold). In this
case, the possibility exists to consider a certain
generalization of a problem of integral geometry,
but more instructive are the possibilities of applica-
tions beyond the theory of representations. There
exists, for example, a connection with the twistor
theory of Penrose: the four-parameter admissi-
ble family of curves corresponds to conformal
right-flat four-metrics (the self-dual part of Weyl
curvature equals zero). This allowed us to develop
a method of construction of explicit solutions of
the Einstein self-dual equation. It seems to me that,
in the case of curves, integral geometry has been
successfully fully developed. It appears to be some
part of nonlinear analysis, with a focus on explicit
integrable problems, and it is connected with the
method of the inverse problem for the case of one
spectral parameter.

Complexes of Planes

The situation with submanifolds of dimension
higher than one is significantly more complicated,
and there may be no opportunity in this case
for work to advance as far. It appears that it is
similar to the possibility of the integrability in
inverse problems with several spectral parameters.
However, a few essential results have been achieved.
Let us recall that beginning with the first work
on integral geometry [1], the grand challenge
was to find a proof of the Plancherel formula
through inversion of the horospherical transform.
Ten years passed before Gelfand, Graev, and
Shapiro did this [6], [5] for the group SL(n;C).
We have already discussed the fact that when
n = 2, horospheres can be considered as lines. For
arbitrary n, horospheres for this group can also be
considered as planes of dimensionk = n(n−1)/2 in
CN , whereN = n2−1. The dimension of this family
of planes coincides with N, so we have a complex
of k-planes. The key idea is to study the problem
of reconstructing a function through its integrals
on planes from an arbitrary complex, not limiting
ourselves to a complex of horospheres. Let us
note that the problem of reconstructing a function
through its integrals on all planes is extremely
overdetermined and the transition to complexes is
a natural way to make the problem well defined.
It turns out that for reconstruction at a point it
is always possible to write a formula reminiscent
of the Radon inversion formula. This formula
involves averaging a certain explicit differential
operator (of order 2k) along the set of planes of
the complex which pass through a point. This
operator is defined on the set of all k-planes;
however, we can compute it using its restriction to

the set of planes of the complex only under very
strong conditions. Let us call complexes satisfying
these conditions admissible. There again arises
a certain condition involving characteristics. We
can describe the situation slightly differently. The
image of the operator of integration over k-planes
is described via a certain system of differential
equations of the second order, generalizing the
John equation, and admissible complexes must be
characteristic for this system. In some sense, the
admissible complexes are maximally degenerate.

The nonlinear problem of the description of
admissible complexes is unlikely to be integrable
for k > 1. However, Gelfand and Graev [5] checked
directly that the complex of horospheres inSL(n;C)
is admissible. As a result, we get an inversion of
the horospherical transform and as a consequence
the Plancherel formula. I am certain that there is
something very significant in the degeneracy of the
manifold of horospheres. I think that the geometric
background of the theory of representations of
semisimple Lie groups lies in this phenomenon.
Clearly, this result makes substantial use of the
possibility of considering horospheres on SL(n;C)
as planes. For other semisimple Lie groups this
is impossible, but I showed that the construction
described above may be generalized for these
groups by considering admissible complexes of
arbitrary submanifolds [8].

Nonlocal Problems and Integral Geometry for
Discrete Series

In the case of complex groups the structure of
inversion formulas with averaging of a differential
operator means that, in particular, these formulas
are local: for reconstruction of the function at a
point, it is sufficient to know the integrals on the
horospheres close to this point. In the case of
the Radon transform, this is the case only in odd-
dimensional spaces. In even-dimensional spaces
the inversion formula is nonlocal: in this situation
a pseudodifferential operator is averaged. If we
were to go from complex groups to real ones and
their homogeneous spaces, the first new difficulty
would be connected with the inevitable appearance
of nonlocal formulas. It is natural to begin with
Riemannian symmetric spaces of noncompact
type X = G/K, where G is a real semisimple Lie
group and K is a maximally compact subgroup
of G. Then the horospherical transform is always
injective, and the inversion formula is local if and
only if the multiplicities of all roots are even. In
this case the inversion formula can be derived
using the method described above for complex
groups. However, the general case must involve
nonlocal inversion formulas and requires new ideas.
After Karpelevich and I computed the Plancherel
measure on these spaces through the product
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formula for the Harish-Chandra c-function, we
found [13] in this case the analog of the approach
of Gelfand-Graev to complex groups in their first
paper [1]: we computed the kernel of the inverse
horospherical transform as the inverse Mellin
transform of the Plancherel density. We made this
calculation for classical groups. Later, Beerends
made it in the general case. The next step should
be a direct derivation of these inversion formulas
using methods of geometric analysis (as in the case
of even multiplicities), but so far this has not been
done. We tried with Gelfand [9] to move in this
direction, developing a certain symmetric analog
of differential forms on real Grassmannians, which
doubtless has its own interest. However, we did
not achieve significant progress in this problem. It
seems to me that today many points look clearer,
and this problem looks realistically solvable.

Finally, we can begin discussing the main
obstacle to the development of the theory of
representations on the basis of the horospherical
transform, which was clear from the very beginning.
For real semisimple Lie groups the horospherical
transform as a rule has a kernel, which consists
of all of its representation series except for the
maximally continuous ones. This is already true
for the group SL(2;R): if we decompose its regular
representation into the sum of subspaces Lc , Ld
corresponding to continuous and discrete series
respectively, then the kernel of the horospherical
transform coincides with Ld and the image is
isomorphic to Lc . There does not appear to be
a way to invert the horospherical transform or
to derive in this way the Plancherel formula. It
is easy to interpret this as a dramatic limitation
of the power of integral geometry in the case of
real groups, where discrete series play a central
role. This appears to be the reason that Gelfand’s
idea of applying integral geometry to the theory of
representations has not evoked much enthusiasm
amongst experts on representation theory.

I can be a witness to the fact that Gelfand
never believed that the area of applications of
horospheres is bounded by continuous series.
In his opinion it was necessary to understand
what corresponds to horospheres in the case of
discrete series, and this is perfectly possible. This
resonated with his faith in the aesthetic harmony of
mathematics. In his first talk, which it befell me to
hear (in 1955), he said about von Neumann factors
of the second type (which did not have any known
applications at that time): “Such beauty must not
vanish!” Only in one case—an imaginary three-
dimensional hyperbolic space—did Gelfand and
Graev manage [7] to find an appropriate expansion:
the discrete series there was connected with
certain degenerate horospheres. However, this was

connected with certain very special circumstances,
and there was no chance of direct generalization.

Budapest swimming pool,
1966. First row, P. Dirac,
I. Gelfand; second row,
B. Bollobas, M. Arato.

The case of SL(2;R) re-
mained the first call to
action. In 1977 Gelfand and
I attempted to understand
it [10]. The philosophy of
our approach was the fact
that the Plancherel formula
has to be derived in two
stages. First, one has to find
projections into subspaces
corresponding to the repre-
sentation series. Series of
representations correspond
to equivalence classes of
Cartan subgroups. The de-
composition of each series
into irreducible subspaces
is reduced to a commu-
tative Fourier transform
(continuous or discrete)
corresponding to the asso-
ciated Cartan subgroup. So
the first stage is the princi-
pal one. Two of the main connected problems are
the finding of projections into the series and the
internal analytic characterization of subspaces for
the series. We solved these problems for SL(2;R).
Subspaces corresponding to holomorphic and an-
tiholomorphic discrete series can be characterized
as boundary values on SL(2;R) of holomorphic
functions in certain tube domains in the complex
group SL(2;C). Projections may be interpreted as
certain analogs of the Cauchy integral formula.
I remember how happy Gelfand was with this
result. He often said that new, significant things
in representations have to be already nontrivial
for SL(2). We expected that in the general case as
well the series would be connected with certain
tube domains, which may not be Stein manifolds,
and then it would be required to consider ∂̄
cohomology on these domains. Later this was
called the Gelfand-Gindikin program. Significant
progress was achieved in this program, but only
for holomorphic discrete series.

It could have been expected that the projections
into the series had to be somehow connected
with integral geometry, but at the time it proved
impossible to find an appropriate generalization of
the horospheres. Much later I discovered a certain
natural construction [14]. On G = SL(2;C) there
are two classes of horospheres, each of which al-
lows the possibility of constructing a horospherical
transform. We have discussed the one-dimensional
horocycles. However, it is also possible to consider
two-dimensional horospheres—orbits of maximal
unipotent groups in SL(2;C)× SL(2;C) under the
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two-sided action. Their geometrical characteriza-
tion consists of sections of the group, considered as
a hyperboloid, by isotropic planes. Horocycles are
linear generators of two-dimensional horospheres;
for this reason, both versions of the horospherical
transform are equivalent. For SL(2;R) both trans-
forms have kernels. The idea is that since there are
not enough real horospheres, we must consider
certain complex ones.

Let us consider those complex horospheres
which do not intersect the real subgroup SL(2;R).
There are three types of such horospheres. Instead
of integration on real horospheres, we consider the
convolution (on the real group) of Cauchy kernels
with singularities on the complex horospheres
without real points. As a result, the horospherical
transform of their three components is defined.
It already does not have a kernel, and images of
the various components can be decomposed using
representations of various series. The inversion of
the horospherical representation gives projectors
onto series and then also the Plancherel formula.
At the same time, the continuation of functions
from the continuous series is obtained as a
one-dimensional ∂̄-cohomology in a certain tube
domain, in agreement with our hypothesis. It
is my hope that the correct development of
the understanding of complex horospheres for
real semisimple Lie groups is sufficient for the
construction of the integral-geometrical equivalent
of the theory of representations. Interestingly, this
can be done even for compact Lie groups, for which
there are no real horospheres at all.

Gelfand (in collaboration with Graev and me)
worked on many other aspects of integral geometry.
I have not discussed these results because I
wanted to concentrate here on integral geometry
connecting with the theory of representations,
which seems to me to be the most important part
of this project. It is intriguing that Gelfand was
interested in the Radon transform long before its
connection with the theory of representations was
discovered. He liked to offer problems concerning
the Radon transform to students, though he never
worked in this direction himself. This was almost
a premonition of future connections, an ability
often shown by exceptional mathematicians and
typical for him. Integral geometry was not one
of his most successful projects. It did not gain
him broad recognition or a multitude of followers.
Yet we find in it, in a very pronounced way, his
inimitable approach to mathematics. Like every
other mathematician lucky enough to have worked
with Gelfand, I have gotten used to trusting his
extraordinary intuition, and I am certain that the
story is not over. Perhaps I will see the realization
of his fantastic project yet.
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Peter Lax

I. M. Gelfand

Like everyone else, I first heard Gelfand’s name
as the author of the famous theorem on maximal
ideals in commutative Banach algebras and its
application to prove Wiener’s theorem about
functions with absolutely convergent Fourier series.
The following story describes the reception of this
result in the U.S.

Shortly after its publication, Ralph Phillips
presented this result at Harvard. It created such a
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stir that he was asked to repeat the lecture, this
time to the whole faculty. And then he was asked
to present it a third time to G. D. Birkhoff alone.

Other early basic results were the Gelfand for-
mula for the spectral radius and the Gelfand-Levitan
inverse spectral theory for ordinary differential
operators. If you have a completely integrable
system, you are supposed to be able to integrate it
completely. For the KdV equation, the landmark
result of Gelfand and Levitan on the inverse spec-
tral problem for second-order ODEs turned out to
be the key to perform the integration.

It is a measure of Gelfand’s lifetime achieve-
ments that these spectacular early results are
viewed today as merely a small part of his total
work.

Here is a story that sheds light on Gelfand’s
modesty. I was one of three members of a committee
to award the first Wolf Prize. We all agreed that
the prize should be given to the greatest living
mathematician. That person, in my opinion, was
Carl Ludwig Siegel, but another member of the
committee insisted that it was Israel Moiseevich
Gelfand. So we argued back and forth fruitlessly
until we decided to divide the prize. Some time
later Gelfand remarked in a chance conversation,
“It was a great honor for me to share a prize with
Siegel.”

The world shall not see the like of Israel M.
Gelfand for a long, long time.

Andrei Zelevinsky

Remembering I. M. Gelfand

On December 6, 2009, two months after I. M.
Gelfand passed away, Rutgers University, his last
place of work, held a Gelfand Memorial. This
event brought together the crème de la crème of
several generations of Moscow mathematicians
(now scattered all around the world) whose life
in mathematics was to a large extent shaped
by I. M.’s influence. Despite the sad occasion, it
was a pleasure to see many old friends and to
share memories of our student years when we all
attended the famous Gelfand Seminar at Moscow
State University. And of course to share stories
about I. M. He was such a huge presence in so
many lives, and his passing left a gap which will
be impossible to fill.

I first met I. M. in the early fall of 1970. The
meeting was arranged by Victor Gutenmacher, who
at the time worked at the School by Correspondence
organized by I. M. (with the purpose of bringing

Andrei Zelevinsky is professor of mathematics at Northeast-
ern University. His email address is andrei@neu.edu.
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editorial suggestions.
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Math in the kitchen, 1982.

mathematics into the lives
of schoolchildren all around
the Soviet Union). I. M., who
as usual was simultaneously
involved in a myriad of
various projects both sci-
entific and pedagogical, had
decided to organize and run
a special mathematical class
of seventh-graders within
the famous Moscow School
No. 2, which already had
a decade-long tradition of
such classes. To help him
run this program, I. M. asked
Victor to find him several
young assistants who had
themselves passed through
such a class during their school years. I was very
fortunate to become one of four such assistants.
(Another was my old friend and classmate since
the seventh grade Borya Feigin, who is now a
distinguished mathematician.) All four of us had
graduated a year earlier from the same School
No. 2, all were math undergraduates beginning our
second year at Moscow State University, and all
felt a little lost in our mathematical studies.

The organizational matters could have been
resolved within a few minutes, but our first
meeting with I. M. lasted for several hours. The
four of us (plus poor Victor) walked with I. M.
for hours, and he talked to us about all kinds
of things, mathematical and not. He asked us
what we most loved about mathematics and what
seminars and elective courses we had attended
during our freshman year. Of course, he declared
that we had done everything wrong and were
almost lost for mathematics, but there was still
some little hope for us if we started to attend his
seminar at once. He explained to us how to study
a new mathematical subject: focus on the most
basic things at the foundation and dwell upon
them until you reach full understanding; then the
technicalities of the subject would be understood
very quickly and effortlessly. I remember vividly
how he illustrated this by explaining to us the
foundations of linear algebra: a subspace in a
vector space is characterized by one integer, its
dimension; a pair of subspaces is characterized by
three integers (dimensions of the two subspaces
and of their intersection). What about a triple of
subspaces? and what about a quadruple?6

6Triples of subspaces demonstrate the limitations of a
fruitful analogy between subspaces of a finite-dimensional
vector space and subsets of a finite set: the subspace lattice is
only modular but not distributive. Thinking about this anal-
ogy led me to my first two published notes, which appeared
within the next couple of years. As for the quadruples, as I
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This meeting was definitely one of my most life-
changing experiences. I have never met a person
with such personal magnetism and such an ability
to ignite enthusiasm about mathematics as I. M.
I remember returning home late in the evening,
totally exhausted but happy, with the definite
feeling that my mathematical fate had been sealed
that day. I could not sleep and spent most of
the night thinking about mysteries of triples of
subspaces! I attended the Gelfand Seminar for
almost twenty years. A lot has been said about its
unique character, including horror stories about
I. M.’s rough treatment of speakers and participants.
I had my share of humbling experiences there, both
as a speaker and as a “control listener” who was
sent by I. M. to the blackboard in the middle of a talk
to explain what the speaker was trying to say. Many
people, including some excellent mathematicians,
could not stand this style and stopped attending
the seminar. Those who stayed (myself included)
decided that such a great learning experience
was worth a little suffering. Equally important,
or maybe even more important than the talks
themselves, was Gelfand’s choice of topics; his
comments and monologues, which often deviated
a lot from the original topic; and of course his
famous “pedagogical” jokes and stories.

The official starting time of the seminar was
7 p.m. (or was it 6:30?) on Mondays, but it almost
always started with much delay, sometimes after
up to two hours! I am sure I. M. did this on purpose,
because these weekly get-togethers before the
seminar with numerous friends coming to the
university from all around the city were also a big
attraction. Sometimes even after his arrival, I. M.
did not immediately start the seminar but stayed
in the corridor for some time and chatted with
people just like everybody else.

I think of myself as I. M.’s “mathematical
grandson”: my first real teacher and de facto Ph.D.
advisor was Joseph Bernstein, one of Gelfand’s best
students.7 However, at some point after Joseph’s
emigration (in 1980, I believe), I. M. approached
me and suggested that we start working together.
Our close mathematical collaboration lasted about
a decade (from the first joint note in 1984 to our

realized much later, I. M. had just finished his remarkable
paper with V. A. Ponomarev, “Problems of linear algebra
and classification of quadruples of subspaces in a finite-
dimensional vector space”, so he was talking to us about his
own cutting-edge research!
7Joseph could not be my official advisor, since he was never
affiliated with the mathematics department at Moscow State,
which was also the case for many other first-rate mathe-
maticians from the “Gelfand circle”. A. A. Kirillov Sr., also
a student of Gelfand, kindly agreed to serve as my official
advisor. Of course, I also learned a lot from him and from
attending his seminar.

1994 book with Misha Kapranov). It would take
volumes to give a comprehensive account of I. M.’s
mathematical contributions, so let me just share
my personal impressions of some of his unique
features as a mathematician and as a teacher.8

Working with him could be a very frustrating
experience. Just looking at his incredibly prolific
scientific output, one would imagine him as a model
of efficiency, never wasting a moment of his time.
But most of the time during our daily meetings
was filled with numerous distractions, jumps from
one topic to another, his long phone conversations
with an amazing variety of people on an amazing
variety of topics, etc. Quite often after long hours
spent like this I felt totally exhausted and had
a depressing feeling that we had just wasted a
perfectly good working day. But almost without
exception there came a moment (sometimes when
I was already saying good-bye at the door) of
his total concentration on our project that led to
extremely rapid progress, completely justifying
all the torturous hours leading to this moment.
It seemed as if his subconscious mind never
stopped working on our project (and probably on
a multitude of other things at the same time), and
it just took I. M. a long time to become ready to
spell out the results of this work.

This “nonlinearity” of I. M.’s thinking process
was also one of the many features that made his
seminar so unique. He would spend an inordinate
amount of time asking everybody to explain to him
some basic definitions and facts, and just when
most of the participants (starting with the speaker,
of course) would get totally frustrated, I. M. would
suddenly switch gears and say something very
illuminating, making it all worthwhile.9

I have never met any other mathematician with
such an ability to see the “big picture” and always
go to the heart of the matter, ignoring unnecessary
technicalities. He had an uncanny ability to ask
the “right” questions and to find unexpected
connections between different mathematical fields.
I. M. was fully aware of this gift and liked to
illustrate it by one of his numerous “pedagogical”
stories: “An old plumber comes to repair a heater.
He goes around it, thinks for a moment, and hits
it once with a hammer. The heater immediately
starts working. The plumber charges 200 rubles
for his service. The owner says, ‘But you just spent
two minutes and didn’t do anything.’ The plumber
replies, ‘I am charging you 3 rubles for hitting your

8For I. M. these two occupations were inseparable. His way
of doing mathematics always involved close personal inter-
action with his innumerable students and collaborators.
9I. M. often interrupted speakers with the words “May I ask
a stupid question?” The best reply to this was given by Y. I.
Manin during one of his rare appearances as a speaker: “No,
I. M., I don’t think you are capable of such a thing!”
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heater with a hammer and the rest for knowing
where to hit, which took me forty years to learn!’10

I. M. had such an enormous wealth of ideas and
plans that he needed many collaborators to help
him realize even a small part of them. I was always
very impressed with his great intuitive grasp of
people. A few minutes of penetrating questioning
of a new acquaintance allowed him to take the
full measure of a person, understand his or her
scientific potential, strengths and weaknesses, even
how much pressure the person could withstand.
In my own case, it seems that I. M. detected my
soft spot for algebraic combinatorics (quite rare
in Moscow at that time, I must say) even before
I realized it myself. Very soon after I joined his
seminar, he asked me to study (and then give
a talk on) the old book The Theory of Group
Characters and Matrix Representations of Groups
by D. E. Littlewood, where the representation theory
was treated with a strong combinatorial flavor.
This was truly a sniper’s shot: the facts and ideas
that I learned from this book continue to serve me
to this day. Another truly inspired suggestion by
I. M. was to bring together Borya Feigin and Dmitry
Borisovich Fuchs, which led to many years of very
fruitful collaboration. Like so many of my friends
and colleagues, I feel very fortunate for having
known Israel Moiseevich and for being given a
chance to be close to this gigantic, complex, wise,
inspiring, and infinitely fascinating personality.

10I. M.’s amazing record of initiating new fruitful directions
of mathematical research provides plenty of examples of
“knowing where to hit.” Let me just mention one example: the
theory of general hypergeometric functions initiated by I. M.
(where a significant part of my collaboration with him took
place) grew from his insight that hypergeometric functions
should live on the Grassmannians.

Enhancement and Partnership Program
The Clay Mathematics Institute invites proposals under its 
new program, “Enhancement and Partnership”. The aim 
is to enhance activities that are already planned, particu-
larly by funding international participation. The program is 
broadly defined, but subject to general principles:

•	 CMI	funding	will	be	used	in	accordance	with	the	
Institute's mission and its status as an operating 
foundation to enhance mathematical activities 
organised by or planned in partnership with other 
organisations.

•	 It	will	not	be	used	to	meet	expenses	that	could	be	
readily covered from local or national sources.

•	 All	proposals	will	be	judged	by	the	CMI's	Scientific	
Advisory	Board.

Examples include:

•	 Funding	a	distinguished	international	speaker	at	a	
local or regional meeting.

•	 Partnership	in	the	organisation	of	conferences	and	
workshops.

•	 Funding	a	short	visit	by	a	distinguished	mathemati-
cian to participate in a focused topical research 
program at an institute or university.

•	 Funding	international	participation	in	summer	
schools (lecturers and students) or repeating a  
successful summer school in another country.

•	 Funding	a	special	lecture	at	a	summer	school	or	
during a research institute program.

•	 Funding	an	extension	of	stay	in	the	host	country	or	
neighbouring	countries	of	a	conference	speaker.

Applications	 will	 only	 be	 received	 from	 institutions	 or	
from	organisers	of	conferences,	workshops,	and	summer	
schools. In particular the CMI will not consider applica-
tions under this program from individuals for funding 
to attend conferences or to visit other institutions or to 
support their personal research in other ways.

Enquiries about eligibility should be sent to president@
claymath.org.	Applicants	should	set	out	 in	a	brief	 letter	
a description of the planned activity, the way in which 
this	 could	 be	 enhanced	 by	 the	 CMI,	 the	 existing	 fund-
ing, the funds requested and the reason why they cannot 
be	obtained	from	other	local	or	national	sources.	Funds	
requested should not be out of proportion to those ob-
tained from other sources. The CMI may request indepen-
dent letters of support.

Applications	 should	 be	 sent	 to	 admin@claymath.org.	
There is no deadline, but the call will be closed when 
the current year’s budget has been committed.
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