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A Walk through Johnny 
von Neumann’s Garden 
Freeman Dyson

Foundations of Mathematics
Johnny von Neumann left behind him six massive 
volumes of collected works, assembled and edited 
by Abraham Taub [1]. The collected works are his 
garden, containing a large and heterogeneous set 
of objects that he planted. Each of them grew from 
a seed, from an idea or a problem that came into 
his head. He developed the idea or solved the prob-
lem and then wrote it down and published it. He 
wrote fast and published fast, so that the flowers 
are still fresh. For my talk this morning I decided 
to take a walk through the garden and see what I 
could find. Luckily only two of the papers are in 
Hungarian. He wrote mostly in German until he 
came to live permanently in the United States at 
the age of thirty, and after that in English.

Johnny was educated at the famous Lutheran 
High School in Budapest from age ten to age 
eighteen. There he had excellent teachers and 
even more excellent schoolmates. One of the 
schoolmates was Eugene Wigner, who became an 
outstanding physicist and a lifelong friend. But 
Johnny’s father understood that the Lutheran 
High School was not giving Johnny everything he 
needed. Johnny had a passion for mathematics 
going far beyond what the school could teach. So 
his father hired Michael Fekete, a mathematician 
from the University of Budapest, to work with 
Johnny at home. The first flower in Johnny’s gar-
den is a paper, “On the position of zeroes of cer-
tain minimum polynomials” [2], published jointly 
by Fekete and von Neumann when Johnny was 

eighteen. The style of the paper is dry and profes-
sional, following the tradition set by Euclid two 
thousand years earlier. Almost everything that 
Johnny wrote as a mathematician is in the Euclid-
ean style, stating and proving theorems one after 
another with no wasted words.

Although the subject of his first paper was 
probably suggested by Fekete, the style is already 
recognizable as Johnny's. Johnny’s unique gift as 
a mathematician was to transform problems in 
all areas of mathematics into problems of logic. 
He was able to see intuitively the logical essence 
of problems and then to use the simple rules of 
logic to solve the problems. His first paper is a fine 
example of his style of thinking. A theorem which 
appears to belong to geometry, restricting the pos-
sible positions of points where some function of a 
complex variable is equal to zero, is transformed 
into a statement of pure logic. All the geometrical 
complications disappear and the proof of the theo-
rem becomes short and easy. In the whole paper 
there are no calculations, only verbal definitions 
and logical deductions.

The next flower in the garden is Johnny’s first 
solo paper, “On the introduction of transfinite 
numbers” [3], which he published at age nineteen. 
This shows where his strongest interests lay at 
the beginning of his career when he was a young 
bird ready to leave the nest and stretch out his 
mathematical wings. His dominating passion then 
and for the next five years was to understand 
and reconstruct the logical foundations of math-
ematics. He was lucky to arrive on the scene at 
the historical moment when confusion about the 
foundations of mathematics was at a maximum. In 
the nineteenth century, Georg Cantor had greatly 
enlarged the scope of mathematics by creating a 
marvelous theory of transfinite numbers, giving 
precise definitions to a vast hierarchy of infinities. 
Then, at the beginning of the twentieth century, 
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Bertrand Russell and other critics discovered that 
Cantor’s theory led to logical contradictions. Rus-
sell’s paradox threw doubt not only onto Cantor’s 
creation of a new world of infinities but also onto 
the established concepts of classical mathemat-
ics. Johnny became aware as soon as he began 
to talk with Fekete and to read the mathematical 
literature that mathematics was in a state of crisis. 
Since Cantor’s mathematical reasoning had led to 
logical absurdities, nobody knew how to draw the 
line between reliable mathematics and imaginative 
nonsense. Johnny decided at the age of nineteen 
that it was his task to resolve the crisis and to put 
mathematics back onto a firm logical foundation. 

The first paragraph of Johnny’s first solo paper 
consists of a single sentence: “The purpose of 
this work is to make the idea of Cantor’s ordinal 
numbers unambiguous and concrete.” The rest 
of the paper provides a new definition of ordinal 
numbers and demonstrates that the new definition 
leads to the same results as Cantor’s old definition. 
Johnny makes no claim to have resolved the crisis 
that arose from Cantor’s theory. He has only made 
the crisis more acute by giving Cantor’s concepts a 
sharper definition. To make the crisis more acute 
means to understand it better, and to understand 
it better is the first step toward resolving it.

Johnny’s second solo paper, “An axiomatization 
of set theory” [4], appeared two years later when 
he was twenty-one years old and a student at the 
University of Berlin. Set theory means the theory of 
things and collections of things, considering only 
their logical relationships and forgetting about 
their individual qualities. From the point of view 
of set theory, you and I and stars and planets and 
words and numbers are all just things and are all 
treated the same way. Axiomatization means to 
describe set theory in the same style that Euclid 
used to describe geometry two thousand years ago, 
building the theory by logical deduction from a few 
basic assumptions which he called axioms. Johnny 
found a new set of axioms for set theory. He hoped 
that his new axioms could serve as a consistent 
logical basis for all the useful parts of mathemat-
ics while avoiding the paradoxes. But he was well 
aware that his consistent basis for mathematics 
was a hope and not a proven reality.

The essential novelty of Johnny’s axioms was to 
introduce two species of objects, which he called 
“one-things” and “two-things”. He used these ab-
stract names in order to avoid possibly mislead-
ing impressions that might arise from using more 
familiar words. To make Johnny’s ideas easier to 
understand, I will use the names “sets” for one-
things and “classes” for two-things. So Johnny had 
a version of set theory with two kinds of objects: 
the sets, which are in some sense small enough to 
be handled collectively by the normal rules, and 
the classes, which are in some sense too big to be 
handled collectively. The axioms are constructed 

so that the “class of all sets” exists as a well-
defined object. It is a class but not a set. Neither 
the “set of all sets” nor the “class of all classes” 
exists in the theory. This simple trick, using differ-
ent names and different rules for small and large 
collectives, allows Johnny to avoid the logical para-
doxes. The paradoxes arose in the older versions of 
set theory from using the concept “set of all sets” 
too freely. In Johnny’s new version, this concept 
is forbidden, but the “class of all sets” is allowed, 
providing the framework for a logical construction 
of mathematics. The class of all sets is the universe 
of mathematics, the framework within which all 
mathematical collectives are defined.

Before writing his paper, Johnny had been 
talking with David Hilbert in Göttingen. Hilbert 
was forty years older than Johnny and was the 
most famous mathematician in the world. Hil-
bert was passionately promoting a program for 
resolving the crisis of mathematics by solving the 
Entscheidungsproblem, the decision problem. To 
solve the decision problem meant to find a for-
mal method of deciding the truth or falsehood of 
every mathematical statement. If he could solve 
the decision problem, that would show that the 
axioms of mathematics were both consistent and 
categorical. To be consistent means that they can 
never prove both a statement and its negation. To 
be categorical means that for every statement the 
axioms prove either the statement or its negation. 
Hilbert proclaimed, with all his authority as spiri-
tual father of mathematicians, that to resolve the 
crisis of mathematics it was necessary to find a set 
of axioms that were proven to be both consistent 
and categorical. Mathematics would only rest on a 
firm logical foundation if every meaningful math-
ematical statement could be proved true or false. 

At the end of his axiomatization paper, Johnny 
puts a brief and modest summary of his claims. 
He does not claim to have resolved the crisis of 
mathematics. He claims only to have opened the 
way to a possible resolution by finding a set of 
axioms that is not known to be self-contradictory. 
He has not proved that his axioms are consistent, 
and he has not proved that they are categorical. He 
ends his paper with two sentences expressing not 
very diplomatically his skepticism about Hilbert’s 
program: “Even Hilbert’s approaches are here pow-
erless, for this objection concerns the categoricity 
and not the consistency of set-theory. All that we 
can do now is to recognize that another argument 
against set-theory has arisen, and that we see no 
way ahead leading to rehabilitation.”

Three years later Johnny published two much 
longer papers about the foundations of math-
ematics. One was “On Hilbert’s proof theory” [5]. 
The other was his Ph.D. thesis, with the title “The 
axiomatization of set theory” [6], an expanded 
version of the 1925 paper. These two papers show 
that Johnny was still desperately trying to rescue 
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mathematics by following Hilbert’s program. 
Johnny was stuck. He had created a simple and 
beautiful new set of axioms, which were later 
shown by Kurt Gödel to be exactly what was 
needed for understanding the true nature of 
mathematics, but he did not know what to do with 
them. At that point, he gave up trying to rescue 
mathematics and devoted the rest of his life to 
other things.

Another three years later, in 1931, Kurt Gödel 
in Vienna proved two theorems that totally dev-
astated the Hilbert program. Gödel proved that 
no system of axioms for mathematics could be 
categorical and that no system of axioms could 
prove itself to be consistent. After Gödel, math-
ematics could never be the unique compendium 
of absolute truth that mathematicians from Euclid 
to Hilbert had imagined. After Gödel, mathematics 
was a free creation of the human mind, with truth 
and falsehood depending on human tastes and 
preferences. For Hilbert and many of his contem-
poraries, the discoveries of Gödel appeared to be 
a disaster. Their hopes of building a unique and 
solid foundation for mathematics had collapsed. 
But Johnny understood immediately that the new 
freedom created by Gödel was a gain and not a 
loss. Johnny said in a public lecture that Gödel 
was the greatest logician since Aristotle. Johnny 
regretted that he had not made Gödel’s discoveries 
himself three years earlier, but he was happy to see 
that Gödel used his 1925 system of axioms with 
separate names for sets and classes. Johnny was 
proud to have made a substantial contribution to 
the foundations of the new mathematics. 

Games and Quanta 
The next flower, “Theory of party games” [7], 
comes from a different corner of the garden. At the 
age of twenty-four, Johnny had become a profes-
sional mathematician with a position as instructor 
at the University of Berlin. He enjoyed the night 
life of Berlin and was intrigued by the logic of 
games such as poker and baccarat in which the 
outcome depends on a mixture of luck and skill. 
The question, whether a logical strategy exists 
for a player to have the best chance to win such 
games, had been raised by the French mathemati-
cian Émile Borel. Borel had asked the question 
but was unable to answer it. Johnny found the an-
swer, which turned out to be a deep mathematical 
theorem. For a game with only two players, there 
exists a unique strategy which gives each of them 
the best outcome on the average. The proof that 
such a strategy exists is another fine example of 
Johnny’s style, reducing a problem of calculation 
to a problem of logic. 

The optimum strategy usually requires a large 
element of randomness so that the moves of the 
players are truly unpredictable. Player A must 
throw dice to decide how to move so that Player 

B cannot win by predicting what Player A will do. 
In the game of poker the throw of the dice will 
occasionally require Player A to bet high on a weak 
hand, a move that is called bluffing. If Player A 
never bluffs, Player B can win by guessing more 
accurately the strength of Player A’s cards. At the 
end of his paper Johnny writes, “The agreement 
of the mathematical results with the empirically 
known rules of successful gambling, for example 
the necessity of bluffing in poker, can be consid-
ered as experimental confirmation of our theory.” 

For games with three or more players, Johnny 
found no such elegant solution to the problem. To 
have the best chance of winning a game with three 
players, Player A must bribe or threaten Player B to 
form a coalition against Player C. The players must 
compete for the roles of the winners, A and B, and 
try to escape the role of the loser, C. The result of 
the competition is decided by personal willpower 
or spite and not by mathematics. At the end of his 
discussion of the three-person game, Johnny says, 
“The decisive factor, which is altogether absent 
from the orderly and equitable two-person game, 
is combat.”

In another corner of the garden there is a little 
flower all by itself, a short paper with the title “The 
division of an interval into a denumerable infinity 
of identical parts” [8]. This solves a problem raised 
by the Polish mathematician Hugo Steinhaus. I met 
Steinhaus after World War II in America. He was 
one of the few survivors of the group of brilliant 
mathematicians who emerged in Poland between 
the wars. Half of them were Jewish and half were 
Gentiles. The chance of survival was about the 
same for both, since those who emigrated were 
mostly Jews and those who survived in Poland 
were all Gentiles. Johnny solved the Steinhaus 
problem quickly and never returned to it. The 
theorem that he proved is counterintuitive, and the 
proof is astonishing. The theorem is about sets of 
points on an interval. An interval means a finite 
piece of a straight line. A denumerable infinity 
means a collection of objects that can be labeled 
with whole numbers, 1, 2, 3,…, all the way to infin-
ity. The theorem says that there exists a collection 
of sets of points S1, S2, S3,…, with the following 
properties: (1) Every point on the interval belongs 
to exactly one Sj. (2) The sets Sj are identical in all 
respects except for position, each Sj being obtained 
from any other by displacing it bodily through a 
certain distance along the line. 

The theorem is counterintuitive because it is 
impossible to visualize the sets Sj. If you try to 
imagine how the points of the set Sj are arranged 
near the ends, you fail. You fail because the sets are 
nonmeasurable, and nobody has ever visualized a 
nonmeasurable set of points. Nonmeasurable sets 
cannot be constructed using any of the familiar 
tools of geometry. Johnny’s proof of the theorem is 
astonishing because it is totally abstract. He never 
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even mentions the geometry of the sets Sj. He gives 
no clue to their appearance or their construction. 
He proves their existence by reducing it to a propo-
sition in pure logic and proves the proposition by 
purely logical arguments. This little paper is the 
most extreme manifestation of the Johnny style.

During his Berlin years, Johnny made frequent 
visits to Göttingen, where Heisenberg had recently 
invented quantum mechanics and Hilbert was the 
presiding mathematician. Hilbert was intensely 
interested in quantum mechanics and encour-
aged collaboration between mathematicians and 
physicists. From the point of view of Hilbert, 
quantum mechanics was a mess. Heisenberg had 
no use for rigorous mathematics and no wish to 
learn it. Dirac made free use of his famous delta-
function, which was defined by a mathematical 
absurdity: being infinite at a single point and zero 
everywhere else. When Hilbert remarked to Dirac 
that the delta-function could lead to mathemati-
cal contradictions, Dirac replied, “Did I get into 
mathematical contradictions?” Dirac knew that 
his delta-function was a good tool for calculating 
quantum processes, and that was all he needed. 
Twenty years later, Laurent Schwartz provided a 
rigorous basis for the delta-function and proved 
that Dirac was right. Meanwhile, Johnny worked 
with Hilbert and published a series of papers 
cleaning up the mess. For several years, quantum 
mechanics was Johnny’s main interest. In 1932 he 
published the book Mathematical Foundations of 
Quantum Mechanics [9], which occupies a substan-
tial piece of his garden.

Johnny’s book was the first exposition of quan-
tum mechanics that made the theory mathemati-
cally respectable. The concepts were rigorously 
defined and the consequences rigorously deduced. 
Much of the work was original, especially the 
chapters on quantum statistics and the theory 
of measurement. I read the book in 1946 when I 
was still a pure mathematician but already intend-
ing to switch my attention to physics. I found it 
enormously helpful. It gave me what I needed, a 
mathematically precise statement of the theory, 
explaining the fine points that the physicists had 
been too sloppy to mention. From that book I 
learned most of what I know about quantum me-
chanics. But then, after I had made the transition to 
physics and had begun to read the current physics 
journals, I was surprised to discover that nobody 
in the physics journals ever referred to Johnny’s 
book. So far as the physicists were concerned, 
Johnny did not exist. Of course, their ignorance of 
Johnny’s work was partly a problem of language. 
The book was in German, and the first English 
translation was only published in 1955. But I think 
even if the book had been available in English, the 
physicists of the 1940s would not have found it 
interesting. That was the time when the culture 
of physics and the culture of mathematics were 

most widely separated. The culture of physics was 
dominated by people like Oppenheimer who made 
friends with poets and art historians but not with 
pure mathematicians. The culture of mathematics 
was dominated by the Bourbaki cabal, which tried 
to expunge from mathematics everything that was 
not purely abstract. The gap between physics and 
mathematics was as wide as the gap between sci-
ence and the humanities described by C. P. Snow 
in his famous lecture on the two cultures. Johnny 
was one of the very few people who were at home 
in all four cultures: in physics and mathematics, 
and also in science and the humanities.

The central concept in Johnny’s version of 
quantum mechanics is the abstract Hilbert space. 
Hilbert space is the infinite-dimensional space in 
which quantum states are vectors and observable 
quantities are linear operators. Hilbert had defined 
and explored Hilbert space long before quantum 
mechanics made it useful. The unexpected use-
fulness of Hilbert space arises from the fact that 
the equations of quantum mechanics are exactly 
linear. The operators form a linear algebra, and 
the states can be arranged in multiplets defined by 
linear representations of the algebra. Johnny liked 
to formulate physical problems in abstract and 
general language, so he formulated quantum me-
chanics as a theory of rings of linear operators in 
Hilbert space. A ring means a set of operators that 
can be added or subtracted or multiplied together 
but not divided. Any physical system obeying the 
rules of quantum mechanics can be described by 
a ring of operators. Johnny began studying rings 
of operators to find out how many different types 
of quantum systems could exist.

After Johnny had published his quantum me-
chanics book, he continued for several years to 
develop the theory of rings of operators. The third 
volume of his collected works consists entirely of 
papers on rings of operators. He published seven 
long papers with a total of more than five hundred 
pages. I will not discuss these monumental papers 
this morning. They contain Johnny’s deepest work 
as a pure mathematician. He proved that every ring 
of operators is a direct product of irreducible rings 
that he called factors. He discovered that there 
are five types of factor, of which only two were 
previously known. Each of the types has unique 
and unexpected properties. Exploring the ocean 
of rings of operators, he found new continents 
that he had no time to survey in detail. He left the 
study of the three new types of factor unfinished. 
He intended one day to publish a grand synthesis 
of his work on rings of operators. The grand syn-
thesis remains an unwritten masterpiece, like the 
eighth symphony of Sibelius.

The quantum mechanics book is the last item 
on my list of flowers that Johnny published in Ger-
man. It was published in 1932 when he was dividing 
his time equally between Berlin and Princeton. In 



158   	 Notices of the AMS	 Volume 60, Number 2

got into the habit of working on a problem, solv-
ing it to his own satisfaction, and then not taking 
the time to publish the results in detail. He gave 
lectures in Princeton on continuous geometry. His 
lecture notes were published in a book Continuous 
Geometry, which appeared in 1960 after his death. 
The book is boring. It is probably the most boring 
stuff that ever appeared under Johnny’s name. You 
can tell from the book that Johnny was already 
bored by continuous geometry while he was giving 
the lectures. He had good reasons for not publish-
ing the notes while he was alive. He had no need 
to publish or perish. He was a tenured professor 
at the Institute for Advanced Study. After 1936 he 
published only stuff that he considered important 
and not boring. He became increasingly interested 
in a wide range of subjects outside pure mathemat-
ics. He had, after all, earned a degree in chemical 
engineering at the ETH in Zurich at the same time 
as he was studying mathematics in Budapest.

Bombs and Computers
The next flower is a report, Theory of Detonation 
Waves [13], written in 1942, presenting a scholarly 
and thorough analysis of what happens when 
chemical high explosives detonate. Johnny had 
seen his homeland, Hungary, dismembered as a 
result of military defeat in 1918. He was even more 
eager than other European Jews to join the fight 
against Hitler. He was delighted to apply his math-
ematical skills and his knowledge of engineering to 
military problems and became a consultant to the 
United States Army before the United States went 
to war in 1941. His 1942 report was one of a series 
providing a theoretical basis for the improvement 
of military explosives. Military explosives are a 
delicate compromise between two conflicting re-
quirements: they should detonate with maximum 
efficiency when fired in anger and should resist 
detonation with maximum safety when exposed 
to gunfire or accidental explosions nearby. When 
you are trying to find the best compromise, it is a 
great help to have a consultant who understands 
the chemistry as well as the mathematics.

Johnny’s report does not discuss particular 
weapons but supplies a mathematical theory that 
designers of weapons can use to optimize designs. 
When he began work for the military, the applica-
tions were to artillery shells and antisubmarine 
depth charges. In 1943 he was invited by his friend 
Robert Oppenheimer to visit Los Alamos and apply 
his ideas to the design of nuclear weapons. His 
understanding of shock waves made a big contri-
bution to the success of the Los Alamos project. At 
Los Alamos he saw monstrous numerical calcula-
tions carried out laboriously by gangs of human 
computers. He began to think seriously about the 
possibility of electronic computers that could do 
such calculations better and faster than humans. 
In 1944 he met Herman Goldstine, who was then a 

the same year he began writing papers in English. 
One of his first papers to appear in English was 
“Proof of the quasi-ergodic hypothesis” [10], which 
he published in the Proceedings of the National 
Academy of Sciences to make sure that American 
mathematicians would read it. This paper solved 
an important problem in classical mechanics using 
the same concept of Hilbert space that he had 
used to solve problems in quantum mechanics. A 
classical dynamical system is said to be ergodic if 
after we put it into an initial state and then leave it 
alone for an infinite time, it comes arbitrarily close 
to any final state with probability independent of 
the initial state. Johnny proved that under certain 
clearly specified conditions, a system is ergodic 
if and only if there exist no constants of the mo-
tion. A constant of the motion means a quantity 
depending on the state of the system which does 
not change as the system moves forward in time. 
Johnny’s theorem provides a firm mathematical 
basis for the assumptions that are customar-
ily made by physicists using classical statistical 
mechanics. Translated into the sloppy language 
used by physicists, the theorem says that the time-
average of any single trajectory of the system over 
a long time is equal to the statistical average of all 
trajectories. Even more sloppily, physicists say that 
time-averages are equal to ensemble averages, and 
we use the word ensemble to mean the set of all 
states of the system.

One of the American mathematicians who read 
Johnny’s paper in the Proceedings of the National 
Academy was Garrett Birkhoff. Garrett was the 
son of George Birkhoff, and both father and son 
were famous mathematicians. Garrett and Johnny 
became close friends, and Garrett came to Princ-
eton for frequent visits. After Johnny died, Garrett 
wrote a memoir about the work that Johnny did 
in the 1930s. Here is a sentence from Garrett’s 
memoir: “Anyone wishing to get an unforgettable 
impression of the razor edge of von Neumann’s 
mind need merely try to pursue this chain of exact 
reasoning for himself, realizing that often five 
pages of it were written down before breakfast, 
seated at a living room writing-table in a bathrobe.”

A minor offshoot of Johnny’s thinking about 
operators in Hilbert space was his invention of 
continuous geometry, a new kind of geometry in 
which the dimension of a subspace is a continuous 
variable. A couple of short papers, “Continuous 
geometry” [11] and “Examples of continuous ge-
ometries” [12], are to be found in his garden. These 
papers were published in 1936 when Johnny was 
settled in Princeton. Johnny writes at the begin-
ning, “We will give only the axioms, some com-
mentaries on them, and then the main definitions 
and results. A detailed account will appear soon 
in a mathematical periodical.” This is a promise 
that was never fulfilled. From this time in his life 
onward he made many such broken promises. He 
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young army officer involved in a project to build a 
real electronic computer, the ENIAC, at the Univer-
sity of Pennsylvania. Johnny and Herman became 
close friends. Herman later said of Johnny, “While 
he was indeed a demi-god, he had made a detailed 
study of humans and could imitate them perfectly. 
Actually he had great social presence, a very warm, 
human personality, and a wonderful sense of 
humor.” They worked out a plan to do something 
spectacular with computers as soon as the war 
was over. In Johnny’s garden there is a paper, “On 
the principles of large scale computing machines” 
[14], describing their plans. I won’t say more about 
this, since Johnny’s work on computers is covered 
by other speakers.

I got to know Johnny personally when I came 
to the Institute for Advanced Study in 1948. He 
was then actively engaged in building the institute 
computer and learning how to use it. He under-
stood from the beginning that two of the most 
important uses of the machine would be to predict 
weather and to model climate. He hired engineers 
to build the machine and meteorologists to use 
it. The chief engineer was Julian Bigelow, and the 
chief meteorologist was Jules Charney. Each of 
them had a gang of young people to do the heavy 
work, persuading a totally new kind of machine to 
produce some real science. I enjoyed very much the 
young people, with their rowdy conversation and 
irreverent behavior. There was an amusing clash 
of cultures between these young hooligans and the 
older members of the institute. As Einstein wrote 
to his friend the queen of the Belgians when he 
arrived at the institute in 1933, Princeton was a 
quaint and ceremonious village populated by demi-
gods on stilts. The culture of the older members 
was based on formal politeness and respect for 
the academic hierarchy. Johnny and I were on the 
side of the hooligans.

When Johnny died, the institute quickly got 
rid of the computer project, and the older culture 
reasserted itself. No more hooligans were hired, 
and the breath of fresh air that they had brought 
to the institute was blown away with them to UCLA 
and MIT. In 1980 the institute celebrated its fiftieth 
birthday by publishing a volume with the title A 
Community of Scholars, 1930–1980 , consisting of 
biographies and bibliographies of the members. 
Not one of the young hooligans who built the 
machine and predicted the weather is mentioned 
in the book. They were not scholarly enough to be 
officially recognized as belonging to the institute. 
But there is a flower in Johnny’s garden, a paper, 
“Numerical integration of the barotropic vorticity 
equation” [15], by Charney, Fjortoft, and von Neu-
mann, describing their first attempts to predict 
weather. Since the institute computer was not 
yet running, they did their calculations with the 
ENIAC. Using the ENIAC, the numerical simulation 
moved ahead in time more slowly than the weather 

that it was supposed to simulate, so there was no 
real prediction. At the end they express the hope 
that the institute computer will be fast enough to 
keep ahead of real time. Four years later, when 
Johnny’s machine and others like it were running, 
their hopes were fulfilled. Johnny then announced 
that a prediction of weather twenty-four hours 
ahead could be done in less than an hour. That 
was as far as he was able to go toward his dream 
of understanding climate. One year later, he was 
diagnosed with terminal cancer, and three years 
later he was dead.

Summing Up 
In the last decade of his life, Johnny did not find 
time to write formal mathematical papers. Instead 
he wrote informal essays, sometimes addressed 
to his colleagues in the government agencies 
that supported his work and sometimes to the 
general public. The last two flowers in my tour 
of his garden are addressed to the public. They 
are thoughtful and beautifully written. He took 
a lot of trouble to think clearly and write simply. 
The first of the two was titled “The mathemati-
cian” [16]. It was published in 1947 as a chapter 
in a book of essays, The Works of the Mind, by a 
variety of authors. It is a swan song, summarizing 
in simple words the conclusions that Johnny had 
reached at the end of his life as a pure mathemati-
cian. He had devoted the best years of his life to 
pure mathematics, when he was, as Newton said 
of his own early years, “in the prime of my life for 
invention.” From age nineteen to age twenty-seven 
he had struggled to build firm logical foundations 
for pure mathematics, preparing the ground for 
Gödel’s discovery that no set of foundations could 
be complete. After the Gödel revolution, he took 
advantage of the new freedom to experiment with 
logical foundations for quantum mechanics and 
for the discipline that was later given the name of 
computer science. His essay “The mathematician” 
describes the development of mathematics as a 
free creation of the human mind, with foundations 
either borrowed from empirical science or freely 
invented. 

The main message of Johnny’s essay is stated at 
the end in words that have become famous among 
mathematicians: “As a mathematical discipline 
travels far from its empirical source, or still more, 
if it is a second and third generation only indirectly 
inspired by ideas coming from reality, it is beset 
with very grave dangers…. At a great distance 
from its empirical source, or after much abstract 
inbreeding, a mathematical subject is in danger 
of degeneration. At the inception the style is usu-
ally classical. When it shows signs of becoming 
baroque, then the danger signal is up. It would be 
easy to give examples, to trace specific evolutions 
into the baroque and the very high baroque, but 
this, again, would be too technical. In any event, 
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to overthrow Hitler, without a war of annihilation. 
He saw a preventive war in the 1940s as preferable, 
not only for America but for humanity as a whole, 
to a war of annihilation later. I am not saying that 
he was right. I consider it unlikely that preventive 
war could have achieved its objective either in 
1936 or in the 1940s. I am only saying that to talk 
of Johnny’s advocacy of preventive war without 
mentioning the events of 1936 which dominated 
his perception of the moral issues is to miss the 
main point of his argument.

The last flower on my tour of Johnny’s gar-
den is a paper written for the general public and 
published in Fortune magazine in June 1955, two 
months before the onset of his fatal illness. The 
title is “Can we survive technology?” [17]. Johnny 
is now no longer concerned with the intellectual 
problems of mathematicians but with the human 
problems of war and peace, nuclear weapons and 
nuclear power, global warming and climate control, 
computers changing the rules of economics and 
politics. In the last seven years of his life, as he 
moved into the centers of power in Washington 
and made friends with generals and politicians, 
he understood that the urgent problems of soci-
ety were human rather than technical. His view of 
human nature was bleak. “It is just as foolish to 
complain that people are selfish and treacherous 
as it is to complain that the magnetic field does 
not increase unless the electric field has a curl. 
Both are laws of nature.” His view of the future 
was equally bleak. “Present awful possibilities of 
nuclear warfare may give way to others even more 
awful. After global climate control becomes pos-
sible, perhaps all our present involvements will 
seem simple. We should not deceive ourselves. 
Once such possibilities become actual, they will 
be exploited…. The one solid fact is that the dif-
ficulties are due to an evolution that, while useful 
and constructive, is also dangerous. Can we pro-
duce the required adjustments with the necessary 
speed? The most hopeful answer is that the human 
species has been subjected to similar tests before 
and seems to have a congenital ability to come 
through, after varying amounts of trouble. To ask 
in advance for a complete recipe would be unrea-
sonable. We can specify only the human qualities 
required: patience, flexibility, intelligence.” Johnny 
possessed these qualities himself. They are still 
the qualities that we need in order to have the 
best chance of survival as we move into the world 
that he created.
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